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In this paper, we will give sufficient conditions for a nonhomogeneous dynamic self-adjoint
equation on a time scale to have a zero tending solution. We also give sufficient conditions that
guarantees that for each constant C there is a unique bounded solution on [a, ) with y(a) = C.
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INTRODUCTION

For completeness, we introduce the following concepts related to the notion
of time scales. We say T is a time scale, provided, it is a closed subset of the
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real numbers R. We assume throughout that T has the topology that it
inherits from the standard topology on the real numbers R. We also assume
throughout this paper that a € T and sup T = oo,

Dermairion 1 We define the forward jump operator o, for t € T, by
o) =inf{r>t: 7€ T},
and the backward jump operator p, for t € T, ¢ > inf T, by

pl) =sup{r<t:7&€ T}

If o(z) > t, we say t is right-scattered, while if p(¢) < ¢ we say # is left-
scattered. If o(¢) = t we say ¢ is right-dense, while if p(f) = ¢ we say ¢ is
left-dense. A function f: T— R is said to be right-dense continuous
provided fis continuous at right-dense points in T and at left-dense points
in T, left hand limits exist and are finite. We shall also use the notation
() : o(t) — t and we call p the graininess function. Finally, if f : T — Ris
a function, then we define the function f7 : T— R by

o0 =f(c@®)forallt € T.
i.e. f7 = foo. Similatly, fP = fep.

DermiTiON 2 We define the interval in T
[a, ) := {t € T suchthatt = a}.
The notion of a measure chain was introduced by Hilger [10]. Related
work on the calculus of measure chains may be found in Refs. [2,3,7-9].

For an introduction to dynamic equations on time scales see Refs.
[1,5,6,11].

DermaTioN 3 Assume x : T— R and fix ¢ € T, then we define x2(7) to
be the number (provided it exists) with the property that given any e > 0,
there is a neighborhood U of ¢ such that

llx(o(®) — x(s)] — 2 @D)lotr) — sll = elo() — s,

foralls € U. We call x A(t) the delta derivative of x(¢) at .
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It can be shown that if x : T — R is continuous at # € T and ¢ is right-
scattered, then

x(a(t)) — x(2)
o) —t

Note that if T = Z, the integers, then

xA) =

20 = Ax(®) = x(t + 1) — x(D).
If ¢ is right-dense, then

A0 = fim HO= 5O
=S
if the limit exists. In particular, if T = R, the real numbers, then x2(¢) =
K.
Also an integral fih(t)At can be defined (see Ref. [6]). It turns out if
T =R, then

Eh(t)At = Jih(t)dt

is the Riemann integral and if T = Z and a < b are integers, then

b-1

rh(t)At = Z ().

t=a

MAIN RESULTS

In this section, we will state and prove out main results. We will mainly
be concerned with the linear nonhomogeneous dynamic equation with
variable coefficients in self-adjoint form:

@EOY O + gy @) =f@) 4))

where p, g, and f are rd-continuous functions on T and p is a positive
function.

The following result guarantees the existence of a solution of Eq. (1)
converging to zero as ¢— oo independent of whether it is oscillatory or
nonoscillatory. ‘
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THEOREM 4 If

@ p@>0, q)=0 forallt € [a,00),

.. [° 1
R B R
(iii) an(T)P Y(DAT < 00, where P(¢) = Jm —l—As,
Ja t p(S)
@ [ fdr<o,

then Eq. (1) has a solution which converges to zero as t — oo,

Proof Let
F) = j F(AT
and
_[F®
K(t) o Jz p(s) -

@

where K is well defined follows from (ii) and (iv). Therefore K(f) — 0 as
t— 00, Also, P(#) — 0 as t — oo and f:° g(DP(P)AT— 0 as t — oo because

of (ii) and (iii), respectively.
By (iii) choose T' € [a, o) sufficiently large so that

00

o= J g(DP(DATE (0,1).
T

(€))

Let X be the Banach Space of all continuous functions x : [T, c0) — R

which converge to zero with the norm ||-|| defined by
Iyl = sup{ly(®I : ¢t € [T, )},
and define the operator A on X by
Ay(t) = K@) +Ly@®, y€EX,
where K is defined by Eq. (2) and L is the operator defined by

o0

t
Iy(t) = PO J Py (DAT+ J dDP Ay (DAT

@

®)

0
i
1
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forall t € [T, 00). It is clear that Ay is continuous on [T, o). Hence to show
A : X+ X it remains to show that tl_]ﬁrg Ay() = 0. Since K(t) — O ast — o0,
we need only to show that Ly() — 0 as ¢ — oo. To show this, it suffices to
show that if

t

0= P aty ",

then tlgg x(t) = 0. To see this, lete > Obe given. Choose tg € T such that E

to =T and '
Iyl < e forallt > t,. 6)
For this 7o, set
to
p= || oy ar ™

T
and since P(f) — 0 as t— oo we can choose #; € [#y, ) such that
POB<e ®

for all # = ¢#;. Then for all t = ¢4,

[x(®)| =

P(t)Lq(T)y “(DAT

I t
- ‘P(t)JTq(T)y"(T)AHP(t)J 4Dy (AT

o

!

+P(t>J gy (IAT

fo

< P() J°q(¢>y “(DAr

T

1 i3

g(DP7(Dly &(T)iA’T <g+ aJ g(DP’(DAT

to

= PR+ [

to

<e(l+

since P is decreasing and we used Egs. (7), (8), (6), and (3), respectively,
(here we used P(t)fioq(T)Afr < f;oq(T)P 7(7)A7 but this is easy to verify).
Hence tll’rg x(f) = 0and so A : X — X. Next we show that A is a contraction
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mapping on X. Let y,z € X, t = T and consider

Ay () — Az(0)l=ILy() — Lz(2)| < P(t)JTq(T)ly”(T) —z%(nlAT

o0

+ J dMPDly () — (DA
t

00

= JTq(T)P"(T)Iy (1) — z2°(D|AT+ J gMP(Dly (1) — 27(DAT
t

= [ aoply e - @lar =y [ awpear=aly -
t t
since P is decreasing and by Eq. (3). Therefore
Ay — Azl =< ally — 2|l

for all y,z € X and so0 A is a contraction mapping on X. Hence by the
Banach Fixed Point Theorem, A has a unique fixed point y € X. Since
y = Ay, we have y(¢) converges to 0 as ¢ — oo, It remains to show that Eq.
(9) is a solution of Eq. (1). Since y = Ay,

2 00
y(@® = K1) + P(t)J g(ny°(nNAT+ J q(DP(T)y (DAT ®
T t
for all = T. Taking the derivative of both sides we get

t
YA = K2() + P°(9q®y°(2) + PA(») J KoY “(DAT+ gOP (B)y°(t)

gDy (AT
T

1
yi) = - 29 J

@ PO
and so
pEYA() = —F() - J Ay AT
and therefore
@@y ) =f@) — gy’ .

So we get the desired result. O

;
!
i
!
1
<
|
1
|
i
|
i
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DerFINITION 5 A function x is called eventually positive (eventually
negative) provided there is a T' € [a, o) such that x(£) = 0 (x(¢) < 0) for all
t € [T, ).

COROLLARY 6  Assume that (i)—(iv) of Theorem 4 hold. If f is eventually
positive (eventually negative), then Eq. (1) has an eventually positive
(eventually negative) solution converging to zero as £ — oo,

Proof Assume fis eventually positive. Without loss of generality we can
assume that f(#) = 0 for all ¢ € [T, ), where T is as in the proof of
Theorem 4. Let A be defined by Egs. (4) and (5) and consider the closed
subset S C X defined by

St={y EX:y(t)EO forallt € [T, 0)}. (10)

AsK(t) = Oforall t € [T, ), AST C S*. By the same argument as in
the proof of Theorem 1, one can show that A is a contraction on S .
Therefore we get the desired result in the eventual positive case. The
eventual negative case is similar. O

REMARK 7 Since (1/0% = —(1/to()), [T(1/ta(®)Ar = 1.

Example 8 Assume sup T = oo, Consider the dynamic equation

1 1
oA O + —=x"() — ———
ol toft) Ho(0))?
on [1,00) N T. Using Remark 7 we see that the hypotheses of Theorem 1
are satisfied. One of its solutions (use Remark 7) on T is x(f) = 1/t which
converges to zero as f— 0o,
‘We now consider the analogue of Theorem 4 for the self-adjoint equation

POy O + q@)y() = £(t) (11)

which was introduced by Atici and Guseinov [5]. When considering this
equation we assume that f : T— R is continuous, p : T — R is continuous
and positive, and ¢ : T— R is continuous. For the definition of the nabla
derivative V and the nabla integral th(t)Vt see Refs. [4,6].
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TeeOREM 9 If

@ p@® >0,q¢)=0 forallt € [a,),

" 1
(i) . ;(—;)VT< 00, L —’@AT< 00,

(iii) roq”('r)P"(T)AT < oo, whereP(t) = Jm I%Vs,

Ja

@iv) Jmf (NVr < oo,

then Eq. (1) has a solution which converges to zero as £ — o,

Proof The proof is very similar to the proof of Theorem 4 so we will just
indicate how we define some things differently for this case and do the last
part of the proof. In this proof F, P, and K are defined by

o o ©F
F(t) :=j £V, P() ==J ,%Vs’ k@ ‘:J R%)As

and L and A are defined by

Ly() = P() J AT+ J Po(0g"(Ay (DAr
and

Ay(r) = Ly(2) + K(2),

respectively, where T is sufficiently large. We just show that if y is a fixed o
point of A, then y is a solution of Eq. (11). To see this consider

t 00
0 = A4y = PO oy | Py (AT + KO
T t
Taking the delta derivative of both sides and using the formula (see Ref.
[4] or [6])

t A |
( J h(s)Vs) = h(o(®) §

a
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we get
1 f
Y80 = P70y () - —J DYV — P (g Dy
p®Jr
1 00
I% Jr f(OVT.
It follows that

’ )
PEYA) = —J MYV — J FVr.
T T

Taking the nabla derivative of both sides we get the desired result
@Y 0T = —qy®) +1@). O

In the next result we relax the positivity of g and the condition on f
guaranteeing the existence of bounded solutions for Eq. (1).

THEOREM 10  Assume there are constants p, /% such that 0 < p < u() =
x forallt € [a, ).
If the conditions

G 0<a=p@=<p, forallt€ [a,o0),

(ii) either
g = y<0, forallt € [a,00), (12)
or there is a constant 8 > 2 such that
qOR OO
= §>2 forallt € [g,), a3
pe@Oult) + p(Opo@) )

(iii) fis bounded on [a, o0), hold, then for each number C there is a unique
bounded solution of Eq. (1) with y(a) = C.

Proof Equation (1) can be written in the form:
POREY (M) ~ [P O + PORTE) — qOR O O (@)

+pOpTOYE = p2OR°EF @)
hence

PIOREY” () + PO DY) — OB @) ‘

O =T e 0u  pou® - dDROR"E)
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Let ¢t = p(s), then

) = PPy (s) + pPEUE)Y(s) — 1> (p(s))w(s)f #(s)
PEP(s) + pP(s)ls) — gP()2(p(s)uls) ’

fors € [o(a), ).

Consider the Banach Space X of bounded functions on [a, ) with the
norm |lyll = sup [y(?)| ¢ € [a, 00). Define the operator T by

Ty(a) = C,

Ty(s) = PORIEY ) + POu(s)y(s) = > (pls)ls)f #(s)
PERP(s) + pP(s)uls) ~ P& pNus)

forall s = o(a).

Itis clear that T : X — X. Since the numerator is bounded above and the
denominator is bounded away from zero, T is bounded.

Consider the case when condition (12) is satisfied. In this case
P PP(E) + pP)uls) — gP($)m?(p(s)uls) > 0. We now show that T is a
contraction mapping on X. Let y,z € X, and s = o(a). Then

p(OUPE)Y () — 27() + pPHUS)YP(s) — z°(s))|
Ty(s) — Tz(s)| =
D = Tl = I )+ PO~ 2SR |
= PEORFOy76) = 27(s)] — pP)ps)lyP(s) — 222°(s)]
POP(s) + pP)us) — gP()u?(p(s)) pls)
- POHRP(S) + pP(s)uls)
— pOpP(s) + pP(s)uls) — gP(s)(p(s))uls)
for s € [o(a), ). Consider
P(OP(s) + pPs)uis)
P(P(s) + pP(s)pls) — gP(s)u?(p(s))ls)
1
g”()p*(p(s)) puls) > '
(S)pP(s) + pP(s)pls)

lly —zll

But from (i), Eq. (12) and the assumptions on u(f), we have

PPN _ W _

= — =<0
PERP(S) + pP(Huls) 2B
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for s € [o(a), o). Therefore

PO pP(s) + pP(s)uds)
POPE) +pPs)uls) — gP(s)u(p(s)) uls)
1
= =< 1

[Ty(s) — Tz(s)| =

for all s € [Ty(a), ). If s = q, then

1
|Ty(a) — Tz(@)| = 0 = m”}’ -zl

Therefore
1
ITy(s) — Te(s)] < T~z foralls € [a, c0).
This implies that
Ty = Tl = ——lly - ol
1—k

and so T'is a contraction mapping on X. Hence by the Banach Fixed Point
Theorem, T has a unique fixed point y. It follows that

¥(a) = Iy(a) = C,

PEORPE)Y () + pPO )y () — p2(p(s))pls)f P (s)
P(OEPE) +pPE)us) — P OpXplHpls)

foralls = o{a)

¥s) = Ty(s) =

is the unique bounded solution of Eq. (1) satisfying y(a) = C.
Finally consider the case when Eq. (13) is satisfied. Again we will show
that T is a contraction mapping on X. Let y,z € X, and s = o(a). Then

_ OB — 27()) + pPORE0PE) — 2°6))|
Ty(s) — =
IB6) =~ T2 = (7= ) + PP ) = 276 w2t |

~ PPy () — 27| + pPS)ly (s) — 2°6)|

T pwes) + pPs)uls) — gP(s)u(p(s))pls)|

- PORPES) +pPEps)
Ip()P(s) + pP(sHpls) — qP(s) w2(p(s))pis)l

by -zl

i
|
i
|
1
i
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on [o{a ),o0). Consider

p()P(s) + pP(s)u(s)
P& pPE)lpP(s)uis) — gP(s)p>(p(s))us)
_ 1
_ (F g ()2 (p(s)) u(s) ) '
(S)P(s) + pP(s)pa(s)
But from (ii), Eq. (13) we have
9 < 5= 1" OrPE)ps)
— p(S)P(s) + pP(s)uls)
for s € [o(a), °°),' This implies that
1 1
= <0
1=8 [ g"()u’(ps)uls) )
(S)uP(s) + pP(s)pls)

for s € [o{(a), ). Tﬁerefore

1

ITy(S) _ TZ(S)I < I p(S),U.p(S)Ipp(S)M(S) = 8 - l <

PO PP O — ORI !

for all 5 € [0(a), ). If s = g, then
I75(@) — T@)] = 0 = 5= lly .
Therefore
1Ty(s) — Tz(9)] = g—i;llly —zll, foralls € [a, 00).
Hence

1
Ty — Tzll < ‘5_—1"}’ —ll,

and so T is a contraction mapping on X. By the Banach Fixed Point
Theorem, T has a unique fixed point y. It follows that

y(@) = Ty(@) = C,
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(s) = Ty(s) = pEOP()y°(s) + pP)uls)y?(s) — p2(p(s)) u(s)f P(s)
pEpP(S) + pP)uls) — gPs)u2(p(s) uls)

foralls = o(a)

is the unique bounded solution of Eq. (1) satisfying y(a) = C. O
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