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First we are concerned with properties of an exponential function for a dynamic
equation on a time scale. We completely determine the sign of this exponential function.
This then determines when first order linear homogeneous dynamic equations and their
adjoints are oscillatory or nonoscillatory. In the last section of this paper we give
oscillation criterion for a certain higher order linear dynamic equation on a time scale.
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. INTRODUCTION

In this paper, we establish some oscillation results for the dynamic
equations

A =p(t)y (1)
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794 E. AKIN et al.

and

Y2 (o) +p(8)y(2) =0 (2)
on a time scale.

DEFINITION 1 A measure chain (time scale) is an arbitrary nonempty
closed subset of the real numbers R. Assume T has the topology that it
inherits from the real numbers R with the standard topology.

DerFiNmmioN 2 Let T be a measure chain and define the forward jump
operator o on T by

o(t) :=inf{s>¢t:5€T}eT,

forall 1€ T. In this definition we put o() = sup T. The backward jump
operator p on T is defined by

p(t) ==sup{s<t:seT}eT,

for all £€ T. In this definition we put p(#) = inf T. If o(z) > 1, we say t
is right-scattered, while if p(f) < t we say ¢ is left-scattered. If o(t) = 1,
we say t is right-dense, while if p(£) = t we say ¢ is left-dense. Finally,
the graininess function p : T [0, 00) is defined by

wu(t) =o(f) — 1.
Throughout this paper we make the blanket assumption that a < b are
points in T,
DermimionN 3 Define the interval [a, b] in T by
la,b] :={teT:a<t<b}.

Other types of intervals are defined similarly. The set T* is derived
from T as follows: If T has a left-scattered maximum m, then
T® =T — {m}. Otherwise, T* = T.

We are concerned with calculus on measure chains which was first
introduced by Hilger [13] in his dissertation in 1988. Some recent
papers concerning dynamic equations on measure chains include
Agarwal and Bohner [1, 2], Agarwal, Bohner and Wong [3], Erbe and
Hilger [6], Erbe and Peterson [7, 8], Hoffacker [14]. Some preliminary
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OSCILLATION RESULTS 795
definitions can be found in Kaymakalan, Lakshmikantham and
Sivasundaram [15].

DeriNiTioN 4 Assume f : T—R and let t€ T*, then we define f2(2)
to be the number (provided it exists) with the property that given any
g> 0, there is a neigborhood U of ¢ such that

[£(o(1) = £(s)] =2 (@)lo(t) = sl| < elo(®) — s,

for all s€ U. We call f2(¢) the delta derivative of f(z) at ¢ and it turns
out that 2 is the usual derivative if T = R and is the usual forward
difference operator A if T = Z.

Some elementary facts that we will use concerning the delta
derivative are contained in the following theorem due to Hilger [11].

THEOREM 5 Assume f: T R is a function and let t&T". Then we
have the following:

(1) If fis differentiable at t, then f is continuous at t.
(2) If fis continuous at t and t is vight-scattered, then f is differentiable
at t with

Ay flo(®) = f(8)
Fon = u(e)

(3) If f is differentiable and t is right-dense, then

) — i TO10),

- 5=t r—s

(4) If fis differentiable at ¢, then

Flo(®) =£(0) + u(Of2().

DeFNiTION 6 A function F: T*+ R is called an antiderivative of
f: TR provided FA(f) = f(£) holds for all & T*. In this case we
define the integral of f by

/ F(s)As = F(t) — F(a)

forteT.

{
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796 E. AKIN et al.

DerFinrTion 7 We say f : T R is right-dense continuous provided fis
continuous at each right-dense point 7€ T and whenever € T is left-
dense

lim f(s)

§—1

exists as a finite number.

Turorem 8  If f is rd-continuous, then

o(f)
FD)AT = u(0)f (9.

For h >0, let Z,, be the strip in the complex plane
T T
= D= <~

Z, {ze@ h<Im(z)_h},

and for h=0, let Zy:=C, the set of complex numbers.

DermNitioN 9 For h>0, we define the cylinder transformation
f . Ch — Zh by

1

&(z) = ﬁLog(l + zh),

where Log is the principal logarithm function and
Ch={z€C:z# —(1/h)}. For h=0, we define &yz)=z for all
zeZy=C.

Next we define the exponential function.

Derinrrion 10 We say that p:T*—R is regressive provided
14+ pu(&p(0)#£0 for all te T".

Dermarion 11 We say the dynamic equation (1) is regressive
provided p: T"+— R is regressive and rd-continuous.

DermarioN 12 If p: T R is regressive and rd-continuous, then we
define an exponential function (see Hilger [11, 12]) by

et =exp ([ 6o p(r) A7)

for 1€ T, s € T" where £,(z) is the cylinder transformation.
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It is well-known that if a: T“—R is rd-continuous and regressive,
then the exponential function e,(t, ty) is for each fixed #, &€ T* the
unique solution of the initial value problem

XA = a(t)x, x(to) =1

onT.
We will use the following properties of the exponential function
e,(t,s) which are proved in Bohner and Peterson [S5, Theorem 3.1].

If p, g: T"—R are regressive and rd-continuous, then the following
hold:

o eo(t,5)=1and e,(t, ) =1;

* e,(a(9),5) =(1+ u(Op(D)e,(t, 5);

e e,(1,5)ey(s, 1) =ey(t,1);

4 ep(ta S) = (l/ep(ss t))a

o gyt, 5)ey(t, 5) = epay(t, s) where (p®g)(#H) =p(¥) + q(t) + p@Op()q(?),
teT",

We will make use of the well-known formula (see Hilger [11])

x(o(8)) = x(1) + () ().

2, EXPONENTIAL FUNCTION AND FIRST ORDER
DYNAMIC EQUATIONS

In this section we study the dynamic equation of the form

XA (t) = p(1)x(z) (3)

where p is rd-continuous and regressive on T,
It is well-known that

x(t) = e,(t, to)Xo
is a general solution of Eq. (3).

Lemva 13 Suppose p:T*—R is rd-continuous and regressive
and suppose further there exists a sequence of distinct points {t,}CT"
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such that
1+ u(tn)p(ts) <O
n=12,... . Then lim, ,|t,| = oo.

Proof Assume there exists a sequence of distinct points {1} C T*
such that

1+ pu(tn)p(2a) <0

and

lim ¢, = f,.

n—00
Since T is closed, z, € T. Since

1+ p(t)p(tn) <O,
w(t,) >0 and

'P(tn)<—;(1tn—),n=1,2,... : )

Either there is a subsequence {,, } such that #,, | ) or #,, T f. Assume
ty, | to. Since

0 < /‘l’(tﬂx) = U(tﬂi) - tn; S tn,-_l - tn,-,

limi—wo /L(tn,-) =0.
Assume t,, T #,. Since

0 < pu(ty) = o(ty) — ta, < by — tnys

lim; o0 p(2s) = 0. So in either case lim; o, 1(#,) = 0 and hence using

)

lim p(#;) = —oo.
I—00
But this contradicts the fact that p is rd-continuous on T. |

THEOREM 14 Assume p:T"— R is regressive and rd-continuous.

(1) If 1+p(0)p(f) > 0 on T, then e,(t, to) is positive on T.
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@) If 1+ p(n)p(1) < 0 for some 7€ T, then
ey(7, to)ey(0(T), 1) < 0.

In this case we say ey(t, to) has a generalized zero (see Hartman [10])
at (7). '

(3) If 1+ u(®Op() <0 on T*, then eyt, to) changes sign at every point
inT.

(4) Assume there exist a finite or infinite sequence {t;} C T* and a finite
or infinite sequence {s;}CT"* with

e ;LN <HHH<HL .

such that 1+ p(t)p(t) < 0 and 1+ u(sp(s;) < 0 and 1+ p(Dp() >0
for teT —[{s}U{t}]. Furthermore if {t,} is infinite, then
limy, 0oty = 00 and if {s,,} is infinite, then lim, o8y = —o00. In this
case

ep(t,50) >0 on [o(s1), 4]
If {t,} is infinite, then
(—le(t,10) >0 on [o(t),tisal, i=1,2,... .
If {t,} is a finite sequence of N points, then
(—1)ep(t,20) >0 on [o(t), i), i=1,2,...,N—1
and
(~1)ey(t,20) >0 on [o(ty),00).
If N=0, then
e(t,1)>0 on [o(s1),00).
If {s,} is infinite, then
(—1Ye,(t,2) >0 on [o(sis1),s), i=1,2,... .
If card {s,} = M, then

(‘_l)iep(ti to) >0 on [U(si—kl)’si]: i= 1,27 v M — 1)
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and
(—1)Me,(t,20) >0 on (—o0,sy].
If M=0, then
e(t,10)>0 on (~o0,4].
Proof

o Part (1). Assume 1+ pu(f)p(f) >0 on T" If u(?) > 0, then

b0 (0(0)) = -l%mgu + u(p()] € R

for all £€ T". On the other hand if 1 (¢)=0, then
&uy(P(9) = p() €R.

Hence in all cases £,;(p(?)) is real for ¢ € T* and hence by definition
of the exponential

ep(t, Zo) >0

on T. : '
o Part (2). Assume 14 u(r)p(1) <0 for some 7€ T*. It follows that
(1) > 0. Since

ep(0(7),t0) = (1 + u(r)p(7))ep (7, 10),

we get the desired result.
e Part (3). Assume 1+pu(f)p(f) <0 on T* By Theorem 3.2 in [5],
(1, t0) = aft, 1) (—1)™ where |

a(t, ) ==exp (/tt log|1 “;(l;()T)P(T)l A'T) >0 o

and 7, is defined to be the cardinality of the finite set [zo, 7) if > ¢,
and n, is the cardinality of the finite set [z, o) if # < # so ex(t, to)
changes sign at every point in T.

e Part (4). By Lemma 13 the set of points in T where 1+ u(f)p(f) < 0 is
countable. Let {z,} be the points in [#,, co) such that 1+ u(f)p(z) < 0.
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If {¢,} is infinite, then by Lemma 13, lim,,_, %, = co. We can assume
tp < t1<ty<---. Consider the case where there are infinitely
many {#}CT" with £, < t; < #, <---such that 1 + u(t)p(t) < 0and
14+u(Op(H >0 for t>1y, t#t, 1<i<oo. We will prove the
conclusion of Part (4) for this case by mathematical induction with
respect to the intervals [to, #{], [o(t1), 2], [0(82), £3],... . First we
prove that

e(t,19) >0

on [to,#;]. Since ey(to,f0)=1 and 1+u@)p()>0 on [ty 1),
ep(t, t0) >0 on [fo,1;). We now show that e,(ty, %) > 0. If 1, =1,
then e,(f1, 1)) =1>0. Hence we can assume #; > fo. There are two
cases to consider:

Case I p(t;) < t1. Then

ep(t1,t0) = ep(t1, p(t1))ep(p(t1), t0)
= [1+ u(p(t1))p(p(t1))]es(p(t1), p(t1)) ep (p(t1), t0)
= [1+ p(p(t1))p(p(t1))]ep(p(t1), to)
>0.

Case 2 p(t)) = t;. Since p(t;) =11, the value of f:ol €. (p(8)) As does
not depend on the value of the integrand at #;. Hence e,(#1, fo) > 0 in
this case. Therefore e,(t, 15) > 0 on [#, #1].

Assume i >0 and (—1)’ ex(t, t0) > 0 on [0(1y), t;41] (Ito, 1] if i=0). It
remains to show that

(~1)"*e,(t,8) >0

on [o(f; 4 1), ti+2]. Since 1+ u(t;.1)p(%;4 1) < 0, we have by Part (2) that
o(t;11) > ti41and f

ep(tir1, to)ep(o(tiz1), to) <O.

Then
(—1)*ey(o(ti41), 10) > 0. (5)
We want to first show that

(=1)"*ep(t,20) >0
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on [o(ti41), fiy2). I [0(ti1-1), iy 2) = {0(t:1)}, then we are also done by
(5). Now assume (0(t;.11), t;12) # 0. Let 1€ (0(¢;1), t;.1.2). Then

(=D ep(t,10) = (1) ep(t, 0(t141))ep (08141), 1)
= (— 1) el SOPD ) 1)
>0

by using Eq. (5) and the fact that 1+ u()p(£) > 0 on [o(t;4 1), tiy2). It
now remains to show that (— 1)i+lep(t,-+2, to) > 0.

Case I t;11 <p(tiys) <tiia Then

(_1)i+lep(ti+2, fo) = (_1)i+lep(ti+2a p(ti2))ep(p(ti2), to)
= (=™ 1 + p(p(ti2) 2 (p(ti2)))]
ep(p(tir2), p(tir2))ep(p(ti12), o)

= (=)™ L+ up(E2))p(p(ti42) e (p(ti42), 10)
>0.

Case 2 p(ti12)=1:42. Since p(t;42) = t;.42, the value of ft:,m un (0(s))
As does not depend on the value of the integrand at ¢, and hence
we get the desired result.

The remaining cases are similar and hence are omitted., |

The next result follows immediately from Theorem 14.

CoroLrArY 15 If p:T"— R is rd-continuous and regressive, then
ey(t, to) is real-valued and nonzero on T.

THEOREM 16 Assume Eq. (3) is regressive.
m I
L+p(®p(®) >0 on T,

then every nontrivial solution of Eq. (3) is of one sign on T. If, in
addition, T is unbounded, then we say Eq. (3) is nonoscillatory on T
in this case.

@1
14+ u(p(t) <0 on T*,
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then every nontrivial solution of Eq. (3) changes sign at every point in
T. If, in addition, T is unbounded, then we say Eq. (3) is strongly
oscillatory on T in this case.

(3) If there exists a strictly increasing sequence {s;}CT" such that

14 p(s)p(s;) <0 fori=1,2,...,

then every nontrivial solution of Eq. (3) changes sign infinitely often
and we say Eq. (3) is oscillatory on T in this case.

(4) Assume there exists a finite number N of points in T® where
14+ u(Op(t) <0, then every nontrivial solution changes sign exactly
N times in T and we say Eq. (3) is nonoscillatory on T in this case.

Proof Let x(z) be a nontrivial solution of Eq. (3). Then
x(2) = (2, 10)%o

where xo#0. The conclusions of this theorem follow from Theorem
14, |

" In [4] Bohner and Peterson discuss both the nth order linear
dynamic equation

Y 4 1y 4 (Y1) = 0 (6)
where
1+ zn:(—u(t))ip,-(t) #0 forall teT"
=1
and
Y @O0+ gty () =0 (7)
where

I+ p(Oq1(2) #0.

In the first order case we are concerned with the dynamic equations

y* = p(t)y (8)

and

y= =-p@)y’. 9)

s
i
1.
v




804 E. AKIN et al.

Bohner and Peterson [4] call the dynamic equation (9) the adjoint
equation of Eq. (8). Since Bohner and Peterson [4] proved that x(¢) is a
nontrivial solution of Eq. (8) (note a nontrivial solution of Eq. (8)
never vanishes.) iff y(£) = (1/x(2)) is a nontrivial solution of Eq. (9), we
immediately get the following corollary.

CorOLLARY 17  Assume p: T+ R is regressive and rd-continuous.

m I
L+p@p() >0 on T¢,

then every nontrivial solution of Eq. (9) is of one sign on T. If, in
addition, T is unbounded, then we say Eq. (9) is nonoscillatory on T
in this case.
@I
L+ u(t)p() <0 on T,

then every nontrivial solution of Eq. (9) changes sign at every point in
T. If, in addition, T is unbounded, then we say Eq. (9) is strongly
oscillatory on T in this case. '

(3) If there exists a strictly increasing sequence {s;}CT" such that

1+ p(si)p(s) <0 fori=1,2,...,

then every nontrivial solution of Eq. (9) changes sign infinitely often
and we say Eq. (9) is oscillatory on T in this case.

(4) Assume there exists a finite number N of points in T* where
1+ u(®)p(t) < 0, then every nontrivial solution changes sign exactly
N times in T and we say Eq. (9) is nonoscillatory on T" in this case.

For higher order linear dynamic equations of the form (6) the
relationships between the oscillation of Eq. (7) and its adjoint equation
are not known.

3. OSCILLATION AND NONOSCILLATION
OF A DYNAMIC EQUATION

In this section we consider the dynamic equation of the form

xA(o"(D) +p(1)x(1) = 0 (10)
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where p is rd-continuous and regressive on T”. For Eq. (10) we will
only consider measure chains T where each point in T is left-scattered
and right-scattered. The results in this section are motivated by the
work in Chapter 7 of the book [9] due to Gy&ri and Ladas. They study
Eq. (10) in the special case where T =N, They show that every
solution oscillates if only if an associated characteristic equation has
no positive roots. This partially motivates the definition that we give
below of oscillation.
One can show that the initial value problem

xB(0"(1)) +p()x(1) = 0,

where x; € R, 0 <i<n, has a unique solution to the right of , € T.
We look for a solution of Eq. (10) in the form

x(1) = ex(t, o)

where Ag: T"— R is regressive. First note that

x2(1) = (e (2, t0).
Then |

x2(07(1)) = X (0™ (1)) e (" (1), 10)
n—1
= Xo(0" (1) [ TI + 1o’ ()Xo (1))]ens (2, t0)
1=0
by using one of the formulas concerning exponential functions given
at the end of Section 1. Therefore

n—1

XA (0" (l‘))+1)(t)x{t)={>\o (@O T+ )Xol @)1+2() }e/\o (t,%0)-

=0
This leads us to the equation
n—1

Mo(@"(0) TTIL +u@ )Mol @) +p(2) = 0 (11)

=0
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which we call the characteristic equation of Eq. (10). It follows that if
Ao: T*+ R is regressive and Ao(z) satisfies the characteristic equation
(11), then

x(8) = ex (£, 7o)
is a solution of Eq. (10) on T.

Example 18 In this example we find exponential solutions of the
dynamic equation

xA(o(®)) +px(2) =0, (12)
where p is a nonzero constant, by studying its characteristic equation
Mo(o(®)[1 + p(@Xo(t)] +p =0 (13)

when T=AZ. In this case Eq. (13) is equivalent to
1 p
Xo(t+R)Ao(8) + Z/\O(t+h) +3= 0.

Let Ao(s) = Ao(hs) where 7= hs. Then we get the Riccati equation (see
Kelley and Peterson [16, page 82]) ’

~ ~ 1~ :
Sols + 1)Jo(s) + 7 Jo(s + 1) +%’ =0.

We make the Riccati substitution (see Kelley and Peterson [16, page
82])
¢ X(s+1) 1
)\0(5’) = 56(.5‘) - Z (14)
It follows that X(s) is a solution of the second order linear difference
equation

(s +2) —%i(w 1) +£5() =0,
which has

X(s) = a1 (%@>S+az<ﬂ>s,

2h

i
i
i
f
!
rA
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where a; and a, are real constants, as a general solution. Therefore by
Eq. (14)

o) = AT 3)/ 207 + (1 =/ T= )21
ar(1+ /1= ) /205 + (1 = /1= Hhp) /20 I’
and so
Not) = @i (1 + /T —4hp) /2h) + ap((1 — /T = 4hp) /20)((1 - /T— 4ph — 2hp) /2hp)™ 1
' a +a((1— \/m —2hp) /th)(t/h) 7
{15)
In [5] it is shown that if T =AZ and a(t) is I'engSSive, then
(t/m)—1
ea(t,0)= [ [1+ha(jh)-
7=0

Hence we get for any constants a; and a, such that Ay(z), given by Eq.
(15), is regressive, then

(t/h)-1

ex(t,0) = T [1+rr(m)]
J=0 ;

is an exponential solution of Eq. (12). In particular if we take gy 0,
@, =0 and a; =0, a,#0 respectively, then we get Ao(f) is a constant
function and we get the exponential solutions

| 1+ +/T—4hp\ ¥/
0= (L)

and

2

— 1= (¢/h)
er(ta 0) = (1 ! 4hp>

where we assume p < (1/4h).

Throughout the remainder of this paper we assume sup T =oo.
Let acT. If there exist a function Ag(¢) and f €T such that 14
w(OXo() >0 on [fy,00), and Ao(f) satisfies the Eq. (11) on [f, 00),
then since ey, (¢, %) is a positive solution of Eq. (10) on [£o, cc), the Eq.
(10) is said to be nonoscillatory on [a, oo). Otherwise we say Eq. (10)
is oscillatory on [a, co).
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TuEOREM 19 Assume there exists a sequence of points {t;} Cla,00)NT,
with f— oo such that p(p" (1) >0, k=1,2,..., i=0,1,2,...,n—-1
and
pl) > —— . k=12
k) =~ =L
p(o™(t))
Then Eq. (10) is oscillatory on [a,00)NT.

Proof Assume not, then there exist a function X(®) and a
T€[a, 00)NT such that

T+ pu(®)Xo(2) >0 ’ (16)

for 1> T, tela,00)NT and MA(r) satisfies Eq. (1) for t>T,
t€la,0)NT. By (16),

1
Ao(f) > ——Tt-)—

for all t> T, t€[a,00)N T. This implies that

Jo(e'(1) > ~ (17)

1
p(o’(r))
forall t> T, t€[a,00)NT and i=0, 1,. ... Without loss of generality,
assume % >o" (T for k=1,2,... . Since Ao(?) is a solution of Eq.
(11), we get

o 140
Ao("(1) = o[l + s (D) Ao(? (2))] "

We claim that Ao(o’(1)) <0, k=1,2,... and i=0,1,...,n—1. To see
this, note that by Eq. (18) with = p"~¥(#) for i=0, 1,2,...,n—1we
get

20(o'(26)) = Do(0™ (0" (1))

(0" ()
oo [+ s(@ (071(t))) Do (o (07 (8)))]

<0
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for i=0,1,...,n—1,k=1,2,... . Therefore, we have

—I_XOTI(ES < /\o(oj(tk)) <0

for i=0,1,...,n—1,k=1,2,... . Hence

1+ u(o' (%)) Mo (0 () < 1+ p(a* (@) Mo(d ()]
. 1
< U ule ) gy =2

for i=0,1,...,n—1, k=12,... . Since p(tg) > (2"/u(c*(t))) > 0,

. ()
Xo(0" () = a1+ (o (5)) 2o (0 (1))

<.

Using 1+ p(o'(t)Mo(c’(t)) <2 for i=0,1,...,n—1 and inequality
17,

o () < Pt
o™ (1)) o[l + s @)@ )] = 2

This implies that

1 _ (%)
W) < T 2

and consequently

n

2
Pl < Gy

But this contradicts the fact that p(t) > (2"/u(0”(t2))). Therefore Eq.
(10) is oscillatory. |
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