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OSCILLATION CRITERIA FOR FOURTH ORDER
NONLINEAR DIFFERENCE EQUATIONS

RAVI P. AGARWAL, SAID R. GRACE, AND ELVAN AKIN-BOHNER

Abstract. Some new criteria for the oscillation of the fourth order difference
equation .
A? (a(n)(A%s(n))™) + g(n) f(a(n + 1)) =0,

where « is the ratio of two positive odd integers are established.
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1. INTRODUCTION

This paper is concerned with the oscillatory behavior of the fourth order
difference equation

A? (a(n)(Azm(n))“) +g(n)f(z(n+1))=0 (1.1)

where n € Ng = {ng,no+1,...}, ng is a nonnegative integer, A is the forward
difference operator defined by Az(n) = z(n + 1) — z(n), and « is the ratio of
two positive odd integers, {a(n)}, {q(n)} are positive sequences, f : R — R is
a continuous function, zf(z) > 0 and f'(z) > 0 for z # 0.

In what follows we shall assume that

ia_l/“(n) = 00. (1.2)

We introduce the operators L;, ¢ = 0,1, 2, 3, 4, as follows:
Loz =z, L1z = ALz, Lyz = a(AL1z)%, L3z = ALyx, Lyz = ALyz. (1.3)

By a solution of equation (1.1), we mean & real sequence {z(n)} satisfying
equation (1.1) for all n > ng—7+1. A nontrivial solution {z(n)} of (1.1) is said
to be nonoscillatory if it is either eventually positive or eventually negative, and
it is oscillatory otherwise. The equation (1.1) is said to be oscillatory if all its
solutions are oscillatory.

In the last two decades there has been an increasing interest in studying
oscillatory, nonoscillatory and asymptotic behavior of solutions of difference
equations. Most of the work on the subject, however, has been restricted to
first and second order linear, half-linear and nonlinear difference equations, as
well as equations of type (1.1) with a = 1. For recent contributions, we refer to
[1-7, 9, 11, 12] and the references cited therein. However, it seems that little
is known regarding the oscillation of equation (1.1). Therefore, the purpose
of this paper is to establish a systematic study for the oscillation of equation
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(1.1). In Section 2, we shall give the proof of a critical lemma which is useful
throughout this paper. Section 3 is devoted to the study of equation (1.1) when
f satisfies different sets of conditions. In Section 4, we give the results for the
oscillation of delay difference equation of type (1.1) with f(z) = 2#, where 8 is
the ratio of two positive odd integers. We shall also establish some necessary
and sufficient conditions for the bounded as well as unbounded oscillation of
equations related to equation (1.1). Further, we shall investigate the oscillation
of difference equations with advanced argument that are related to equation
(1.1). In Section 5, we shall present a comparison criterion which allows us
to extend the obtained results to more general equations of neutral type. We
remark that the obtained results are presented in a form which is essentially
new even for the special case when a = 1.

2. PRELIMINARIES

If {z(n)} is an eventually positive solution of equation (1.1), then Lyz(n) < 0
eventually and since (1.2) holds, it follows that L;z(n), i = 1,2, 3, are eventually
of one sign. We need to distinguish the following two cases:

(D. Liz(n) > 0,i=0,1,2,3, and Lyz(n) < 0 eventually.

(I). Loz(n) > 0, Liz(n) > 0, Lez(n) < 0, Lyz(n) > 0, and Lyz(n) < 0
eventually.

Suppose that (I) holds. Since Lsz(n) > 0 is decreasing for n > ng (say), we
obtain

Loz(n) — Loz (ng) = i L3z (i),
a(n)(ALyz(n))* > (n — no)Laz(n — 1) > (n — no) Lzz(n),

A’z(n) > ((—"—‘—@) v LY/*x(n) for n>no. (2.1)

a(n)
Summing (2.1) from ng to n—1, using (I) and the decreasing property of Lzz(n),
n > ng, we have

’TL E O) Y z(n),’ [
and

z(n) > (nii < JJ(?) )Ll/“ (n), n>ne.  (2.3)

§=np J=Ng
Suppose that (II) holds. Then, noting that Lzz(n) > 0 is decreasing and
Lyz(n) < 0, from the equation

2n—1

Loz(2n) — Lez(n) = Z Lyz(3),

i=n
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we see that
—Lyz(n) > nLyz(2n),
which is rewritten as

1/
—A? Yeron) for n o )
A’z(n) > (a( )) L/ %z(2n) f >, (2.4)

Summing (2.4) from n to 2n — 1, we obtain

-1 , . \ 1«
Az(n) > <Z (a—é—)> )Lé/“x(zm) (2.5)

J=n
and

o) > (ZZ( &) )éf“z@n). 26

s=np j=s
For n > nyg, we let

vkl

J=np JI=n

and

H(n,no;a Z h(j, no; @

j=ng
Combining the above inequalities, we are ready to state the following crucial
lemma.

Lemma 2.1. Let {z(n)} be a positive solution of equation (1.1) for n > ng.
Then, for all sufficiently large n > ny,

Az(n) > h(n, no; a) L3/ *z(4n)

and
z(n) > H(n,ng; a) LY *z(n).

We shall also need tﬁe following lemma.
Lemma 2.2 ([8]). If X and Y are nonnegative, then
XA AXYA 4 -1 >0, A>1,
where equality holds if and only if X =Y.
| 3. OSCILLATION CRITERIA
In what follows we shall assume that ‘
fluw) = f(v) = g(u,v)(u~v) for wu,vs=£0, (3.1)
where g is a nonnegative function, and
FYO 1 )g(u,v) > k>0 for w,v#0 and Fkis a constant. (3.2)
Our first result is embodied in the following theorem.
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Theorem 3.1. Let conditions (1,2), (3.1) and (3.2) hold, and assume that
there exists a positive sequence {p(n)} such that for n > Ny > nq,

o L e (Apare
e 2 o)~ (G 1 e G )| = 69

where h(n, no; a) is as in Lemma 2.1. Then, equation (1.1) is oscillatory.

Proof. Assume for the sake of contradiction that equation (1.1) has a nonoscil-
latory solution {z(n)} and that {z(n)} is eventually positive. There exists a
positive integer n; > ng such that z(¢) > 0 for n > n;. From equation (1.1),
we see that Lyz(t) < 0 for n > ny and hence Liz(n), i = 1,2,3, are eventually
of one sign for n > ;. It is easy to check that Lszz(n) > 0 is decreasing and
Lyz(n) > 0 for n > ny for some ny > n;. By Lemma 2.1, there exists an integer
ng 2> Ny such that

Az(n) > h(n,ng;a) LY z(dn) for n > ng. (3.4)

Define
w(n) = p(n)’;—?%—;‘; for m > ns.

Then, for n > ng, we have

A

Aw(n) = Ap(n)

e faldn) | Apln)
=) T T ot )
Az(n)g(z(n + 1), a:(n))

w(n +1)

P ) DY Flel) (85)
Using (3.1), (3.2) and (3.4) in (3.5), we get
Aw(n) < —p(n)q(4n) + pﬁzp-({—ni) w(n+1)

p(n) a '
m h(n, N3, a)wl+(1/ )(’n: + 1) for n > ng. (36)

Set
_ /eyt l) o atl
X = (kp(n)h(n,n3; a)) o) A = > 1,
and

a+1 pn+1

"in Lemma, 2.2, to conclude that for n > ny > ns,

V= (357) " (5625%) 1botmmtn a2yt 07"
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————w(n + 1) - k;ﬁ%-)-h(n, Nz, a)wl+(1/‘”) (TL + 1)
1o (Apm)M
k= (1+ a)*te (p(n)h(n, ns; a))*’

<

and therefore

1 a® (Ap(n))i+e
Aw(n) < —p(n)q(4n) + ke (1+ o)+ (p(n)h(n, ns; a))e’

Summing both sides of (3.7) from n4 to m > ny, we obtain

n>ng (3.7

m

wlm +3) = w(ng) < = 3 |olr)a(en

n=n4

_ (_1_ o (Ap(n))tte
ke (1+ o)1+ (p(n)h(n, no; a))*

which contradicts the fact that w(m) > 0 for m > ns. a

)] — —00 as m — 00,

Next, we present the following interesting criteria for the oscillation of equa-
tion (1.1) with0 < @ < 1.

Theorem 3.2. Let 0 < a < 1 and conditions (1.2), (3.1) and (3.2) hold. If
there ezists a positive sequence {p(n)} such that
0<Q"(n)=pMQn); Qn) =7 _a(4)) (38)
j=n

and

n N2 Al—(1/a) (5 '
s 33 o - 3 e = 09

where h(n,no; a) is as in Lemma 2.1, then equation (1.1) is oscillatory.
Proof. Let {z(n)} be an eventually positive solution of equation (1.1). Define
L3(D(4’fb)
y(n) =
F(z(n))
Then, for n > ng, we get

Ay(n) < —q(4n).
Summing the above inequality from n to u and letting u — oo, we find

v 2 Y al) = @), 2o

for n > ny.

Next, we define '
w(n) = p(n)—llfa(—z%%, n > ng.
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Then,
w(n) > Q*(n), n > mny. (3.10)

Proceeding as in the proof of Theorem 3.1, we obtain (3.6) for n > ns. Now,
for n > ny for some ny > ngz, we obtain, for n > ny,

Aw(n) < —p(n)a(dn) + f( % (n+1)
o(n)

— ki  a)uw? (1/0)-1
p1+(1/a) (n + 1) h('n” n3; a)'w (n + 1)w (n + 1)

Swwmm+f”)(ﬂ>

— kp(n)p™ = (n + 1)A(n, ng; ) @M (04 1)w?(n+1)
1 (Ap(n))*Q M (n + 1)

4k p(n)h(n,n3; a)

- | Bote)e2(a + Db s Qo+ Dt + 1)

_ Ap(n) ] ’
2p(n + 1)\/kp )7 2(n 4+ 1)h(n, ng; a)Q/)-1(n + 1)

PR IED Y

The rest of the proof is similar to that of _Theorem 3.1 and hence omitted. [

= —p(n)q(4n) + =

The following result is concerned with the oscillation of a special case of
equation (1.1), namely, the equation

A? (a(n)(A%z(n))®) + ¢(n)z*(n+1) =0, o> 1. (3.11)

Theorem 3.3. Let o > 1 and condition (1.2) hold. If there exists a positive
sequence {p(n)} such that

lim sup Z [ (5)q(45) - (Ap(m)* }=oo, (3.12)

nmee J=No>no 4ap(n) he (n7 To; a’) (n - no)a—l

where h(n,no;a) is an in Lemma 2.1, then all bounded solutions of equation
(3.11) are oscillatory,.

Proof. Let {z(n)} be an eventually bounded positive solution of equation (3.11).
It is easy to see that {z(n)} satisfies (II). Proceeding as in the proof of Theorem
3.1, we obtain (3.4), n > nj, and we can easily see that

z(n) > (n—n3)Az(n), n>ns. (3.13)

Define
L3Z (417.)

z*(n) T

w(n) = p(n)
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Then, for n > ngz, we have

Aw(n) < —p(m)g(tn) + LT n 1 1) — p(n) Laa(an) -t D = ()

p(n+1) z%(n + 1)z%(n)
Ap(n)
S—Mwﬂ®0+aggﬁwm+l) 1
o) Lastn) (o) (a2
< —p(matén) + 22wl + 1)
—-aﬂ— “(n,ns;a =(n) a—1w2n
Ao o) (a) v+
Using (3.13) in the above inequality, we get for n > ny > ng,
Bu(m) < ~plr)a(en) + 22+
- a__p(_n)_ B*(n, n3; a)(n — nz)*w?(n +1)

pn+1)

_ 1 (Ap(n))®
= —p(n)q(4n) + 4o p(n)h%(n, ng; a)(n — nz)e-

- a—p@—)——~°fnn'a n —na)* w(n
|:\/ pz(n+1)h ( 1 193y )( 3) ( +1)

Ap(n) r
%m+ﬁwxﬁnwnm’mhww4
1L (Ao(m))?
< —[ (n)a(4n) — 4a p(n) h*(n, ng;a)(n-ns)a_l]‘

The rest of the proof is similar to that of Theorem 3.1, and hence omitted. O

Next, we present the following oscillation result which is for superlinear eqﬁa—
tions of type (1.1).

Theorem 3.4. Let o > 1 and condition (1.2) hold, and

oo -0

/}T/%Il%u—)-<00 and /%—)—<oo. A (3.14)
If there ezists a positive sequence {p(n)} such that :
Ap(n) >0 and A(h%*(n,no;a)Ap(n)) <0 for n>ng (3.15)
and
z) q(4n) = (3.16)

then equation (1.1) is oscillatory.




210 R. P. AGARWAL, S. R. GRACE, AND E. AKIN-BOHNER

Proof. Assume that {z(n)} is a nonoscillatory solution of equation (1.1), say,
z(n) > 0 for n > ng > 1. As in the proof of Theorem 3.1, define the same w(n)
to obtain equation (3.5) and inequality (3.4) for n > nz. Thus,

flz(n+1))

Yoran :
< —p(n)a(4n) + Ap(n) (ﬁﬁ%) , nzng. (317)

Aw(n) < —p(n)q(4n) + Ap(n)

Using (3.4) in (3.17), we obtain

Az(n)

Aw(n) < —=p(n)q(4n) + Ap(n)h®*(n, ng; a) (m)a (3.18)

Summing (3.18) from n4 > n3 to m > 1y, -we get

w(m +1) — w(ng)

< - Z p(5)a(45) + h*(ng, ng; a) Ap(na) Z (fTa(Aﬁ%)'m)a

T4 J=ny4

< —

s

P(7)a(47) + h¥(na, mgs @) Ap(na) | D7 }ﬁ%)

I

J=n4

fYe(y)

J=n4

m z(m+1) a
s—XM@%@+mmmmmmma</" o )-

z(nq)

Using (3.14) and (3.16) in the above inequality, we find that 0 < w(m + 1) —
—00 as m — 0o, which is a contradiction and completes the proof. O

The following result is concerned with the case when

> " q(45) < oo : (3.19)
Theorem 3.5. If in addition to conditions (1.2), (3.14) and (3.19),
n o0 e
nlirgo Z h(s, np;a) Z q(4j)) = 00, (3.20)
s=mng j==s+1

then equation (1.1) is oscillatory.

Proof. Let {z(n)} be a nonoscillatory solution of equation (1.1), say, z(n) > 0
for n > ng > 1. We define w(n) as in Theorem 3.1 with p(n) = 1, to obtain

L3$ (4’“)
A(f@@»

) < —q{4n), n>ns. (3.21)
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We sum (3.21) from n + 1 to u — 1, to get

0<

Lo(du) _ Lys(dn+4) &
@) < Femi) - 2 14

Letting 4 — oo in the above inequality, we obtain

Lzz(4n) = ,
Tt 1) = 2, 1)

Using (3.4) in the above inequality, we find

Az(n) P < N
.<f1/a(x(n—|-1))> Zh(”’”s,@j;ﬂ(‘ly), n >,
or ) "
a : _ Al
i) .;;f(‘“)) S Ry "2

Summing the above inequality from n3 to n, we find

z(n+1)
n . 00 ' i Az(4)
Z h(s,ns;a) Z Q(4J>> Z fl/a(a;(7,-|-1 / fl/a(y

= j=, =
T3 s4+1 n3 o(ns)

Taking limit of both sides of the above inequality as n — oo, we arrive at the
desired contradiction. This completes the proof. a

Next, we present the following comparison result.
Theorem 3.6. Let condition (1.2) hold. If the equation
1/
A%z qu Fo@n+1)=0 (3.22)
a(n s=n j=s
is oscillatory, then all bounded solutions of equation (1.1) are oscillatory.

Proof. Let {z(n)} be a nonoscillatory solution of equation (1.1), say, 2(n) > 0
for n > ng > 0. It is easy to check that z(n) satisfies Case (II) for n > n; > no.
Summing equation (1.1) from n > n; to u and letting 4 — 0o, we have

Lzz(n) > (Zq(j ) z(n + 1)) for n _>_ n1.

Once again, summing this equation from n > n; to u and letting u — oo, we

obtain
~Loz(n) > (ZZq ) (z(n+1)) for n>mny,

s=n j=s
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or

00 oo e
A’g(n) + (c_z—(%)— ZZq(y)) ez (n + 1)) <0 for n>mn;.

8=, j==g

Applying known result (see [2,9], also Theorem 5.1 (below)), we see that equa-
tion (3.22) is nonoscillatory, which contradicts the hypothesis and completes
the proof. O

4. FURTHER OSCILLATION CRITERIA

In this section we shall consider difference equations of type (1.1) with delay, |
ie.,

| Lyz(n) + q(n) f(zln — 7 +1]) = 0, (4.1)

where 7 > 0 is a real number. Our main goal is to establish some oscillation

criteria for equation (4.1) and some necessary and sufficient conditions for the
equation

Lyz(n) + q(n)zPln — 7+ 1) =0, (4.2)
where 3 is the ratio of two positive odd integers.

Theorem 4.1. Let condition (1.2) hold and assume that f satisfies

~f(=2y) 2 f(zy) > f(2)f(y) for zy>o. (4.3)
If for all large n > ng + 7 the first order difference equation
Ay(n) + q(n)f(H(n — 7,n0;0)) f (y*[n —7]) =0 (4.4)

is oscillatory, then equation (4.1) is oscillatory.

Proof. Let {z(n)} be a nonoscillatory solution of equation (4.1), say, z(n) >0
for n > ng > 0. By Lemma 2.1, there exists n; > ng + 7 so large that

gln—7+1] > H(n ~ 7,n0;a) L %aln— 7] for n>n,. (4.5)
Using (4.5) and (4.3) in equation (4.1), we have
—ALzz(n) > q(n)f(z[n — 7))
> q(n)f(H(n — 1,n0;0)) f (L;/ax[n - ]) , n>mng.
Substituting u(n) for Lyz(n), n > ny, we get '
—Au(n) > ¢(n) f(H(n~ 7,m0;a)) f (u/*[n — 7)) for n>n,. (4.6)

Summing (4.6) from n > n, to k > n and letting k£ — 0o, we obtain

u(n) > Zq(s)f(H(s —T,ng;a))f (ul/“[s —7]).
s=n
Now as in [2] it is easy to conclude that there exists a positive solution {y(n)}
of equation (4.4) with limsupy(n) = 0, which contradicts the hypothesis and

n—00

completes the proof. O
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" The following corollaries are immediate.

Corollary 4.1. Let conditz’on (1.2) hold. If for all large n > ng + 1,

T+1
afy T -
hglongj;_T JYH*(j — 7,05 0) > (T n 1) , when a=/ (4.7)

or
co

> q(G)HP(j ~ 7,n00) =00, when B<a (4.8),
then equation (4.2) is oscillatory.

Corollary 4.2. Let condition (1.2) hold. If for all large n > ng + 7,

o0

ST q()HE( — 7y ngya) = 00, when B <a, (4.9)
where
n-1 k—1 i —n
o) = Y 3 (L )
k=ng j=ng

then all unbounded solutions of equation (4.2) are oscillatory.

Proof. Let {z(n)} be an unbounded nonoscillatory solution of equation (4.2),
say, £(n) > 0 for n > ng. It is easy to see that.{z(n)} satisfies Case (), and so,

z(n) 2 Hi(n,no; )Ly *a(n), n>ng > no.
The rest of the proof is easy and hence omitted. 0

For the oscillation of all bounded solutions of equation (4.1) we present the
following result.

Theorem 4.2. Let condition (2.1) hold. If

S5 (LESw0) = wo

s3=np Sp=53 81=83 s=91

then all bounded solutions of equation (4.1) are oscillatory.

Proof. Let {z(n)} be a bounded nonoscillatory solution of equation (4.1), say,
z(n) > 0 for n > ng > 0. Clearly, z(n) satisfies (II) for n > n, for some ny > ng.
Now, there exist a constant ¢ > 0 and an ne > n; such that

%5 gn—7+1 <c¢ for n>n,. (4.11)
Using (4.11) in equation (4.1), we have
Lyz(n) +¢(n)f(c/2) <0 for n > n,.

Summing this inequality from n > ny to u > n and letting u — oo, we have

Lya(n) > £(e/2) 3 a(s)

$=n
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Once again, summing the above inequality from n > ny to u and letting v — oo,

we obtain
oo oo e
~Az(n) > fH%(c/2) (a_(lnj D Zq(s)) :

81=" §=381

Therefore, we find

) © oo Ve
z(n) > z(ng) + f1/° (_;_) Z Z (@ Z E q(s)> — 00 as 1 — 00,

83=ngy 82=53 81==89 9==81

which is a contradiction and completes the proof. d

The following theorem is concerned with a necessary and suflicient condition
for the oscillation of all unbounded solutions of equation (4.2) with 8 < a.

Theorem 4.3. Let § < a and condition (1.2) hold. All unbounded solutions
of equation (4.2) are oscillatory if and only if condition (4.9) holds.

Proof. Let {z(n)} be an unbounded nonoscillatory solution of equation (4.2),

say, z(n) > 0 for n > ng > 0. Clearly, z(n) satisfies (I) for n > ny for some

ny > no. The proof of the “if” part is as in Corollary 4.2 and hence omitted.
To prove the “only if” part it suffices to assume that

> a()HL(G — 7,n0;0) < 00, (4.12)
where H; is as in Corollary 4.2 and show the existence of a nonoscillatory
solution of equation (4.2). O

Let ¢ > 0 be an arbitrary constant and choose N > n; > ng + 7 sufficiently
large so that

o<

Y ) HE (G — 7, ng;a) < @/, (4.13)
j=N

Define the set X; of all real sequences {z(n)}, n > N, i..,
X1 ={z(n) : z(n) is defined for n > N}.
Now define the set X by
X ={z(n) € X1: ¢;Hi(n, N;a) < z(n) < c;Hi(n, N;a), n> N},

where ¢; = (¢/2)/* and ¢; = (2c)V/e, _
Clearly, X is a closed convex subset of the locally convex space X; and X is
also a compact subset of Xj.
Let .S be a mapping defined on X as follows: For z € X,

n—-1 sz—1 82—1 oo 1o
(Sz)(n) = Z Z (Z(i?) [c(sz ~N) + Z Z q(s)zPls — 7 + 1]])

s3=N so=N 81=N s=s1

for n>N. (4.14)
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It is easy to check that S is well defined and continuous (see Theorem 16.4
[6]). It can be shown without any difficulty that S maps X into itself and S(X)
is relatively compact in X;. Therefore, by the Schauder fixed point theorem, S
has a fixed point z in X which satisfies

n—1 sg—1 s2—1 oo e
Z Z( N)—|—ZZq(smﬁs~T+l]}>

sa=N sa=N s1=N s=s1

" for n>N.

Taking the difference 4-times on the above equation, we see that z = z(n) is a
positive solution of equation (4.2) for n > N such that

z(n)
T}LngO Hl(’ﬂ N a)
Theorem 4.3 can be restated as follows:

Theorem 4.3'. Let § < a and condition (1.2) hold. Equation (4.2) has a

nonoscillatory solution {z(n)} such that hm F(%(—MH—) is a nonzero constant,

=v>0, < isa constant.

n > ng, if and only if

o0

S aG)HE( — 7y mos @) < oo,

Next, we present the following necessary and sufficient condition for the os-
cillation of all bounded solutions of equation (4.2) with 8 > c.

Theorem 4.4. Let f > a and condition (1.2) hold. All bounded solutions of
equation (4.2) are oscillatory if and only if condition (4.10) holds.

Proof. Let {z(n)} be a bounded nonoscillatory solution of equation (4.2), say,
z(n) > 0 for n > ng > 0. Clearly, z(n) satisfies (I) for n > m; for some ny > ny.
The proof of the “if” part is presented in Theorem 4.2 and hence omitted.

The “only if” part of the theorem is proved as follows: Let ¢ > 0 be a given
arbitrary constant, and choose a large N > n; such that

> Z( ) iq@)ws

83=N 92=83 sl—sz 8==81

(/).

DO |

We introduce the Banach space £ of all bounded, real sequences {z(n)} (n >
N) with the norm ||z|| = sup, |z(n)|. We define a bounded convex and closed
subset B of £*° as

B':{:EEKW: C/QS.’I:[’n,—T-i- 1] <eg, nZN}
Next, let T be a mapping defined on B as follows: For z = z(n) € B,

/e
(Ta:)(n)-c—z Z( ZZq(smﬂs—-T—(—l]) .

s3=N sp=s3 s1—-sz 8=§1
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It is easy to check that 7" maps B into itself and 7" is a continuous mapping. Also,
T'(B) is relatively compact in £%°. Therefore, by Schauder fixed point theorem,
there exists an element z € B such that z = T'z. It is clear that the fixed
point z = z(n) gives a positive solution of equation (4.2) for n > N such that
nlingo z(n) = c (for details, see Theorem 3.1 in [12] and Theorem 16.5 in [6)). O

Once again, we restate Theorem 4.4 as follows:

Theorem 4.4'. Let 8 > o and condition (1.2) hold. Equation (4.2) has a
nonoscillatory solution {(n)} such that lim z(n) is a nonzero constant if and
n—00

only if
o oo 00 oo /e
1
25 (@2 Sav) <o

Next, we consider equation (4.1) when 7 < 0, i.e., we consider the advanced
difference equation

Lyz(n) +q(n)f(zfn + 7+ 1]) = 0. (4.15)

Theorem 4.5. Let condition (1.2) hold. Then, equation (4.15) is oscillatory
if either one of the following conditions holds
(Il) T > 1,

fl/a(IL‘) v '
— >2k>0 for ©#0 and k isa constant (4.16)
and for all large n > ny,

n+7T-1 oo Yer 1/7—1\"
hgrbl’lorolf Z h(i, no; a) (Z q(s)) > E( ) , (4.17)

i=n+1 g=41 T

or, for all large n > ny,

byl

oo 1/a
lim sup H{n,ny; a) <Zq(s)) > l (4.18)

—.
n—00 a=n

(I2). 7 > 1, condition (3.14) holds and for all large n > N,

o0 oo Ya
Z h(%,n0; @) (Z q(s)) = 0. (4.19)

8=i

Proof. Let {z(n)} be an eventually positive solution of equation (4.15), say,
z(n) > 0 for n > ngy. By Lemma 2.1, there exists an n1 > ng such that

Az(n) > h(n,no; a) LY/ “z(4n) for n>mn, (4.20)

and
z(n) > H(n,no;a)LYz(n) for n>n,. (4.21)
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Summing equation (4.15) from n > n; to u > n and letting u — oo, we get

Lsz(n (Z q(s ) z[r +7]). (4.22)

="

Using (4.22) in (4.20) and the fact that Az(n) > O for n > ny, we have
Az(n) > hn, ne; a) LY *z(4n)

oo 1/a
> h(n,no; a) (Z q(s)) Yoz +1)) for n>ng.  (4.23)
. s=4n
Using condition (4.16) in (4.23), we obtain
. /e
Az(n) > kh(n,ng;a) (Z q(s)) zn+ 7] for n>mny. (4.24)
s=4n

But, in view of Theorem 3’ in [11] and conditionn (4.17), inequality (4.24) has
no eventually positive solution, which is a contra.diction.
Next, using (4.21) in (4.22), we obtain-

1/
z(n) > H{n,ng;a )L3/aﬂ7(”) > H(n,ng;a (Zq ) fl/a(w(n)),

00 1/a
(n) y @ s or n=>n
e (z(n)) = > H(n,no;0) (Z q( )) f > ny. (4.25)

s=n
Taking lim sup of both sides of the above inequality, we arrive at the desired
contradiction.

(I). Using the fact that Az(n) > 0 for n > n; in (4.23), we get

[o <]

1/
Az(n) > h(n, ng;q) (Z q(s)) fzn+1)) for n>ny.  (4.26)

S=n

Summing inequality (4.26) from n; to n, we find
. « " el
. Az(s) du
: < —
Zlh(S:HOaa) (yZ:q(‘?)> Z fl/a(.'l: S+1 ) / fl/a(’u,) < 00
S=n =8 8=n1 fl}(nl)
as n — 00, which contradicts condition (4.19). g

The following corollary is immediate.

Corollary 4.3. Let condition (1 2) hold. If hrn zf~Y%(z) = ¢, where ¢ is a
nonnegative constant, and

1/
lim sup H (n, no; a <Zq s)) > ¢,

—
00 s=n




218 R. P. AGARWAL, S. R. GRACE, AND E. AKIN-BOHNER

then all unbounded solutions of equation (4.1) are oscillatory.
Proof. Tt follows from the inequality (4.25). O

Remark 4.1. We may note that Theorems 4.3 and 4.4 can be extended to
equation (4.1). Such investigations are left to the reader.

5. COMPARIS_ON AND EXTENSIONS

Here, we shall give a comparison theorem which is useful to extend the ob-
tained results to neutral equations of the form

Ly(z(n) + pz[n — 60]) + ¢(n) f(z[n — 7+ 1]) = 0, (5.1;9)
where L, is defined in (1.3), ¢ and f are as in equation (1.1), § = %1, p, 7 and

o are nonnegative constants.
Now, we shall prove the following comparison theorem.

Theorem 5.1. Let condition (1.2) hold. If the inequality
Lyz(n) +q(n)f(zfn—7+1])) <0 (>0) (5.2)

has an eventually positive (negative) solution, then equation (4.1) also has even-
tually positive (negative) solution.

Proof. Let {z(n)} be an eventually positive solution of inequality (5.2). There
exists an ng 2> 0 such that z(n) > 0 for n > ng and z(n) satisfies either (I) or
(1) for n > ng. Summing inequality (5.2) from 7 > ng to u > n and letting
u — 00, we get

Lyz(n) 2 ) q(s)f(als — 7 + 1)) (5.3)
8=n .
Now, we need to distinguish the following two cases:
Case (I). Lyz(n) > 0 for n > no, 4 = 0,1,2,3. Summing (5.3) from ng to
n-— 12> ng, we have

n—1l oo
Lyz(n) > Z Zq f(a:s—’r—{—l])

81=ng s=81

or
-1 oo 1/
APx( ( Z Zq(s s—‘r+1])>
Sl_no 8=381

and so,

z(n) > nz ij ( iiq f(ws~f+1]))

83==T9 82=Np 31_n0 §=§1
=:c+ ®(n,z[n — 7+ 1)), (5.4)
where z(ng) = c. ‘
Now, it is easy to show the existence of a positive solution to the equation

w(n) =c+ @(n,wn —7+1]) for n>ne.

s

LIRS P N
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For this, we define the sequence {wn(k)}, k.= 0,1,2,..., such that wy(n) =
z(n), and

c+ ®(n,wx[n —7+1]) for n > ny,

Wera(n) = { (55)

c for n < ng.
Then, one can easily see that wy(n) is well-defined and
0 < wp(n) <z(n), c¢< wepr(n) < wi(n).

Thus, the sequence {wy(n)} is positive and nonincreasing in & for each n. This

means we may define w(n) = klim wy(n). Since 0 < w(n) < wy(n) < z(n) for
—00

all £ > 0 and since

®(n, wxln — 7+ 1]) < B(n,z[n — 7+ 1)),

the convergence of (5.5) is uniform with respect to k. Now, taking the limit of
both sides of (5.5), we have

w(n) = ¢+ @(n,wn — 7 + 1)). (5.6)
Finally, taking the differences of (5.6), we obtain
Lyw(n) +g(n) f(w[n — 7+ 1]) = 0.

Case (1I). Loz(n) > 0, Liz(n) > 0, Lyz(n) < 0, ng(n) > 0 for n > ny.
Summing (5.3) from n > np to u and letting u — oo, we have

1/
~A%z(n) > (a(ln Z Z q(s)f(zls — 7+ 1]))

§1=n §==81

and so

n—1 oo L
a:(n)Z:L‘(no)-l-Z Z( L EZQ(S 5_T+1]))

83=np S3=87 sl~sz =381
=: ¢+ ¥(z,z[n — 7 +1]),
where z(ng) = c.

The rest of the proof is similar to that of Case (I) and hence omitted. O

Next, we shall employ Theorem 5.1 to extend the obtained results to the-
neutral difference equation (5.1;4). In fact, we have the following comparison
results.

Theorem 5.2. Let conditions (1.2) and (4.3) hold, 6 =1 and 0 <p < 1. If
the equation

Lsz(n) +q(n)f(1 —p)f(z[n~T7+1)) =0 (5.7)
is oscillatory, then eguation (5.1;1) is oscillatory.
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Theorem 5.3. Let conditions (1.2) and (4.3) hold, § = —1 and p > 1. If the
equation
-1
L)+ a(n)f (252 flefn = — o+ 1) =0 658)

is oscillatory, then equation (5.1; —1) is oscillatory.

Proofs of Theorems 5.2 and 5.3. Let {z(n)} be a nonoscillatory solution of
equation (5.1;4), say, z(n) > 0 for n > ng > 0. Define
y(n) = z(n) + pzln — 6o, n > ny.
Then, for n > ny,
Lgy(n) +q(n) f(zln — 7 +1]) = 0. (5.9)
It is easy to check that there exists an n; > ng such that Ay(n) > 0 for n > n,.
Now, by using the hypotheses of Theorem 5.2, we find

z(n) = y(n) — pz[n — o] = y(n) — p(y[n — o] — pz[n — 20])

>y(n) —pyln—0o] > (1 —p)y(n) for n>ny. (5.10)
Using (5.10) and condition (4.3) in equation (5.9), we obtain
Lyy(n) +q(n)f1—p)flyln—74+1]) <0 for n>n,. (5.11)
Next, using the hypotheses of Theorem 5.3, we find

(n) = Z—l)(y[n o] —aln—ol) = %y[n —o]— %y[n — 2] + Z%a:[n — 2]

> p;l yln—o| for n>n;. 5.12
p?

Using (5.12) and condition (4.3) in equation (5.9), we have

Lgy(n) + q(n)f (pp—; 1) fyln—o—7+1])) <0 for n>n,. (5.13)

Inequalities (5.11) and (5.13) have eventually positive solutions and so, by The-
orem 5.1, equations (5.7) and (5.8) have also eventually positive solutions, which
contradicts the hypotheses and completes the proofs. ]

Finally, we shall extend our previous results to equation (1.1), or equation
(4.1) when the function f need not be monotonic. For this the following notation
and a lemma due to Mahfoud [10] will be needed.

(—OO, —to] U [to, OO) if ¢, > 0,
* 7] R-{0} if =0
and
Cs(Ry,) = {f € O(R): f is of bounded variation on any interval [a, 8] C Ry,}.

Lemma 5.1. Suppose to > 0 and f € C(R) = {f € C(R,R) : zf(z) >
0 for z # 0}. Then, f € Cs(Ry,) if and only if f(z) = H(z)G(z) for all 7 € R,
where G : Ry, — RT is nondecreasing on (—oo, —ty) and nomincreasing on
(to,o0) and H : Ry, — R is nondecreasing on Ry,. '
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Theorem 5.4. Let condition (1.2) hold and assume that f € C(Ry,), to > 0,
and let G and H be a pair of continuous components of f with H being the
nondecreasing one. If, for all large n > ng + 7, the equation

Lyz(n) + q(n)G(g(n — 7 + 1,ng;a))H(z[n — 7+ 1)) = 0 (5.14)
18 oscillatory, where

n—1 s-1

’I’LTLQ, ZZ(]_TL()) a: n2n0+7'7

3=ng J=nj

then equation (4.1) is oscillatory.

Proof Let {z(n)} be an eventually positive solution of equation (4.1), say,
z(n) > 0 for n > ny > 0. There exist a constant b > 0 and an ny > mg
such that

Lzz(n) <b for n > ny.

Summing the above inequality 3-times from ny to n — 1, we get

n—1 s—1
bZ Z (J —n1> =: g(n,ny;a) for n > 1.

s=n1 j=ny

Now there exists an ny > n; + 7 such that
zn—74+1) < gln—7+1,n1;a) for hzng. (5.15)
Next, since -
flzln —7+1]) = Glaln — 7+ 1)) H(z[n — 7 + 1))
Glgln—7+1,n;a))H(zn—7+1)]), n>n,,

v

it follows that
Lyz(n) + ¢(n)G(g(n — 7+ 1,n4;0))H(zfn — 7+ 1)) <0 for n>n,.
By applying Theorem 5.1, we arrive at the desired contradiction. d

Remark 5.1. The results of this paper are presented in a form which can be
easily extended to higher order nonlinear difference equations of the form

A™ (a(n)(A™z(n))*) + 6q(n) f(z[n — 7 +1]) =0 (5.16;9)
and the forced equation
AT (a(n)(A™z(n))*) + ¢(n) f(z[n — 7 + 1]) = e(n), (5.17;9)

where m > 1 is an integer, § = %1, {e(n)} is a sequence of real numbers
f, g¢(n), T and « are as in equation (4 1). The details and appropriate investi-
gations are left to the reader.
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