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GENERALIZATION OF MITRINOVIĆ–PEC̆ARIĆ INEQUALITIES
ON TIME SCALES

AHMED A. EL-DEEB, ELVAN AKIN AND BILLUR KAYMAKÇALAN

We prove some new inequalities of Mitrinović–Pec̆arić inequalities for convex functions on an arbitrary
time scale using delta integrals. These inequalities extend and improve some known dynamic inequalities
in the literature. The main results will be proved by using Hölder and Jensen inequalities and a simple
consequence of Keller’s and Poetzsche’s chain rules on time scales.

1. Introduction

The following results are known as Opial’s inequalities in the literature.

Theorem 1 [20]. If x is an absolutely continuous function on [0, h] with x(0)= x(h)= 0, then

(1)
∫ h

0
|x(t)x ′(t)|dt ≤

h
4

∫ h

0
|x ′(t)|2dt.

Inequality (1) is sharp in the sense that h
4 can not be replaced by a smaller constant.

Theorem 2 [7]. If x is an absolutely continuous function on [0, h] with x(0)= 0, then∫ h

0
|x(t)x ′(t)|dt ≤

h
2

∫ h

0
|x ′(t)|2dt,

with equality if x(t)= ct.

For a comprehensive survey on continuous and discrete Opial-type inequalities, we refer the interested
reader to the monograph [2]. The theory of time scales has been initiated by Stefen Hilger in his PhD
thesis [15] in order to unify discrete and continuous analysis. A considerable number of dynamic inequal-
ities has been given by many authors who were motivated by some applications; see [1; 3; 4; 5; 6; 10; 13;
14; 16; 18; 21]. The general idea is to prove a result for a dynamic inequality where the domain of the
unknown function is a so-called time scale T, which is an arbitrary nonempty closed subset of R. The
books [11] and [12] organize and summarize much of time scales calculus. The first dynamic Opial-type
inequality (2) was given by Bohner and Kaymakçalan in [9] as follows:

Theorem 3. Assume that T is a time scale with 0, h ∈ T. If x : [0, h]T → R is a delta differentiable
function with x(0)= 0, then

(2)
∫ h

0
|[x(t)+ xσ (t)]x1(t)|dt ≤ h

∫ h

0
|x1(t)|2dt,

with equality if x(t)= ct.
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In 1988, Mitrinović and Pec̆arić [19] discussed several inequalities for the functions that have an
integral representation. In this article, motivated by the results obtained in [19], we will state and prove
some dynamic inequalities on time scales. The present article is arranged as follows. In Section 2, some
basic concepts of the calculus on time scales and useful lemmas are introduced. In Section 3, we state
and prove our main results.

2. Preliminaries on time scales

First, we recall some time scales essentials and some universal symbols used in the present article.
A time scale T is an arbitrary nonempty closed subset of R. We suppose throughout the article that T

has the topology that it inherits from the standard topology on R. The forward jump operator σ : T→ T

is defined for any t ∈T by σ(t) := inf{s ∈T : s > t}, and the backward jump operator ρ :T→T is defined
for any t ∈ T by ρ(t) := sup{s ∈ T : s < t}, In the previous two definitions, we set inf∅= sup T (i.e., if
t is the maximum of T, then σ(t)= t) and sup∅= inf T (i.e., if t is the minimum of T, then ρ(t)= t),
where ∅ is the empty set. A point t ∈ T with inf T < t < sup T is said to be right-scattered if σ(t) > t ,
right-dense if σ(t)= t , left-scattered if ρ(t) < t , and left-dense if ρ(t)= t . Points that are simultaneously
right-dense and left-dense are called dense points. Whereas points that are simultaneously right-scattered
and left-scattered are called isolated points. We define the forward graininess function µ : T→[0,∞) for
any t ∈ T by µ(t) := σ(t)− t . We introduce the set Tκ as follows: If T has a left-scattered maximum t1,
then Tκ = T−{t1}, otherwise Tκ = T. The interval [a, b] in T is defined by [a, b]T = {t ∈ T : a ≤ t ≤ b}.
Let f : T→ R be a function. Then f σ : T→ R is defined by f σ (t)= f (σ (t)) for all t ∈ T.

Suppose f : T→ R is a function and t ∈ Tκ . Then we say that f 1(t) ∈ R is the delta derivative of f
at t if for any ε > 0 there exists a neighborhood U of t such that, for all s ∈U , we have

|[ f (σ (t))− f (s)] − f 1(t)[σ(t)− s]| ≤ ε|σ(t)− s|.

Furthermore, f is said to be delta differentiable on Tκ if it is delta differentiable at each t ∈ Tκ . If
f, g : T→ R are delta differentiable functions at t ∈ Tκ , then

(i) ( f g)1(t)= f 1(t)g(t)+ f σ (t)g1(t)= f (t)g1(t)+ f 1(t)gσ (t),

(ii)
(

f
g

)1
(t)=

f 1(t)g(t)− f (t)g1(t)
g(t)gσ (t)

, g(t)g(σ (t)) 6= 0.

A function g :T→R is called right-dense continuous (rd-continuous) if g is continuous at the right-dense
points in T and its left-sided limits exist at all left-dense points in T. A function F : T→ R is said to be
a delta antiderivative of f : T→ R if F1(t)= f (t) for all t ∈ Tκ . In this case, the definite delta integral
of f is defined by ∫ b

a
f (t)1t = F(b)− F(a) for all a, b ∈ T.

In the following, we present the basic theorems that will be needed in the proof of our main results.

Theorem 4 (chain rule on time scales [11]). Assume g : R→ R, g : T→ R is delta differentiable on Tκ ,
and f : R→ R is continuously differentiable. Then there exists c ∈ [t, σ (t)] with

(3) ( f ◦ g)1(t)= f ′(g(c))g1(t).
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Theorem 5 (chain rule on time scales [11]). Let f : R→ R be continuously differentiable and suppose
g : T→ R is delta differentiable. Then f ◦ g : T→ R is delta differentiable and the formula

(4) ( f ◦ g)1(t)=
{∫ 1

0
[ f ′(g(t)+µ(t)hg1(t))]dh

}
g1(t)

holds.

Theorem 6 (dynamic Hölder’s inequality [8]). Let a, b ∈ T and f , g ∈ Crd([a, b]T, [0,∞)). If p, q > 1
with 1

p +
1
q = 1, then

(5)
∫ b

a
f (t)g(t)1t ≤

[∫ b

a
f p(t)1t

] 1
p
[∫ b

a
gq(t)1t

] 1
q

.

Theorem 7 (dynamic Jensen inequality [4]). Let u ∈ Crd([a, b]T, (c, d)) and v ∈ Crd([a, b]T,R) such
that ∫ b

a
|v(τ)|1τ > 0.

Moreover, suppose F ∈ C((c, d),R) is a convex function. Then

(6) F
(∫ b

a u(τ )|v(τ)|1τ∫ b
a |v(τ)|1τ

)
≤

∫ b
a F(u(τ ))|v(τ)|1τ∫ b

a |v(τ)|1τ
.

3. Main results

In this section, we will generalize Mitrinović–Pec̆arić inequalities which have integral representations.
We say that the function x belongs to the class U (y, K ) if it can be represented in the form

(7) x(t)=
∫ τ

α

K (t, s)y(s)1s, t ∈ [α, τ ]T,

where y ∈ Crd([α, τ ]T,R) and K (t, s) is an arbitrary nonnegative kernel defined on [α, τ ]T × [α, τ ]T
such that x(t) > 0 if y(t) > 0 for t ∈ [α, τ ]T.

Theorem 8. Let T be a time scale with α, τ ∈ T. For i = 1, 2, let xi ∈ U (yi , K ), where y2(t) > 0,
t ∈ [α, τ ]T. Further, let p ∈ Crd([α, τ ]T, [0,∞)), and let f be convex and increasing on [0,∞). Then
the inequality

(8)
∫ τ

α

p(t) f
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣)1t ≤
∫ τ

α

φ(t) f
(∣∣∣∣ y1(t)

y2(t)

∣∣∣∣)1t

holds, where

(9) φ(t)= y2(t)
∫ τ

α

p(s)K (t, s)
x2(s)

1s.
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Proof. Since x1 ∈U (y1, K ), from (7) we have

(10)
∫ τ

α

p(t) f
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣)1t =
∫ τ

α

p(t) f
(∣∣∣∣∫ τ

α

K (t, s)y1(s)
x2(t)

1s
∣∣∣∣)1t

=

∫ τ

α

p(t) f
(∣∣∣∣∫ τ

α

K (t, s)y2(s)
x2(t)

y1(s)
y2(s)

1s
∣∣∣∣)1t

≤

∫ τ

α

p(t) f
(∫ τ

α

K (t, s)y2(s)
x2(t)

|y1(s)|
y2(s)

1s
)
1t.

Applying dynamic Jensen’s inequality (6) on (10), we get∫ τ

α

p(t) f
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣)1t ≤
∫ τ

α

p(t)
∫ τ

α

K (t, s)y2(s)
x2(t)

f
(
|y1(s)|
y2(s)

)
1s1t

=

∫ τ

α

f
(
|y1(s)|
y2(s)

)
y2(s)

(∫ τ

α

p(t)K (t, s)
x2(t)

1t
)
1s

=

∫ τ

α

φ(t) f
(
|y1(s)|
y2(t)

)
1t,

which is the desired inequality (8), where φ is defined as in (9). �

Note that when T = R, the inequality (8) in Theorem 8 reduces to the inequality in Theorem 2.22.1
of [2]. Moreover, Theorem 8 can be generalized to convex functions of several variables similarly. In the
continuous case, inequality (11) in Theorem 9 turns out to be the inequality in Theorem 2.22.2 in [2].

Theorem 9. Let T be a time scale with α, τ ∈ T. For i = 1, 2, 3, let xi ∈U (yi , K ), where y2(t) > 0, t ∈
[α, τ ]T. Further, let p ∈ Crd([α, τ ]T, [0,∞)), and f ( · , · ) be convex and increasing on [0,∞)×[0,∞].
Then we have the inequality

(11)
∫ τ

α

p(t) f
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣, ∣∣∣∣ x3(t)
x2(t)

∣∣∣∣)1t ≤
∫ τ

α

φ(t) f
(
|y1(t)|
y2(t)

,
|y3(t)|
y2(t)

)
1t,

where φ(t) is given as in (9).

Now, let x(t) ∈U (y, K ), where K (t, s)= 0 for s > t . We say that such functions belong to the class
U1(y, K ). It is clear that in this case, (7) reduces to

(12) x(t)=
∫ t

α

K (t, s)y(s)1s.

Theorem 10. Let T be a time scale with α, τ ∈ T. For i = 1, 2, let xi (t) ∈ U1(yi , K ), where y2(t) > 0,
t ∈ [α, τ ]T. Furthermore, let f and g be convex and increasing on [0,∞) such that f (0)= 0. If f (t) is
also differentiable and max K (t, s)= M , then we obtain the inequality

(13) M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(

x2(t)g
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣))1t ≤ f
(

M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
1t
)
.
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Proof. Since f ′ is a nondecreasing function and from (12) for x1(t), we have

(14) M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(

x2(t)g
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣))1t

= M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(

x2(t)g
(∣∣∣∣∫ t

α

K (t, s)y1(s)
x2(t)

1s
∣∣∣∣))1t

= M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(

x2(t)g
(∣∣∣∣∫ t

α

K (t, s)y2(s)
x2(t)

y1(s)
y2(s)

1s
∣∣∣∣))1t

≤ M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(

x2(t)g
(∫ t

α

K (t, s)y2(s)
x2(t)

|y1(s)|
y2(s)

1s
))
1t

Applying the dynamic Jensen’s inequality (6) for the convex function g on (14), we have

M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(

x2(t)g
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣))1t

≤ M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(∫ t

α

K (t, s)y2(s)g
(
|y1(s)|
y2(s)

)
1s
)
1t.

Since max K (t, s)= M , and from the Keller’s chain rule on time scales (3), for c ∈ [t, σ (t)], we get

M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(

x2(t)g
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣))1t ≤ M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(∫ t

α

My2(s)g
(
|y1(s)|
y2(s)

)
1s
)
1t

≤ M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(∫ c

α

My2(s)g
(
|y1(s)|
y2(s)

)
1s
)
1t

=

∫ τ

α

(
f
(∫ t

α

My2(s)g
(
|y1(s)|
y2(s)

)
1s
))1

1t

= f
(

M
∫ τ

α

y2(t)g
(
|y1(t)|
y2(t)

)
1t
)
,

which is the desired inequality (13). �

In the continuous case, the inequality (13) in Theorem 10 becomes the inequality in Theorem 2.22.2
in [2]. If we let g(t)= t , M = 1, x1 = x , and y1 = x1, then we obtain∫ τ

α

f ′(|x(t)|)|x1(t)|1t ≤ f
(∫ τ

α

|x1(t)|1t
)
,

that is, the inequality in Theorem 2.17.1 in the continuous case in [2]. For example, M = 1 if λ = 1,
where

K (t, s)= Kλ(t, s)=

{
(t−s)λ−1

0(λ)
, s ≤ t,

0, s > t.

If λ= 1 and x is delta differentiable, then we have y = x1.

Theorem 11. Let T be a time scale with α, τ ∈ T, and f be differentiable, convex, and increasing
on [0,∞) such that f (0) = 0. Furthermore, let x(t) ∈ U1(y, K ), where

(∫ t
α

K η(t, s)1s
)1/η
≤ M , and
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1
η
+

1
ν
= 1. Then we have the inequality

(15)
∫ τ

α

|xσ (t)|1−ν f ′(|x(t)|)|y(t)|ν1t ≤
ν

Mν
f
(

M
(∫ τ

α

|y(t)|ν1t
)1
ν
)
.

Proof. Since x(t)=
∫ t
α

K (t, s)y(s)1s, we obtain

|x(t)| =
∣∣∣∣∫ t

α

K (t, s)y(s)1s
∣∣∣∣≤ ∫ t

α

K (t, s)|y(s)|1s.

By applying the dynamic Hölder’s inequality (5), with indices η and ν, we have

|x(t)| ≤
(∫ t

α

K η(t, s)1s
) 1

η
(∫ t

α

|y(t)|ν1s
) 1

ν

≤ M
(∫ t

α

|y(t)|ν1s
) 1

ν

.

Now, let z(t)=
∫ t
α
|y(s)|ν1s. Then z1(t)= |y(t)|ν , and |x(t)| ≤ M(z(t))1/ν . By the chain rule on time

scales (4), we have

(16) (Mz
1
v (t))1 ≥

Mz1(t)

ν(zσ (t))1−
1
v

,

where we use z+µhz1 ≤ zσ . Note that using the chain rule (4) once again, we can show that

(17) ( f (Mz
1
ν (t)))1 ≥

M
ν

z1(t)

(zσ (t))1−
1
ν

f ′(Mz
1
ν ).

Then from (16) and (17) we have∫ τ

α

|xσ (t)|1−ν f ′(|x(t)|)|y(t)|ν1t

≤

∫ τ

α

(M(zσ (t))
1
ν )1−ν f ′(M(z(t))

1
ν )z1(t)1t =

∫ τ

α

M1−ν(zσ (t))
1
ν
−1 f ′(M(z(t))

1
ν )z1(t)1t

≤
ν

Mν

∫ τ

α

( f (M(z(t))
1
ν ))11t =

ν

Mν
f (M(z(τ ))

1
ν )=

ν

Mν
f
(

M
(∫ τ

α

|y(t)|ν1t
)1
ν
)
,

which is the desired inequality (15). �

Note that when T = R, the inequality (15) reduces to the inequality in Theorem 2.22.4 in [2] . Here,
we do not assume that f (t1/v) is convex in Theorem 11 as in the continuous case.

Analogous to U (y, K ) we can define the class Ū (y, K ), where x(t) ∈ Ū (y, K ) has the representation

(18) x(t)=
∫ β

τ

K (t, s)y(s)1s, t ∈ [τ, β]T

where y is an rd-continuous function on [τ, β]T, and K (t, s) is an arbitrary nonnegative kernel defined
on [τ, β]T×[τ, β]T such that x(t) > 0 if y(t) > 0, t ∈ [τ, β]T.

It is obvious that the results for the functions belonging to the class Ū (y, K ) can be obtained similarly
by replacing [α, τ ]T by [τ, β]T.
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Theorem 12. Let T be a time scale with τ, β ∈ T. For i = 1, 2, let xi ∈ Ū (yi , K ), where y2(t) > 0,
t ∈ [τ, β]T. Further, let p ∈ Crd([α, τ ]T, [0,∞)), and let f be convex and increasing on [0,∞). Then,∫ β

τ

p(t) f
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣)1t ≤
∫ β

τ

φ(t) f
(
|y1(t)|
y2(t)

)
1t,

where

(19) φ(t)= y2(t)
∫ β

τ

p(s)K (s, t)
x2(s)

1s.

Theorem 13. Let T be a time scale with τ, β ∈ T. For i = 1, 2, 3, let xi ∈ Ū (yi , K ), where y2(t) > 0,
t ∈ [τ, β]T. Furthermore, let p ∈ Crd([α, τ ]T, [0,∞)), and let f ( · , · ) be convex and increasing on
[0,∞)×[0,∞). Then,∫ β

τ

p(t) f
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣, ∣∣∣∣ x3(t)
x2(t)

∣∣∣∣)1t ≤
∫ β

τ

φ(t) f
(
|y1(t)|
y2(t)

,
|y3(t)|
y2(t)

)
1t,

where φ(t) is given as in (19).

Now, let x(t) ∈ Ū (y, K ), where K (t, s)= 0 for s > t . We say that such functions belong to the class
Ū1(y, K ). It is clear that, in this case, (18) reduces to

x(t)=
∫ β

t
K (t, s)y(s)1s.

It is clear that similar results for the functions belonging to the class Ū1(y, K ) can be obtained by
replacing [α, τ ]T by [τ, β]T.

Theorem 14. Let T be a time scale with τ, β ∈ T. For i = 1, 2, let xi (t) ∈ Ū1(yi , K ), where y2(t) > 0,
t ∈ [τ, β]T. Furthermore, let f and g be convex and increasing on [0,∞), and let f (0)= 0. If f is also
differentiable and max K (t, s)= M , then, the following inequality holds

M
∫ β

τ

y2(t)g
(
|y1(t)|
y2(t)

)
f ′
(

x2(t)g
(∣∣∣∣ x1(t)

x2(t)

∣∣∣∣))1t ≤ f
(

M
∫ β

τ

y2(t)g
(
|y1(t)|
y2(t)

)
1t
)
.

Theorem 15. Let T be a time scale with τ , β ∈ T, and let f be differentiable, convex and increasing on
[0,∞) such that f (0)= 0. Further, let x(t) ∈ Ū1(y, K ), where

(∫ t
β

K η(t, s)1s
)1/η
≤ M , and 1

η
+

1
ν
= 1.

Then we have ∫ β

τ

|xσ (t)|1−ν f ′(|x(t)|)|y(t)|ν1t ≤
ν

Mν
f
(

M
(∫ β

τ

|y(t)|ν1t
)1
ν
)
.

Motivated by [17], we now remove the absolute values in (8) and obtain the following theorem whose
proof is similar to the proof of Theorem 8.

Theorem 16. Let ui ∈U (v, K ), i = 1, 2, and r ∈ Crd([a, b]T,R+). Also let f be a convex function on
a compact interval I ⊆ R+. Further, let v1, v2 : [a, b]T 7→ I such that u1/u2, v1/v2 ∈ I , and v1/v2 is
nonconstant. Then,

(20)
∫ b

a
r(t) f

(
u1(t)
u2(t)

)
1t ≤

∫ b

a
q(t) f

(
v1(t)
v2(t)

)
1t,
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where

(21) q(t)= v2(t)
∫ b

a

r(s)K (s, t)
u2(s)

1s.

Lemma 17. Let h ∈ C2(I ), and I be a compact interval such that

m ≤ h′′(t)≤ M for all t ∈ I,

and define f1, f2 by

f1(t)=
M
2

t2
− h(t),

f2(t)= h(t)−
m
2

t2.

Then f1 and f2 are convex on I .

Remark 18. If f is strictly convex on I and v1/v2 is nonconstant, then the inequality in (20) is strict.

Theorem 19. Let h ∈ C2(I ), I be a compact interval of R+, let ui ∈ U (v, K ), i = 1, 2, and let r ∈
Crd([a, b]T,R+). Furthermore, assume that v1, v2 : [a, b]T 7→ I such that u1/u2, v1/v2 ∈ I , and v1/v2

is nonconstant. Then there exists ξ ∈ I such that

(22)

∫ b
a

[
q(t)h

(
v1(t)
v2(t)

)
− r(t)h

(
u1(t)
u2(t)

)]
1t∫ b

a

[
q(t)

(
v1(t)
v2(t)

)2
− r(t)

(
u1(t)
u2(t)

)2]
1t
=

h′′(ξ)
2

,

where q is given as in (21).

Proof. Since h ∈ C2(I ) and I is compact, f1 and f2 described in Lemma 17 are convex on I . Suppose
that m =min h′′ and M =max h′′. By using Theorem 16 for f1, we get∫ b

a
r(t) f1

(
u1(t)
u2(t)

)
1t ≤

∫ b

a
q(t) f1

(
v1(t)
v2(t)

)
1t.

This implies that∫ b

a
r(t)

[
M
2

(
u1(t)
u2(t)

)2

− h
(

u1(t)
u2(t)

)]
1t ≤

∫ b

a
q(t)

[
M
2

(
v1(t)
v2(t)

)2

− h
(
v1(t)
v2(t)

)]
1t

or
M
2

∫ b

a

[
q(t)

(
v1(t)
v2(t)

)2

− r(t)
(

u1(t)
u2(t)

)2]
1t ≥

∫ b

a

[
q(t)h

(
v1(t)
v2(t)

)
− r(t)h

(
u1(t)
u2(t)

)]
1t.

Note that the integral on the left of the above inequality is positive because of Remark 18. Therefore,
we have

(23)

∫ b
a

[
q(t)h

(
v1(t)
v2(t)

)
− r(t)h

(
u1(t)
u2(t)

)]
1t∫ b

a

[
q(t)

(
v1(t)
v2(t)

)2
− r(t)

(
u1(t)
u2(t)

)2]
1t
≤

M
2
.
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Similarly, we can now apply Theorem 16 for f2 and obtain

(24)

∫ b
a

[
q(t)h

(
v1(t)
v2(t)

)
− r(t)h

(
u1(t)
u2(t)

)]
1t∫ b

a

[
q(t)

(
v1(t)
v2(t)

)2
− r(t)

(
u1(t)
u2(t)

)2]
1t
≥

m
2
.

Combining (23) and (24) gives us

m ≤ 2

∫ b
a

[
q(t)h

(
v1(t)
v2(t)

)
− r(t)h

(
u1(t)
u2(t)

)]
1t∫ b

a

[
q(t)

(
v1(t)
v2(t)

)2
− r(t)

(
u1(t)
u2(t)

)2]
1t
≤ M.

Finally, by using Lemma 17 there exists ξ ∈ I such that (22) holds. �
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