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A GENERALIZED UPPER AND LOWER METHOD FOR
SINGULAR BOUNDARY VALUE PROBLEMS FOR QUASILINEAR
DYNAMIC EQUATIONS

R. AGARWAL AND E. AKIN-BOHNER

ABSTRACT. In this paper, we obtain some existence results for a singular boundary
value problem (BVP) for quasilinear dynamic equations on time scales. In partic-
ular, our nonlinearity may be singular in its dependent variable and is allowed to
change sign.

1. INTRODUCTION

In this paper, we consider the singular BVP

(1) { (B2 @)% +a®f (v (@) =0, tea,b]
y(a) = 0 = y(a?(b)),

on a time scale (T) which is a nonempty closed subset of real numbers. Throughout this
paper we assume that ®(s) = |s[P~%s, s > 1, f(t,z) : [a,b] x (0,00) — R is continuous,
and f(t,z) may be singular or may change sign.

We let C([a, 0*(b)]) and C*([a, (b)]) be the classes of maps y continuous on [a, 02(b)]
and continuously differentiable on [a,o(b)], respectively. And Hyll = max |y(¢)] for
t € [a,0%(b)]. By a solution y of BVP (1) we mean a function y € C([a, o®()],R) N
C([a, o (b)],R), ®(¥*) € C'([a,b],R), and y satisfies BVP (1).

We note that (1) is a dynamic model of the p-Laplacian equation which occurs in
the study of many diffusion phenomena. We refer the readers [6], and [7] for continuous
case and [1], [8], [9], and [10] for discrete case.

The paper is organized as follows: In Section 2, we briefly introduce the theory of
time scales. In Section 3, we prove some comparison results and consider the following
BVP

@) {@( y2B)A + Ft,y° () = 0, te[a,]

y(a) =4, y(*() =
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where A and B are given real numbers, and F(t,z) : [a,b] X R — R is continuous in .
Finally, we obtain some existence results for solutions of the singular BVP (1) in the
last section, where T contains isolated points.

2. TIME ScALE CALCULUS

In this section, we introduce a calculus on time scales including preliminary results.
An introduction with applications and advances in dynamic equations are given in
[4, 5. We define the interval [a,b] := {t € T : [a,b] N T}. There are two jump
operators, namely the forward jump operator o and the backward jump operator p. We
define them as follows:

o) =inf{s>t:s€T}eT, p(t):=sup{s<t:s€T}eT
for all t € T, where we put inf(f}) = supT, sup(f) = infT. If o(t) > ¢, we say t is
right-scattered, while if p(t) < t, we say ¢ is left-scattered. If o(t) = t, we say ¢ is right-
dense, while if p(t) = t, we say ¢ is left-dense. The graininess function p : T — [0, c0)
is defined by
| w(t) = o(t) —t.
Assume f: T — R and let ¢ € T*. Then we define f2(¢) to be the number (provided

it exists) with the property that given any e > 0, there is a neighborhood U of ¢ such
that

|[f(@®)) — F(s)] ~ FA B (t) — s]| < e|o(®) - 5]
for all s € U. We call f2(t) the delta derivative of f(¢) at ¢, and it turns out that 2

is the usual derivative if T = R and the usual forward difference operator A if T = Z.
We have the following two formulas:

0 A = f(a(t))( 10
(i) £2(0) = im {0 =S
We have another useful formula for 2, which is valid for any point in T.
(3) Fo) = f(8) + u(®)f2(t), where f°=foo.
If f,g: T+ R are differentiable at ¢ € T*, then the product and quotient rules are as

for right-scattered points in T;

for right-dense points in T if the limit exists.

follows:
(f9)* (t) = fA(t)g(t)Jrf"(t) ®)

and

A A
<§) t) = I7M9() - fB2E) o(£)g° () 0.

g9(t)g° ()
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We say f: T — R is rd-continuous provided f is continuous at each right-dense point
t € T and whenever t € T is left-dense lim; ,;~ f(s) exists as a finite number.

A function F : T* — R is called an antiderivative of f : T ¥ R provided F4(t) =
f(t) holds for all ¢t € T*. Every rd-continuous function has an antiderivative. In this
case we define the integral of f by

t
/ £(s)As = F(t) — F(a) for teT.
a
The proof of following result can also be found in [4}.

Theorem 2.1. The solution of the BVP

{ Y221 +u(t) =0, t€ [a,b]

(4) y(a) = 0=y(o*(})),

is given by
o(b)
y&) == [ Glt,s)u(s)As,

a

where G(t, s) is the Green function of the BVP

{ gAAE) =0, telab] .
z(a) = 0 = z(c?(b)),

and
=B o)
6= e d® -t .
B a?(b) —a Wt 2 5

3. COMPARISON PRINCIPLES

In this section, we obtain existence results for BVP (2). These necessary results are
to get the existence of solutions for BVP (1). The discrete version of the following
lemma can be found in [2].

Lemma 3.1. Letu € C([a,a?(b)], R) satisfying u(t) > 0 on [a,*(b)]. jfy € C([a, ()], R)
satisfies BVP (4), then

(5) y(t) 2 r(@)llyll for t € [a,0*(B)],

where

6) r(t) =min{02t(15fa, ;2((;’)):2}
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Proof. Inequality (5) is true when t = @ or ¢t = o2(b). If ||y|| = 0, then (5) holds.
Therefore, it is enough to consider (5) when ||y|| # 0, t # a, t # o*(b) since r(a) =
7(0?(b)) = 0. By Theorem (2.1), we obtain
a(b)
y(t) = — G(t,s)u’(s)As, tE€ [a,a®(b)], s € [a,0(D)].
Note that G(t,s) < 0 for t € [a,02(D)], 5 € [a,0(b)]. This implies that y(t) > 0 for
t € [a,02(b)]. Let ||y]| = y(to) and consider

(%) s s
(7N y(t) = —~/a %’G()t%g’—)u"(s)As, to € [a, o (b)].
‘We now show that
® Sy 20

for t € [a,0%(b)], s € [a,o(b)]. When t > 2y, we consider three cases: If a < s < 2,
then

Glt,s) _ o2(B)—t _ o*(b)—t
G(to,s) o2(b) —to 2 o2(b) —a > 7(t).

If tg < s < t, then

Gt,s) _ (o(s) —a)(a?(B) — 1) ) -t _ (b))t
G(to,s) (to —a)(a?(b) —o(s)) = o2(b) —o(s) = o2(b) —a

since o(s) > to. If t < s < o(b), then

G(t,s) t—a t—a
G(to,s) to—a =~ d2(b)—a 2 () .

When ¢ < g, (8) can be shown similarly. Therefore,

2 r(t),

a(b)
y(§) 2 r(t) {— [ 6t s)u”(s)As] = r(dyto) = rO)ll,
a
and so this completes the proof. 0
Next we present three more lemmas whose discrete versions can be found in [8].

Lemma 3.2. Ify € C([a,02(b)],R) satisfies

{ y2AE) <0, tea,b]
y(a) 20, y(o?(b) >0,

then y(t) > 0 on [a, o (b)].
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y(o?(b) — y(a)

Proof. Set Q(t) = y(a) + - (t —a), t € [a,0%(b)]. Let y(t) = v(t) + Q(2).

a?(b) —a
Then v2(t) = y™(t) — %{%(Q. This implies that vA2(t) = y22(t) < 0,

t € [a,b] and v(a) = v(c?(b)) = 0. By Lemma 3.1, v(t) > r(t)||v|| > 0 on [a,c?(b)] and
so y(t) > Q(t) on [a, 0?(b)]. Since y(a) > 0 and y(c?(b)) >0,

Q0 =@ -3 + B <@ 20 =t 42O

on [a,c?%(b)] and so this completes the proof. 0

Remark 3.1. Lemma 3.2 can be obtained from the following lemma. However, the
proof is longer in this case.

The following lemma is known as “a strong comparison principle” in the literature.
Lemma 3.3. Ify € C([a,02(b)],R) satisfies
{ (@A @)A <0, tefad
y(a) 20, y(o?(b)) >0,
then y(t) > 0 on [a,a%(b)].

Proof. We assume that y(t) < 0 for some ¢t € (a,02(b)) and obtain a contradiction.
Since y(a) > 0 and y(c?(b)) > 0, y(t) would have a negative minimum in (a,o2(b)).
Choose tg € (a,0?(b)) such that

y(to) = min{y(t) :a <t < *(B)} <0

and
y(t) > y(to) for t € (to, %(D)].
There are four cases to consider:

Case 1: p(to) = to = o(to). Assume y>(to) > 0. Then tlg% y2(t) = 2 (to) > 0. This
implies that there exists § > 0 such that y*(¢) > 0 on (tg — 4, %], i.e., ¥ is increasing
on (ty — &,%p]. But this contradicts the way t, was chosen. Assume y*(tg) < 0.
Then ®(y*(to)) < 0. Since (®(y2(¢)))2 < 0 on [a,b] and integrating it from tg to t,
t € [to, o%(b)), we obtain '

2(y2 (1) < (y2(0)) SO, t € [to, 0> (b))-

This implies that ®(y2(t)) < 0 on [to, 0%(b)) and so y* () < 0 on [to,02(b)). But we
obtain y(tg) > y(c2(b)) > 0, which contradicts the way t; is chosen.
Case 2: p(to) = to < o(tp). Assume y”(tg) > 0. Then lim y2(t) = y®(to) > 0.

t—tg

This implies that there exists § > 0 such that y(t) > 0 on (to—d, to], i.e., v is increasing
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on (to — 6,%]. But this contradicts the way %, was chosen. Assume y? (to) < 0. Then
this implies that y”(to) < y(to). But this contradicts with the way we picked ;.

Case 3: p(to) < to < o(to). Assume y“(ty) < 0. Then y°(ty) < y(to). This
contradicts the way ty was chosen. Assume yA (to) > 0. Since p(to) is right-scattered,
y2(p(to)) < 0 and so B(y>(p(ts))) < 0. However, since (®@A(®)))* <0 on [a,b] and
integrating it from p(to) to ¢, ¢ € [p(to), 72(b)), we obtain

2y (1) < By (p(to))) < 0, t € [p(to), o*(b)).

Therefore, ®(y*(t)) < 0 for ¢ € [p(to), o2(b)) and so y2(t) < 0 on [p(to), o%(b)). But
this contradicts that y2(¢) > 0.

Case 4: p(to) < to = o(tp). Assume y*(¢y) < 0. Then ®(y2(tg)) < 0. Since
(@2 ()2 <0, t € [a,b] and integrating it from £, to t, t € [to, 02(b)), we obtain

B(y2() < 8y (t)) SO, t € [to,0%(b)).
This implies that y*(¢) < 0, ¢ € [to,0%(b)) and y(to) > y(o2(b)) > 0, which is a
contradiction the way ¢y is chosen. Assume y®(tp) > 0. Since p(to) is right-scattered,
y2(p(to)) < 0 and so B(y™(p(t0))) < 0. However, since (@2 (¥))» <0 on [a,b] and
integrating it from p(to) to ¢, ¢ € [p(¢o), 02(b)), we obtain
2(y2 (1) < (™ (p(to))) <0, ¢ € [p(to), 72 (b)).

Therefore, ®(y2(t)) < 0 for ¢ € [p(ts), (b)) and so y2(£) < 0 on [o(t0), o2(b)). But
this contradicts that y*(to) > 0. . a

The following lemma is known as “a weak comparison principle” in the literature.
Lemma 3.4. If u,v € C([a,0?(d)],R) satisfy R

(@A) < (@AM, ¢ € o]
u(a) 2 v(a), u(a?(b)) 2 v(o?(b)),
then u(t) > v(t) on [a, a2(b)].
Proof. Assume that w(t) := u(t) — v(t) < 0 for some ¢ € [a, 0*(b)]. Since w(a) > 0 and
w(o?(b)) > 0, w(t) would have a negative minimum at a point ¢, € (a,%(b)). Choose
to € (a,0%(b)) such that
w(to) = min{w(t) : a < ¢t < o%(b)} < 0
and
w(t) > wlte) fort € (o, a(h)].

There are four cases to consider depending on what kind of point tg is. We only show
how we get a contradiction for dense points and others can be shown as in the proof




A generalized upper and lower method for singular boundary value problems 219

of Lemma 3.3. Let p(ty) = tg = o(tp). Assume w™(t) > 0. Then tll»ntlo wA(t) =
w? (to) > 0. This implies that there exists 6 > 0 such that w®(£) > 0 on (¢ — 6, %),
i.e., w is increasing on (fp — 6, to]. But this contradicts the way to was chosen. Assume
wh(ty) < 0. Then tl_l_)I% wA(t) = wA(ty) < 0. This implies that there exists § > 0
such that wA(t) < 0 on [to,to + J), ie., w is decreasing on [to, %o + ). But this
contradicts the way to was chosen. Assume w? (fo) = 0. Then u® () = v (¢o) and so
- B(uP(tg)) = ®(v2(to)). Since (®(u(8)))® < (B(v2(£)))2 on [a, b] and integrating it
from ¢g to t, t € [to, o2(b)), we obtain

B(u(1)) — 2(u(t)) < B0 () — 2w (o), ¢ € [to, 2(B),

or

B(u () — B(v2 (1) < B(u®(t0)) — B(v2 () =0, t € [to, (b))
This implies that u®(t) < v2(t) on [to,o?(b)) and so w™(t) < 0 on [ty,c%(b)). But
then we obtain w(tp) > w(o?(b)) > 0, which contradicts the way t; is chosen. 0O

Throughout the next section we are interested in the existence of solutions of
BVP (2). The method of lower and upper solutions is used. The approach is based on
the Brouver and the Schauder fixed point theorems.

Definition 3.1. A function «(f) : [a,0%(b)] — R is said to be a lower solution of
BVP (2) if ’
(2(@®®))* + F(t,0”(®) 20, t€a,l]
afa) < 4, a(o?(b) < B.
The definition of an upper solution § of BVP (2) is given by reversing the above
inequalities. -

Theorem 3.1. Let a and B be a lower and an upper solution of BVP (2) such that
a(t) < B(t) on[a,02(b)]. Then BVP (2) has a solution y(t) such that a(t) < y(t) < B(t)
on [a, %(b)].

Proof. We consider the modified BVP

9 { (@@ N + F*@,y°(t) =0, te€la,b
y(@) =4, y(o*() =B,

where
F(t, 00 (#)) %f_) 2 < ao(t),
F*(t,z) = F(t, ), if a?(t) <z <p°(t),
Ft,67(1) - () if z>6°().

1+ |z]
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Then F*(t,z) : [a,b] X R — R is continuous in z. Moreover, there exits H > 0 such
that

(10) |[F*(t,z)] < H for all (¢,z) € [a,b] X R.

Equip E = {y : y € C([a,o*(b)],R)} with norm ||y|| = te[??gc(b)]{]y(t)]}. Then F is a

Banach Space. Define the operator A : E — F by

A, ift =a,
o(b) K]
(Ay)(t) =< B +/ -1 (7' +/ F*(r, y"(r))A’r) As, if ¢t € (a,0%(b)),
t a .
© B, if ¢ = o2(b),

where T is a solution of the equation
a(b) s
(11) w(r) = &7 (7) +/ o Y(r +/ F*(r,y°(r))Ar)As = A — B.

It can be shown as in [9] that A is well-defined, bounded and continuous. Therefore, A
has at least one fixed point in E by the Brouver fixed point theorem. Let y be a fixed
point of A. Then

12) A0 = NG e
(12) yo(t) = —o-1 (7’-{—/ F*(r, y"(r))Ar) , if t € [a,0?(b)),

and one can show that y is a solution of BVP (9). To complete the proof of theorem
we only need to show that the solution y(t) in (12) of (9) satisfies a(t) < y(t) < B(t)
on [a,0%(b)]. To show that y(t) < B(t) on [a,s2(b)], we let z(t) == y(t) — B(t) and
suppose that y(t) > B(t) for some ¢ € (a,0?%(b)) to obtain a contradiction. Since
2(a) = y(a) ~ Bla) < A— A = 0 and a(6*(8)) = y(o?(5)) — Bo*()) < B— B 0,
there exists ¢y € (a,0%(b)) such that

z(tg) = te[ﬁr}ggc(b)}w(t) >0

and
x(t) < z(to) for t € (to, a%(b)].

It can be shown as in [3] that ¢ cannot be a left-dense and right-scattered point and
so o(p(to)) = to and for other cases (®(y*(p(to))))2 < (@B~ (p(ta))))A.




A generalized upper and lower method for singular boundary value problems 221

On the other hand,

(@2 (et))® = —F(p(to),¥” (p(t0)))
T [F(p(to);ﬁa(io(to))) — ¥ pli) —ﬁa(p(tO))]

1+ |y (o(to))]
o sy Ulto) = Bk)
= [F (p(to), 8% (p(to))) 1+ w(®)| ]
> —F(p(to), 57 (p(to)))
> (2(8%(p(ta))))™.

But this gives us a contradiction. Therefore, y(t) < B(t) on [a,0?(b)]. Similarly, we
can show that a(t) < y(t) on [a, c?(b)] and this completes the proof. O

Lemma 3.5. Assume that F(t,y) : [a,b] x R > R is continuous and there eists
h € C({a, b],[0,00)) such that

|F'(t,y)] < h(t) fort € [a, b].
Then BVP (2) has a solution y € C([a, c2(b)], R).

Proof. Solving BVP (2) is same as the fixed point problem Ay = y. Since A :
C(la, o%(®)],R) + C([a,a?(b)],R) is continuous and compact, the result follows from
Schauder’s fixed point theorem. 0

4. EXISTENCE THEORY

In this section, we assume that T has isolated points. We obtain existence of solu-
tions of BVP (1), where nonlinear f may change sign.
Theorem 4.1. Let ng € Z™ be fized and assume the following conditions:

1) f(,z):[a,b] x (0,00) — R is continuous;
(ii) ¢ € C([a,b], (0,00));
(iii) there ezists a function a € C([a,a?(b)],R) with a(a) = a(s?(h)) =0, & >0
on (a,0?(b)) such that ’
q@)f(t,0”(®) =~ (2 @))%, t€ ol
(iv) there ezists a function 8 € C([a,o?(b)],R) with B(t) > a(t) and B(t) > nio’
t € [a,0%(b)] such that
a6 () < —(2(B2®)), t€lab].

Then BVP (1) has a solution y € C([a,c?()],R) such that at) < y(t) < B(t) on
[a,*(B)]-
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Proof. Consider the BVP

» —(@EA@NA = a2, @, y"(tl)), t € [a, b]
(13) v =y ®) = =,
where
fhar@) - S it < ao(t),
Fro(ty2) = f(t =), i a7 (t) S8 <P,
oy = B71) . -
f(taﬂ (t)) 1+|£B| 1 if ZEZ,B (t)

By Lemma (3.5), BVP (13) has a solution yn, € C([a,0?(b)],R). We now show that
Yno(£) = a(t) on [a,0%(b)]. We suppose that it is not true to get a contradiction. We
know that yn,(a) = ;}; > a(a) = 0 and Yno (02(0)) = nio > a(o?(b)) = 0. Therefore,
there exists an interval [¢,d] C [a,02(b)] such that yn,(t) < a(t) on [o(c),o(d)] and
Yno (€) = (), Yno(02(d)) > a(a?(d)). For [c,d], we have

—@m @ = aO)f7,(tva, ()

— o’ —M
= q(b) (f(t, (t) 1+ [Yno! )
> q(t)f(t,e° ()
> —(2@®@))

By Lemma (3.4), yn, (t) > a(t) on [¢, 0%(d)], which is a contradiction. One can similarly
show that yn, (t) < B(t) on [a,0?(b)]. Hence,

) < Yno(t) < B(E), t€[a,a*(B)].-

Now proceed inductively to construct Yno+1, Ynet+2, - -+ as follows: We suppose for
some k € {ng,ng +1,--+ } with

at) < ye(t) < ve-1(t), t € [a,a?(B)]
Here yp,—1 = 0. Then we consider the BVP

” _@EA ) =a® @), telat
(o) = (o B) =
where
ﬂawu»—fffﬁﬂ, iz < o (1),

f;+1(t7 m) = f(t’ CL‘), if ag(t) <z< yz(t)’

$e0) — T, i 5> 9 (1),
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By Lemma (3.5), BVP (14) has a solution yx11 € C([a, 0%(b)],R) and
a(t) Syra(t) < yet)  fort € [a,a7(0)].
Therefore, we have
o) Sya(t) SUn-1() < Syno () S B(E)  for t € [a,07(B)].

Bolzano’s theorem guarantees that y, — y as n — co. Also y(a) = y(c?(b)) = 0. Now
Yn(t) = a(t) > 0 on t € [a,0?(b)]. Fix t € [a,0%(b)] and obtain

ArpnA 7 (ye (1) — (2 (1)
(2(yn (1)) @)
. 37 (y2 () — 22 (1) a8 11— 00

()
= (2@ @)~

and f(t,yn(t)) — f(t,y(t)), t € [a,b] asn — oo. Therefore, (& (y2(£)))2+q(t)F(t,v° () =
0, t € [a,0] and y(a) = y(c?(b)) = 0. As a result, y € C([a,0?(b)],R) is a solution of
BVP (1) and also we have

a(t) <y(t) < B, ¢t € la,0?()].

Theorem 4.2. In addition to (i-iii) of Theorem (4.1) assume

(©) a®)f(t,y7 (1) = —(2(a® @)™ for (t,y) € [a,8] x {y € (0,00) : y < a(t)};

(ii) there ezists a function B € C([a,d?(b)],R) with B(t) > o for t € [a,d?(b)]

and o
a(8)f(t,87(D) < —(B(B2(1)))%, ¢ € [o,b].

Then BVP (1) has a solution y € C([a,02(b)],R) such that oft) < y(t) < B(D), t €
[a, 7% (b)].
Proof. We now show that a(t) < B(t) on [a,o*(b)]. Assume not, then since a(a) = 0 <
: 7—711; = B(a) and a(c?(h)) =0 < ;z% = B(c?(b)), there exits [¢,d] C [a,02(b)] such that
B(t) < a(t) on [o(c),o(d)] and B(c) > ac), B(c*(d)) > a(o?(d)). Therefore, we have

—(@(F2 N 2 9t f (¢, 8 (1)) = —(B( @)%,

by assumptions (i)-(if). This implies that (2(82(t)))2 < (®(a?(t)))” on [c,d] and
B(c) > alc), B(c?(d)) > a(o?(d)). By Lemma (3.4), a(t) < B(t) on [c, 02(d)], which
is a contradiction. Hence, a(t) < B(t) on [a,0%(h)]. By Theorem 4.1, the proof is
completed. O
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Now we construct the lower solution « in (jii) of Theorem 4.1, and in (i) of Theorem
4.2.

Theorem 4.3. Let ng € ZT be fized. In addition to Theorem 4.1 (i)-(i1) and Theorem
4.2 (i), assume the following condition:

such that fort € [a,b] and 0 <y < 1 we have q(t)f (2, 37 (t)) = ko.
Then BVP (1) has a solution y € C([a, o2(b)],R) such that y(t) >0 on (a, a2(b)).

{ let n € [no, 00) UZ* and associated with each n there exists a constant ko > 0

Proof. Let af(t) = ku(t), t € [a, o2(b)], where v € C([a,o*()], [0, o0)) is a solution of
{ @OAE)A +1=0, telab]
v(a) = 0 =v(c(b)),
where 0 < k < min{ké/(P_l), n—o%} Since (®(v2(t)))* < 0 on [a,b], v2A(t) < 0 on
[a,b]. By Lemma 3.1, v(t) = r@®)|lvll, t € [a, o2(b)], where r(t) is defined as in (6).
Since a(t) = kv(t), a(t) < —T%O—. For 0 < y < «, we have

_(@A M)A = - H@EAM)D =k < ko < a@F (537 (1)
by the last assumption. This implies that (i) of Theorem 4.2 for t € [a,b]. Since
a(a) = a(c?(h)) =0and a>0,t € (a, 0%(b)), (iii) of Theorem 4.1 holds. By Theorem
4.2, there exists a solution y € C([a,0? (b)), R) such that y > 0 for t € (a,0%(b)). O

In the next result we replace (i) of Theorem 4.2 with a growth condition.

Theorem 4.4. Let ng € Z* be fived and suppose (i-iii) of Theorem 4.4 hold. In
addition we assume the following: '

G 17y < gly) +h(y) on [a,b] x (0,00), where g(t) > 0 is con}ii(rgmus and
it

nomincreasing on (0,00), h(t) > 0 is continuous on [0, 00), and —-+ is non-

9(®)
decreasing on (0,00);
(i) there exists a constant M > sup{a’(t) : t € (a,0%(b))} such that

b < ' 1 /M dy
S ot My o @He(w))

where

o(t) t o(b) s
by = max / @"1(/ q('r)AT)As,/ @’1(/ g(r)Ar)As | .
t€a,b] \ Ja s t p(t)

Then BVP (1) has a solution y € C(la,d2(b)],R) such that a(t) < y(t) < B(t) for
t € [a,0%(D)).
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Proof. Choose € > 0, ¢ < M such that

(15)

(M))/ o~ 1(g(y

1
Without loss of generality, oy < e, We will consider the BVP
0

A A o __(Ml __ a
" {(@(y O+ s ®) (1+ 200 ) =0, te

y(a) = y(o*(d)) = nio

but first we consider the modification BVP

o {(@(yA<t>)>A+q<t)g*<yv<t>) (1+208) =0, tepy

y(a) = y(0>(¥)) = T—j—

where

L 1f < =~
o-(1 sk
Now |g*(¥)| = ¢*(y) < g(;lg) for y € R. By Lemma 3.5, BVP (17) has a solution
B € C([a,0?(b)],R). Let u(t) = B(t) — 7—11; for t € [a,02(b)]. Then (®(u?(t)))» =
(B(BA))A < 0 for ¢ € [a,b], u(a) = 0 and u(s?(b)) = 0. By Lemma 3.3, u(t) > 0
for [a,0?(b)] and B(t) > . for [a,0%(h)]. Then B is a solution of BVP (16) as well.
Now we show that a(t) < E(t) < M, t € [a,0%(b)]. We first show that 8(t) > a(t) for
t € [a,0?(b)]. Assume not, then there exists [c,d] C [a,0%(b)] such that B(t) < a(t)
on [o(c),o(d)], B(c) 2 a(c) and B(o?(d)) 2 a(o?(d)) since f(a) = B(o™ (b)) = nio >
afa) = a(a?(b)) = 0. For t € [c, d],

W ONG h)

q(t)g(B7 (1)) (1 + —@)

5 Ao (t)
aBa(e D)L+ o)

q(8)f (¢, 0 (2)
—(@(a® ()

Since B(c) > a(c) and B(c2(d)) > a(c?(d)), B(t) > a(t) on [c,02(d)] by Lemma 3.4
but this gives us a contradiction. Therefore, 3(t) > af(t) on [a,0?%(b)]. Second, we
show that B(t) < M for t € [a,02(b)]. Since (B(B2(£)))* < 0 on [a,b], BAA(t) < 0 on
[a,b] and so B(t) > nig’ t € [a,02(b)]. It implies that there exists to € (a, (b)) such

Il

v v IV
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that B(to) = I B(t) > 0, B(t) < B(to) for t € (to, c2(b)]. Hence, B2(t) < 0 on

lto, o2(b)), B2(t) > 0 on [a, to), and B(to) = ||B]| > 0. Also for s € [a,b], we have

— o8 h(M)
(18) —(®(B2(N)™ = g(67 () (1 + m)Q(S)-

Integrating equation (18) from 7 to to gives us
~a(@4 1) + 204 (1) = (1+ 20 [ a5 @)ate)s

Since (o) < 0 and from [4, Theorem 1.79], we have

B(58(r) < 1+ 0H) 37 ule)a(e@Nate)

s€[,to)
Since g(87 (7)) < g(u) < g(B(r)) for ,6(7") < wu < B7(7) when 7 < tg, This implies that
h() o
B(8°(r) < (1+ LG )a(5"(7) PINCIS

ie.,

B\ o s [
BEA() < (L+ 5 37))9(67(7) / a(s)As.

and so we have

Il ) BT ()
F(g(8" (M) = 2+ s00)% 1(/ q(s)As), T <to.

Again since g(8° (1)) < g(u) < g(B(7)) for (1) < u < F7(7) when T < 1y, we have

A7 du 1 p7(7) N
/ﬂm =1 (g(u)) S<I>—1(g(ﬁ<r(f))) ) (B2 (7)

by (3). And we get
h(M),

O _w i
W Doy 6@ = 0n) (/ a()As

from (19). Integrating the above from a to p(to) gives us

(19)

du =

1
-1 (g(67(7)))

B87(1) du h(M) .
fe[z%%t ))u() (T) a2 (g(U)) <0+ (M) TG[aP(to)) Ho® (/ a(s));
1.e., B(to) du 51 h(M) p(to) ~ to
/% sy = U ean) / 27 /T q(s)dAs) AT

by [4, Theorem 1.79]. Similarly, we integrate equatlon (18) from p(to) to 7 and obtain

~8(B2(r)) = ~2(8%(p(t0))) + ( 1+ ) )ﬂ" )Da(s)As
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Since‘ ﬂA(p(to)) >0 and g(ﬁﬂ(s)j < 9(B°(7)) for B7(s) > B°(r), we obtain
__'B_A(Z)__ -1 h(M), 4 As
FGE T = oY, 1080
Since g(87 () < g(u) for u < §7(7) < B(r),
A du 1 N S

/ﬁ"(f) -1(g(u)) = ®=1(g(6°(7))) Jgo () du = @—1(g(ﬁa(7)))”(7)ﬁ (7).
Hence

_L B(r) du "-ﬁA(T) o1 h(M) o1 T

5 ey T < 550000y ST O o2 96089

by (20). Integrating the above from tg to o(b) gives us

1 ﬁ(T)_ﬂ_ . M e .
re[toza@»M( ) Joe o TG00 = (1+9(M))r€[g(b))u( ? (/pao) 1e)89)

B(to) du =Y h( M) U(b) 1
/% T i) =" ¢ rap T, rgan

Altogether, we have

(20)

ie.,

Alte) gy Blte) gy 1. R(M)
[ wew =L, w0
Hence, ||G]| = B(to) < M by (15). Notice that

o - h(p°(t)) o (M)
f@,871) < 9(B7(#) 1+ (ﬂa(t)))— g(B° )1+ (M))

t € [a,b]. Therefore, 8(t) > ni and B(t) > a(t) on [a,o?%(b)] such that
0

~@(EA 0N = aa(B N+ 25) 2 a6, 50, € )

So B(t) satisfies (iv) of Theorem 4.1. By Theorem 4.1, BVP (1) has a solution y €
C([a, 0(b)], R) such that a(t) < y(t) < B(t) on [a, o2(b)]. O

We finish this section with following result.

Theorem 4.5. Let ng € Z*t be fized and suppose (i-i3) of Theorem 4.1, the last as-
sumption of Theorem 4.8 and (i) of Theorem 4.4 hold. In addition assume there ezists
a constant M > O such that (i) of Theorem 4.4 holds. Then BVP (1) has a solution.
vy € C([a, 0%(b)],R) such that y(t) > 0 on (a, o%(b)).
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Proof. If we show that there exists o € c(la, o? (b)], R) such that (iil) of Theorem 4.1
holds and M > a(t) on [a, o2 (b)], then we are done by Theorem 4.4. Let a(t) = kvu(t),
¢ € [a,0%(b)], where v € C(la, 2], [0, o0)) is a solution of

{ @@A@)L+1=0, t&all

v(a) =0 =v(a? ()
where 0 < k < min{ké/(p_l),;b—o—\l\—vﬂ, %ﬂ} Therefore, a(t) < —T—%, —(@(aA(t)))A =
-1 < ko, afa) = a(c?(®) =0, @ > 0 for ¢ € [o(a),o ()] and (iit) of Theorem 4.1

holds since
a®)f(t,a7(t) Z ko 2 —(@A®)*, teladl
So a € C(la,o* ()1, R), aft) < M on la, 0% (b)] and this completes the proof. O
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