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We consider the nth-order linear dynamic equation Px�t� = ∑n
i=0 pi�t�x�σi�t�� =

0, where pi�t�� 0 ≤ i ≤ n, are real-valued functions defined on �. We define the
Cauchy function K�t� s� for this dynamic equation, and then we prove a variation
of constants formula. One of our main concerns is to see how the Cauchy function
for an equation is related to the Cauchy functions for the factored parts of the
operator P . Finally we consider the equation Px�t� = ∑n

i=0 pix�σi�t�� = 0, where
each of the pi’s is a constant, and obtain a formula for the Cauchy function. For
our main results we only consider the time scale � such that every point in � is
isolated.  2002 Elsevier Science (USA)
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1. INTRODUCTION

The theory of measure chains was developed by Stefan Hilger and his
advisor Bernd Aulbach [6] in 1988 to unify continuous and discrete anal-
ysis. In this paper we only consider a special case of measure chains, a
so-called time scale, which is a nonempty closed subset of the real numbers
�. We denote it by �. Later we will define the delta derivative operator �.
Choosing the time scale to be the set of real numbers corresponds to the
continuous case where � is the usual derivative, and choosing the time scale
to be the set of integers � corresponds to the discrete case where � is the
usual forward difference operator � defined by

�f �t� = f �t + 1� − f �t�
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There are many other time scales, such as h� �h > 0�, the Cantor set,
the set of harmonic numbers �∑n

k=1
1
k
� n ∈ �
, and so on. One is usually

concerned with step-size h, but in some cases one is interested in vari-
able step size. A population of a species where all of the adults die out
before the babies are born is an example that could lead to a time scale
which is the union of disjoint closed intervals. For a specific example of
this type see F. B. Christiansen and T. M. Fenchel [11, p. 7ff]. Any dynamic
equation on � = q� ∪ �0
 �= �qk� k ∈ �
 ∪ �0
 or � = q�0 , where q > 1
and �0 = �0� 1� 2� 
 
 

, is called a q-difference equation. These q-difference
equations have been studied by Bézivin [7], Trijtzinsky [20], and Zhang [21].
Moreover, Derfel, Romanenko, and Sharkovsky [12] are concerned with
the asymptotic behavior of solutions of nonlinear q-difference equations.
Bohner and Lutz [9] investigate the asymptotic behavior of dynamic equa-
tions on time scales and consider some q-difference equations. Some recent
papers concerning dynamic equations on measure chains include Agarwal
and Bohner [1, 2], Agarwal et al. [3], Erbe and Hilger [13], Erbe and Peter-
son [14, 15], Bohner and Eloe [8], Atıcı and Guseinov [5], and Hoffacker
[17]. Some preliminary definitions and theorems on measure chains can
also be found in the book by Kaymakçalan et al. [18].
A measure chain may or may not be connected, so we define the forward

and backward jump operators σ� ρ� � �→ � by

σ�t� �= inf�s > t � s ∈ �
� ρ�t� �= sup�s < t � s ∈ �
�

for all t ∈ �. In this definition we put σ��� = sup� and ρ��� = inf �. If
σ�t� > t, we say t is right-scattered, while if ρ�t� < t we say t is left-scattered.
If σ�t� = t, we say t is right-dense, while if ρ�t� = t we say t is left-dense. The
graininess function µ� � �→ �0�∞� is defined by µ�t� �= σ�t� − t. If � has
a left-scattered maximum m, then we define �κ to be � − �m
. Otherwise,
�κ = �. Now we let f � � �→ � be any function. We define f ��t� to be the
number (provided it exists) with the property that given any ε > 0, there is
a neighborhood U of t such that

∣∣�f �σ�t�� − f �s�� − f��t��σ�t� − s�∣∣ ≤ ε�σ�t� − s��

for all s ∈ U . We call f��t� the delta derivative of f at t.
Some elementary facts that we will use concerning the delta derivative

are contained in the following theorem due to Hilger [16].

Theorem 1. Assume f � � �→ � is a function and let t ∈ �κ. Then we
have the following:

(i) Every differentiable function is continuous.
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(ii) If f is continuous at t and µ�t� > 0, then f is differentiable at t
with

f��t� = f �σ�t�� − f �t�
µ�t� 


(iii) If f is differentiable at t and µ�t� = 0, then

f��t� = lim
s→t

f �t� − f �s�
t − s




(iv) If f is differentiable at t, then

f �σ�t�� = f �t� + µ�t�f��t�

Two further examples of such formulas are the product rule, which is

given by

�fg���t� = f��t�g�t� + f �σ�t��g��t��(1)

where f and g are two differentiable functions, and the quotient rule, which
is given by (

f

g

)�

�t� = f��t�g�t� − f �t�g��t�
g�t�g�σ�t�� �(2)

where f and g are two differentiable functions such that ggσ �= 0.
We say f � � �→ � is right-dense continuous (rd-continuous) provided f

is continuous at each right-dense point t ∈ �, and whenever t ∈ � is left-
dense,

lim
s→t−

f �s�
exists as a finite number. For example, the function µ� � �→ � in case
� = �0� 1� ∪� is rd-continuous but not continuous at 1. Note that if � = �,
then f � � �→ � is rd-continuous on � if and only if f is continuous on �.
Also note that if � = �, then any function f � � �→ � is rd-continuous.
A function F � �κ �→ � is called a delta-antiderivative of f � � �→ � provided
F��t� = f �t� holds for all t ∈ �κ. In this case we define the integral of f by∫ t

a
f �s��s = F�t� − F�a�

for t ∈ �. Hilger [16] proves that every rd-continuous function on � has a
delta-antiderivative. In the following theorem we give a well-known formula
that we use frequently in the later sections.

Theorem 2. Assume f � � �→ � is rd-continuous and t ∈ �κ. Then∫ σ�t�

t
f �τ��τ = µ�t�f �t�
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We will start with some technical notions given by Hilger [16] to define the
exponential function on a general measure chain. He studies the complex
exponential function on a measure chain as well. For h > 0, let �h be

�h �=
{
z ∈ �� −π

h
< Im�z� ≤ π

h

}
�

and let �h be defined by

�h �=
{
z ∈ �� z �= − 1

h

}



For h = 0, let �0 = �0 = �, the set of complex numbers. We say that a
function p� � �→ � is regressive on � provided

1+ µ�t�p�t� �= 0 for all t ∈ �


The set of all regressive functions (Bohner and Peterson [10]) on a time
scale � forms an Abelian group under the addition ⊕ defined by

p⊕ q �= p+ q+ µpq


The additive inverse in this group is denoted by

�p �= − p

1+ µp



We then define subtraction � on the set of regressive functions by

p� q �= p⊕ ��q�

It can be shown that

p� q = p− q

1+ µq

(3)

Definition 3 (Hilger [16]). If p� � �→ � is regressive and rd-
continuous, then we define the exponential function by

ep�t� s� = exp
(∫ t

s
ξµ�τ��p�τ���τ

)

for t ∈ �� s ∈ �κ, where ξh�z� is the cylinder transformation, which is given
by

ξh�z� =
{
Log�1+ hz�

z
if h �= 0

z if h = 0.
The first-order linear dynamic equation

y� = p�t�y(4)

is said to be regressive provided p is regressive and rd-continuous on �.
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Theorem 4 (Hilger [16]). Assume that the dynamic equation (4) is
regressive and fix t0 ∈ �κ. Then ep�t� t0� is the unique solution of the initial
value problem

y� = p�t�y� y�t0� = 1�(5)

on �.

We next give some important properties of the exponential function
which we use frequently in the later sections.

Theorem 5 (Bohner and Peterson [10]). Assume p, q� � �→ � are rd-
continuous and regressive; then the following hold:

(i) e0�t� s� ≡ 1 and ep�t� t� ≡ 1;
(ii) ep�σ�t�� s� = �1+ µ�t�p�t��ep�t� s�;
(iii) 1/ep�t� s� = ep�s� t� = e�p�t� s�;
(iv) ep�t� s�ep�s� r� = ep�t� r� (semigroup property);
(v) ep�t� s�eq�t� s� = ep⊕q�t� s�;
(vi) ep�t� s�/eq�t� s� = ep�q�t� s�.

In Akın et al. [4] the sign of the exponential function ep�t� s� on a mea-
sure chain is determined. A very special case of their result is the following
remark.

Remark 6. If p� �κ �→ � is rd-continuous and regressive, then ep�t� t0�
is real-valued and nonzero on �.

2. CAUCHY FUNCTION AND VARIATION OF
CONSTANT FORMULA

In this section we consider

Px�t� �=
n∑
i=0

pi�t�x�σi�t�� = 0�(6)

where pi�t�, 0 ≤ i ≤ n, are real-valued functions defined on �. We will
also assume p0�t�pn�t� �= 0 on �. In this case we say Px�t� = 0 is an nth-
order linear dynamic equation on a time scale �. We assume throughout the
remainder of this paper that every point in our time scale � is isolated. The
following results are motivated by results of Peterson and Schneider [19]
for difference equations. It is easy to prove the following theorem.

Theorem 7. If p0�t�pn�t� �= 0 on � and t0 ∈ �κn−1
, then the IVP (6),

x�σi�t0�� = xi� for 0 ≤ i ≤ n− 1�

has a unique solution which is defined on all of �.
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We now define the important Cauchy function for Px�t� = 0.

Definition 8. The Cauchy function K�t� s� for (6) is defined on � ×
�κn−1

as follows. For each fixed s ∈ �κn−1
, K�t� s� is the solution of the IVP

PK�t� s� = 0� t ∈ �κn−1
�

K�σk�s�� s� = 0� 1 ≤ k ≤ n− 1�(7)

K�σn�s�� s� = 1
pn�s�µ�s�


(8)

The Cauchy function is important in the following variation of constant
formula.

Theorem 9 (Variation of Constants Formula). Assume f � �κn−1 �→ �
and t0 ∈ �κn−1

. Then the solution of the IVP

Px�t� = f �t�� t ∈ �κn−1
�

x�σk�t0�� = 0� 0 ≤ k ≤ n− 1�

is given by

x�t� =
∫ t

t0

K�t� s�f �s��s

for t ∈ �, where K�t� s� is the Cauchy function for (6).

Proof. Let

x�t� =
∫ t

t0

K�t� s�f �s��s


First note that

x�t0� =
∫ t0

t0

K�t0� s�f �s��s = 0�

and for 1 ≤ k ≤ n− 1,

x�σk�t0�� =
∫ σk�t0�

t0

K�σk�t0�� s�f �s��s = 0�

where we have used the initial conditions (7). We now show that Px�t� =
f �t�. To see this, consider

Px�t� =
n∑
i=0

pi�t�x�σi�t��

=
n∑
i=0

pi�t�
∫ σi�t�

t0

K�σi�t�� s�f �s��s



cauchy functions for dynamic equations 103

= p0�t�
∫ t

t0

K�t� s�f �s��s + p1�t�
∫ σ�t�

t0

K�σ�t�� s�f �s��s

+p2�t�
∫ σ2�t�

t0

K�σ2�t�� s�f �s��s

+ · · · + pn�t�
∫ σn�t�

t0

K�σn�t�� s�f �s��s

=
n∑
i=0

pi�t�
∫ t

t0

K�σi�t�� s�f �s��s + p1�t�
∫ σ�t�

t
K�σ�t�� s�f �s��s

+p2�t�
∫ σ2�t�

t
K�σ2�t�� s�f �s��s

+ · · · + pn�t�
∫ σn�t�

t
K�σn�t�� s�f �s��s

=
∫ t

t0

PK�t� s�f �s��s + pn�t�K�σn�t�� t�f �t�µ�t�

= pn�t�K�σn�t�� t�f �t�µ�t�
= f �t��

where we have used the initial conditions (7) in the third to the last equa-
tion; we have used the fact that K�t� s�, for each fixed s, is a solution of
Px�t� = 0 in the second to the last equation; and we have used (8) in the
last equation.

In the next theorem we prove that two iterated integrals are the same.

Theorem 10. Assume a < b ∈ � and F�τ� s� is a real-valued function on
� × �. Then ∫ b

a

∫ τ

a
F�τ� s��s �τ =

∫ b

a

∫ b

σ�s�
F�τ� s��τ �s
(9)

Proof. Assume b = σN�a� for some positive integer N . Define

G�s� =
∫ b

σ�s�
F�τ� s��τ

for a ≤ s ≤ ρ�b�. Then∫ b

a

∫ b

σ�s�
F�τ� s��τ �s =

∫ b

a
G�s��s

=
N−1∑
i=0

∫ σi+1�a�

σi�a�
G�s��s

=
N−1∑
i=0

G�σi�a��µ�σi�a��
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=
N−1∑
i=0

µ�σi�a��
∫ b

σi+1�a�
F�τ� σi�a���τ

=
N−1∑
i=0

µ�σi�a��
N−2∑
j=i

∫ σj+2�a�

σj+1�a�
F�τ� σi�a���τ

=
N−1∑
i=0

µ�σi�a��
N−2∑
j=i

F�σj+1�a�� σi�a��µ�σj+1�a��

=
N−1∑
i=0

N−2∑
j=i

F�σj+1�a�� σi�a��µ�σi�a��µ�σj+1�a��

=
N−2∑
i=0

N−2∑
j=i

F�σj+1�a�� σi�a��µ�σi�a��µ�σj+1�a���

using our convention on sums in the last equation. Interchanging the order
of summation, we get

∫ b

a

∫ b

σ�s�
F�τ� s��τ �s =

N−2∑
j=0

j∑
i=0

F�σj+1�a�� σi�a��µ�σi�a��µ�σj+1�a��


Changing our index of summation in the outer sum, we get

∫ b

a

∫ b

σ�s�
F�τ� s��τ �s =

N−1∑
j=1

j−1∑
i=0

F�σj�a�� σi�a��µ�σi�a��µ�σj�a��

=
N−1∑
j=0

µ�σj�a��
j−1∑
i=0

∫ σi+1�a�

σi�a�
F�σj�a�� s��s

=
N−1∑
j=0

µ�σj�a��
∫ σj�a�

a
F�σj�a�� s��s

=
N−1∑
j=0

∫ σj+1�a�

σj�a�

∫ τ

a
F�τ� s��s �τ

=
∫ σN �a�

a

∫ τ

a
F�τ� s��s �τ

=
∫ b

a

∫ τ

a
F�τ� s��s �τ
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We next give a formula for the Cauchy function for (6) in the following
theorem.

Theorem 11. If u1�t�� u2�t�� 
 
 
 � un�t� are n linearly independent solu-
tions of (6), then the Cauchy function for (6) is given by

K�t� s� = 1
pn�s�µ�s�

(10)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1�σ�s�� u2�σ�s�� · · · un�σ�s��
u1�σ2�s�� u2�σ2�s�� · · · un�σ2�s��















u1�σn−1�s�� u2�σn−1�s�� · · · un�σn−1�s��
u1�t� u2�t� · · · un�t�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1�σ�s�� u2�σ�s�� · · · un�σ�s��
u1�σ2�s�� u2�σ2�s�� · · · un�σ2�s��















u1�σn−1�s�� u2�σn−1�s�� · · · un�σn−1�s��
u1�σn�s�� u2�σn�s�� · · · un�σn�s��

∣∣∣∣∣∣∣∣∣∣∣∣∣∣




Proof. Note that K�σk�s�� s� = 0 for 1 ≤ k ≤ n− 1 and

K�σn�s�� s� = 1
pn�s�µ�s�




For fixed s, we expand the determinant in the numerator in (10) along the
last row and get that K�t� s� is a linear combination of solutions of (6) and
hence is a solution of (6).

The Wronskian of n functions y1� y2� 
 
 
 � yn defined on � is defined by

W �t� �= W �y1� y2� 
 
 
 � yn��t�

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1�t� y2�t� · · · yn�t�
y1�σ�t�� y2�σ�t�� · · · yn�σ�t��















y1�σn−2�t�� y2�σn−2�t�� · · · yn�σn−2�t��
y1�σn−1�t�� y2�σn−1�t�� · · · yn�σn−1�t��

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for t ∈ �κn−1

.
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Theorem 12 (Abel’s Formula for (6)). Assume y1� y2� 
 
 
 � yn are solu-
tions of (6) and t0 ∈ �κ. Then their Wronskian satisfies

W �t� = W0e �−1�np0−pn
pnµ

�t� t0�

for t ∈ �κn−1
, where W0 = W �y1� y2� 
 
 
 � yn��t0�.

Proof. First note that

1+ µ
�−1�np0 − pn

pnµ
= �−1�np0

pn

�= 0


Hence ��−1�np0 − pn�/pnµ is regressive, and so e��−1�np0−pn�/pnµ
�t� t0� is

well-defined. Let y1� y2� 
 
 
 � yn be solutions of (6). Then

W �σ�t�� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1�σ�t�� y2�σ�t�� · · · yn�σ�t��
y1�σ2�t�� y2�σ2�t�� · · · yn�σ2�t��















y1�σn−1�t�� y2�σn−1�t�� · · · yn�σn−1�t��
y1�σn�t�� y2�σn�t�� · · · yn�σn�t��

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

y1�σ�t�� y2�σ�t�� · · · yn�σ�t��
y1�σ2�t�� y2�σ2�t�� · · · yn�σ2�t��















−p0�t�
pn�t�

y1�t� −p0�t�
pn�t�

y2�σn�t�� · · · −p0�t�
pn�t�

yn�σn�t��

∣∣∣∣∣∣∣∣∣∣∣∣∣
= �−1�np0�t�

pn�t�
W �t�


Since every point in � is isolated, we get

W �σ�t�� −W �t�
µ�t� =

( �−1�np0�t� − pn�t�
pn�t�µ�t�

)
W �t�


Therefore W = W �y1� y2� 
 
 
 � yn� is a solution of the IVP

W � = �−1�np0�t� − pn�t�
pn�t�µ�t�

W

W �t0� = W0

and hence is given by

W �t� = W0e��−1�np0−pn�/pnµ
�t� t0�
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Example 13. Consider the second-order dynamic equation

x�σ2�t�� − �3+ 2αt�x�σ�t�� + 2�1+ αt�x�t� = 0(11)

on � �= 2�0 �= �2m � m ∈ �0
, where α is a nonzero, regressive constant.
Note that σ�t� = 2t and µ�t� = t on � = 2�0 . We now find the Cauchy
function for (11). It is easy to see that u1�t� = 1 is a solution of (11). We
use Abel’s formula to find a second linearly independent solution of (11).
Let u2�t� be another solution of (11) satisfying u2�1� = 1

α
and u2�2� = 1+α

α
.

Then the Wronskian W �t� of u1�t� and u2�t� is given by

W �t� = W �1� u2�t�� = u2�σ�t�� − u2�t�


Note that W �1� = 1; hence u1�t� and u2�t� are linearly independent solu-
tions of (11). Using Abel’s formula for (11), we get

u2�σ�t�� − u2�t� = W �1�e��−1�np0−pn�/pnµ
�t� 1�

= e�1+2αt�/t�t� 1�


Since each point in � is isolated and µ�t� = t,

u�2 �t� =
1
t
e�1+2αt�/t�t� 1�


Then integrating both sides of this equation from 1 to t, we get

u2�t� =
1
α
+

∫ t

1

1
τ
e�1+2ατ�/τ�τ� 1��τ


Notice that y�t� = t solves the IVP

y� = 1
t
y� y�1� = 1�

but we know that e 1
t
�t� 1� is the unique solution of the above IVP. Therefore

e 1
t
�t� 1� = t, and, so,

u2�t� =
1
α
+

∫ t

1
e 1+2ατ

τ � 1
τ
�τ� 1��τ


Simplifying inside of the integral by using (3), we get

u2�t� =
1
α
+

∫ t

1
eα�τ� 1��τ = 1

α
eα�t� 1�
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Using Theorem 11, the Cauchy function for (11) is given by

K�t� s� = 1
s

∣∣∣∣∣∣∣∣
1

1
α
eα�σ�s�� 1�

1
1
α
eα�t� 1�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

1
α
eα�σ�s�� 1�

1
1
α
eα�σ2�s�� 1�

∣∣∣∣∣∣∣∣
= 1

s

eα�t� 1� − eα�σ�s�� 1�
eα�σ2�s�� 1� − eα�σ�s�� 1�

= 1
s

eα�t� 1� − eα�σ�s�� 1�
�1+ 2sα�eα�σ�s�� 1� − eα�σ�s�� 1�




We multiply and divide the right-hand side of the above equation by
e�α�σ�s�� 1� to obtain

K�t� s� = 1
s

eα�t� 1�e�α�σ�s�� 1� − 1
1+ 2sα− 1

= 1
2s2α

�eα�t� 1�eα�1� σ�s�� − 1�

= 1
2s2α

�eα�t� σ�s�� − 1�


3. CAUCHY FUNCTION FOR FACTORED EQUATIONS

In this section we obtain a formula which gives the Cauchy function
for (6) when the operator P can be factored as the composition of two
operators.
Assume that we can factor (6) in the form

Px�t� = MNx�t��(12)

where the operator N is defined by

Nx�t� =
k∑
i=0

qi�t�x�σi�t��(13)

and the operator M is defined by

Mu�t� =
n−k∑
i=0

ri�t�u�σi�t��(14)

for 1 ≤ k ≤ n− 1, with q0�t�qk�t� �= 0 and r0�t�rn−k�t� �= 0 on �.
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Theorem 14. Assume Px = 0 can be written in the factored form (12),
where the operators N and M are defined by (13) and (14), respectively. Let
KN�t� s� and KM�t� s� be the Cauchy functions for Nx = 0 and Mu = 0,
respectively. Then the Cauchy function for (12) is given by

K�t� s� =
∫ t

σ�s�
KN�t� τ�KM�τ� s��τ

for t ∈ �, s ∈ �κ.

Proof. Assume f � �κn−1 �→ � is rd-continuous. Let x�t� be the solution
of the IVP

Px�t� = MNx�t� = f �t�� t ∈ �κn−1
�

x
(
σk�t0�

) = 0� 0 ≤ k ≤ n− 1�

where t0 ∈ �κn−1
.

Letting u�t� = Nx�t�, we have that u�t� is a solution of the IVP

Mu�t� = f �t�� t ∈ �κn−k−1
�

u
(
σi�t0�

) = 0� 0 ≤ i ≤ n− k− 1


Hence by Theorem 9,

u�t� =
∫ t

t0

KM�t� s�f �s��s
(15)

Since x�t� is the solution of the IVP

Nx�t� = u�t�� t ∈ �κk−1
�

x�σi�t0�� = 0� 0 ≤ i ≤ k− 1�

using Theorem 9 again, we get

x�t� =
∫ t

t0

KN�t� τ�u�τ��τ


Therefore, using (15) and Theorem 10,

x�t� =
∫ t

t0

KN�t� τ�
∫ τ

t0

KM�τ� s�f �s��s �τ

=
∫ t

t0

∫ τ

t0

KN�t� τ�KM�τ� s�f �s��s �τ

=
∫ t

t0

∫ t

σ�s�
KN�t� τ�KM�τ� s�f �s��τ �s

=
∫ t

t0

K�t� s�f �s��s�
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where

K�t� s� =
∫ t

σ�s�
KN�t� τ�KM�τ� s��τ


Throughout the rest of this paper, we consider the equation

Px�t� =
n∑
i=0

pix�σi�t�� = 0�(16)

where each of the pi’s is a constant and p0pn �= 0.
We look for a solution of (16) of the form

x�t� = eλ�t� t0��

where λ�t� is regressive on � and t0 ∈ �κn−1
. Letting x�t� = eλ�t� t0� in (16),

we get[
pn

n−1∏
j=0

�1+ µ�σj�t��λ�σj�t��� + · · · + p1�1+ µ�t�λ�t�� + p0

]
eλ�t� t0� = 0


By Remark 6, we know that eλ�t� t0� �= 0 for all t ∈ �. Therefore the char-
acteristic equation for (16) is

pn

n−1∏
j=0

�1+ µ�σj�t��λ�σj�t��� + · · · + p1�1+ µ�t�λ�t�� + p0 = 0
(17)

It follows that if λ�t� is regressive on � and satisfies the characteristic
equation (17), then

x�t� = eλ�t� t0�

is a solution of (16) on �.

Theorem 15. Assume λ1� λ2� 
 
 
 � λn are distinct, regressive functions on
� satisfying (17) such that if zi�t� �= 1+ µ�t�λi�t� for 1 ≤ i ≤ n, then

D�t� �=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 ··· 1

z1�t� z2�t� ··· zn�t�












∏n−2

j=0 z1�σj�t�� ∏n−2
j=0 z2�σj�t�� ··· ∏n−2

j=0 zn�σj�t��

∣∣∣∣∣∣∣∣∣∣∣∣
�=0(18)
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for t ∈ �κn−1
. Then the Cauchy function for (16) is given by

K�t� s� = 1
pnµ�s�

(19)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

z1�σ�s�� z2�σ�s�� · · · zn�σ�s��












∏n−2

j=1 z1�σj�s�� ∏n−2
j=1 z2�σj�s�� · · · ∏n−2

j=1 zn�σj�s��
eλ1

�t� σ�s�� eλ2
�t� σ�s�� · · · eλn�t� σ�s��

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
D�σ�s�� 


Proof. Since λi�t� is a regressive solution of the characteristic equa-
tion (17) for 1 ≤ i ≤ n, xi�t� �= eλi�t� t0� is a solution of (16) for 1 ≤ i ≤ n.
Consider the Wronskian W �t� of these n solutions,

W �t� =

∣∣∣∣∣∣∣∣∣

eλ1
�t� t0� eλ2

�t� t0� · · · eλn�t� t0�
eλ1

�σ�t�� t0� eλ2
�σ�t�� t0� · · · eλn�σ�t�� t0�














eλ1

�σn−1�t�� t0� eλ2
�σn−1�t�� t0� · · · eλn�σn−1�t�� t0�

∣∣∣∣∣∣∣∣∣
= eλ1

�t� t0� · · · eλn�t� t0�

×

∣∣∣∣∣∣∣∣∣

1 · · · 1
1+ µ�t�λ1�t� · · · 1+ µ�t�λn�t�




 · · · 


∏n−2
j=0

[
1+ µσj �t�λσj

1 �t�] · · · ∏n−2
j=0

[
1+ µσj �t�λσj

n �t�]

∣∣∣∣∣∣∣∣∣
= eλ1

�t� t0� · · · eλn�t� t0�

×

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1�t� z2�t� · · · zn�t�












∏n−2

j=0 z1�σj�t�� ∏n−2
j=0 z2�σj�t�� · · · ∏n−2

j=0 zn�σj�t��

∣∣∣∣∣∣∣∣∣
= eλ1

�t� t0� · · · eλn�t� t0�D�t�
�= 0�
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using Remark 6 and (18). Then by Theorem 11, we get that

K�t� s� = 1
pnµ�s�

×

∣∣∣∣∣∣∣∣∣∣∣

eλ1
�σ�s�� t0� eλ2

�σ�s�� t0� · · · eλn�σ�s�� t0�
eλ1

�σ2�s�� t0� eλ2
�σ2�s�� t0� · · · eλn�σ2�s�� t0�














eλ1

�σn−1�s�� t0� eλ2
�σn−1�s�� t0� · · · eλn�σn−1�s�� t0�

eλ1
�t� t0� eλ2

�t� t0� · · · eλn�t� t0�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eλ1
�σ�s�� t0� eλ2

�σ�s�� t0� · · · eλn�σ�s�� t0�
eλ1

�σ2�s�� t0� eλ2
�σ2�s�� t0� · · · eλn�σ2�s�� t0�














eλ1

�σn−1�s�� t0� eλ2
�σn−1�s�� t0� · · · eλn�σn−1�s�� t0�

eλ1
�σn�s�� t0� eλ2

�σn�s�� t0� · · · eλn�σn�s�� t0�

∣∣∣∣∣∣∣∣∣∣∣




Since 1+ µ�t�λi�t� = zi�t� for 1 ≤ i ≤ n and using Part (ii) of Theorem 5,
we obtain that

K�t� s� = 1
pnµ�s�

×

∣∣∣∣∣∣∣∣∣∣∣

z1�s�eλ1
�s� t0� · · · zn�s�eλn�s� t0�∏1

j=0 z1�σj�s��eλ1
�s� t0� · · · ∏1

j=0 zn�σj�s��eλn�s� t0�








∏n−2
j=0 z1�σj�s��eλ1

�s� t0� · · · ∏n−2
j=0 zn�σj�s��eλn�s� t0�

eλ1
�t� t0� · · · eλn�t� t0�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z1�s�eλ1
�s� t0� · · · zn�s�eλn�s� t0�∏1

j=0 z1�σj�s��eλ1
�s� t0� · · · ∏1

j=0 zn�σj�s��eλn�s� t0�








∏n−1
j=0 z1�σj�s��eλ1

�s� t0� · · · ∏n−1
j=0 zn�σj�s��eλn�s� t0�

∣∣∣∣∣∣∣∣∣




Using Part (iii) and Part (iv) of Theorem 5, we get that

K�t� s� = 1
pnµ�s�

×

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1�σ�s�� z2�σ�s�� · · · zn�σ�s��













∏n−2
j=1 z1�σj�s�� ∏n−2

j=1 z2�σj�s�� · · · ∏n−2
j=1 zn�σj�s��

eλ1
�t� σ�s�� eλ2

�t� σ�s�� · · · eλn�t� σ�s��

∣∣∣∣∣∣∣∣∣∣∣
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/
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1�σ�s�� z2�σ�s�� · · · zn�σ�s��













∏n−1
j=1 z1�σj�s�� ∏n−1

j=1 z2�σj�s�� · · · ∏n−1
j=1 zn�σj�s��

∣∣∣∣∣∣∣∣∣
= 1

pnµ�s�

×

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1�σ�s�� z2�σ�s�� · · · zn�σ�s��













∏n−2
j=1 z1�σj�s�� ∏n−2

j=1 z2�σj�s�� · · · ∏n−2
j=1 zn�σj�s��

eλ1
�t� σ�s�� eλ2

�t� σ�s�� · · · eλn�t� σ�s��

∣∣∣∣∣∣∣∣∣∣∣
D�σ�s�� 


Example 16. If � = h�, then (16) turns out to be the equation

Px�t� =
n∑
i=0

pix�t + ih� = 0
(20)

We now look for a solution of (20) of the form

x�t� = eλ�t� 0� = �1+ hλ� t
h �

where λ is a constant and is regressive. Then for x�t� to be a solution we
want

pn�1+hλ� t+nh
h +pn−1�1+hλ� t+�n−1�h

h +···+p1�1+hλ� t+h
h +p0�1+hλ� t

h =0


Dividing by �1+ hλ� t
h , we get the characteristic equation

pn�1+ hλ�n + pn−1�1+ hλ�n−1 + · · · + p1�1+ hλ� + p0 = 0
(21)

Letting z = 1+ hλ gives us the polynomial equation

p�z� = 0�

where

p�z� = pnz
n + pn−1z

n−1 + · · · + p1z + p0
(22)

It follows that λi is a solution of the characteristic equation (21) if and only
if zi = 1+ hλi is a solution of the polynomial equation (22). Also note that
λi is regressive if only if zi �= 0. If zi is a root of (22), then solving

zi = 1+ hλi
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for λi gives us

λi =
zi − 1
h




It follows that

ui�t� = �1+ hλi�
t
h = z

t
h

i

is a solution of (20). We claim that if the equation p�z� = 0 has n distinct
nonzero roots z1� z2� 
 
 
 � zn, then the Cauchy function for (20) on � = h�
is given by

K�t� s� = 1
h

n∑
i=1

z
t−s−h

h

i

p′�zi�



If � = h�, then by (19),

K�t� s� = 1
pnh

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zn














zn−2
1 zn−2

2 · · · zn−2
n

z
t−s−h

h

1 z
t−s−h

h

2 · · · z
t−s−h

h
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zn














zn−1
1 zn−1

2 · · · zn−1
n

∣∣∣∣∣∣∣∣∣




If we expand the determinant in the numerator along the last row and use
properties of the Vandermonde determinant, we get the desired result.
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