Panel at Artificial Intelligence and You Symposium

The Artificial Intelligence and You Symposium hosted by the Center for Science, Technology, and Society was held on April 26th at the Innovation Forum at Missouri S&T. Our team organized a panel discussion in which we discussed measuring and aggregating preferences in AI for kidney transplant healthcare. This included 3 short presentations followed by a panel discussion led by Casey Canfield and joined by Cihan Dagli, Daniel Shank, and Sid Nadendla.

Harishankar Subramanian presenting on explainable AI interfaces.

Harishankar Subramanian spoke on integrating stakeholder input into the design of explainable interfaces. Explainable AI (XAI) helps users to understand system’s processes and logic, appropriately trust the system, effectively manage performance as well as fully understand the system and why the system is operating the way in which it is operating. One of the main findings was that the appropriate interface of an AI will vary based on user expertise and decision-making process. Future work will be done to investigate user understanding of AI and the users ability to judge when to rely on AI recommendations. 

Mukund Telukunta presenting on bias in the kidney placement process.

Mukund Telukunta spoke on measuring social fairness preferences from non-expert opinions in kidney transplantation. There is a history of racial bias in the organ transplant process, which needs to be considered in the development of AI tools. Survey participants were presented information, which included the AI’s recommendation as well as the surgeons decision for 10 potential recipients, to evaluate the fairness of the outcomes. The AI decision support system was deemed fair. Future work will consist of gathering expert opinions, such as OPO’s, transplant surgeons, and patients. 

Amaneh Babaee presenting on embedding preferences in adaptable AI decision support.

Amaneh Babaee spoke on her research on identifying organizational and individual factors in AI adoption for kidney transplant, specifically in organ procurement organizations (OPO’s). Interviews with OPOs suggest that AI will be useful if it can measurably speed up the allocation process. In addition, the implications of OPO size varies. A large OPO has more higher financial resources to adopt the AI but has a slower decision-making process. A small OPO has less financial resources, but can quickly decide whether or not AI is suitable for them. She is also deploying a survey to measure perceptions of AI. While both studies are still ongoing, it seems that AI has the potential to improve transplant outcomes, but regulatory hurdles may hinder its integration into existing operations.

Panel Discussion led by Casey Canfield (NP)
Left to Right: Dr. Shank, Dr. Nadendla, Dr. Dagli, and Student Researchers Harishankar Subramanian, Mukund Telukunta and Amaneh Babaee.

In the panel discussion, one concern was that the AI could make incorrect recommendations, leading to negative outcomes. It is unlikely that this process would be automated and there will always need to be a human-in-the-loop. Transplant centers and OPOs will still need to rely on their expertise to fill in the gaps, since the AI does not have as much information as they do about a particular case.

Presentation at the Conference on Systems Engineering Research (CSER)

The 21st Annual Conference on Systems Engineering Research (CSER 2024) pushed the boundaries of systems engineering, from the digital engineering transformation to the seamless integration of artificial intelligence within systems. Kummer Innovation and Entrepreneurship Doctoral Fellow Rachel Dzieran attended CSER in Tucson AZ on March 25-27.

She presented the paper, “System-of-Systems Approach for Improving Quality of Kidney Transplant Decision-Making Support for Transplant Surgeons”, authored by Rachel Dzieran, Dr. Lirim Ashiku, Dr. Richard Threlkeld, Dr. Cihan Dagli, and Dr. Robert Marley. The paper is about the creation of a meta-architecture for software that could be developed in the future for dissemination of this research once it is fully completed. The objective is to build a Transplant Surgeon specific model for decision-making at the transplant center. 

Rachel Dzieran, Systems Engineering PhD student

How Do You Feel About Adopting AI in Kidney Placement?

We want to know what transplant stakeholders think about adding AI to the kidney placement process. Please let us know if you would like to participate in a survey or interview! Email Elham (abt8f@umsystem.edu) for more information. 

We are proposing that OfferAI, a hypothetical tool based on the one we are developing, could help people at transplant centers and organ procurement organizations (OPOs) (see diagram below). For a transplant center, AI could be used to accept or deny kidney offers faster. For OPOs, AI could be used to decide if the kidney is hard-to-place and help decide when to use a rescue pathway (i.e., accelerated or expedited placement).  

As part of our research, we are currently interviewing OPOs to get a better understanding of the potential benefits and drawbacks of implementing AI into their organizations. Interview data will remain confidential and will be solely used for research purposes.  

We are also seeking participants for a survey about AI adoption. We are comparing how attitudes, perceived risks, assurance and trust in AI, interpersonal influence, and government influence affect interest in AI adoption across transplant centers, OPOs, patients, and the public. This will help us identify potential barriers and opportunities for AI in the kidney transplant placement process.  

Right now, we are recruiting people who work at: