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1 Introduction

Motivated by a recent paper by B. G. Pachpatte [15], our purpose is to obtain time scales
versions of some Ostrowski and Griiss type inequalities including three functions, whose
second derivatives are bounded. In detail, we will prove time scales analogues of the
following three theorems presented in [15].

Theorem 1.1 (See [15, Theorem 1]) Let f,g,h : [a,b] — R be twice differentiable
functions on (a,b) such that f”,¢",h" : (a,b) — R are bounded, i.e.,

1"l = S [f7 @B <00, N9l <00, 1]l < o0
€(a,

Moreover, let
b b b
Alf.g.hl=gh [ f6ds+ fh [ g(s)ds+ fg [ his)as
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and
B(f.g,h] = [ghl [ f"llc + [fRllg" oo + 19l IF"]|
Then, for all t € [a,b], we have

a+b

) o)

{< _aTH)>2 (bzza)z}B[f,g,h](t),

Theorem 1.2 (See [15, Theorem 2]) In addition to the notation and assumptions
of Theorem 1.1, let

FOOOR) - g5 AL 1l — g (1
1
<5

fa) + f(b)
2

g(a
L[f,g.h] == gh + fh
Then, for all t € [a,b], we have

FOROMO) = 57 Al 910~ (1= 57 (b () + §LIF..81C)

< B0 [ e (s - 150 as

where p(t,s) =s—a fora<s <t andp(t,s) =s—0b fort <s<b.

Theorem 1.3 (See [15, Theorem 3]) In addition to the notation and assumptions
of Theorem 1.1, let

) —
Mlf,g,h] = ghf( l))_
Then, for all t € [a,b], we have

s AU a0 = 3 (1= 50 Mifg.nl0)

S //\pm (7, )| dsdr,

where p is defined as in Theorem 1.2.

F@)g()n(t) —

Our time scales versions of Theorems 1.1-1.3 will contain Theorems 1.1-1.3 as special
cases when the time scale is equal to the set of all real numbers, and they will yield
new discrete inequalities when the time scale is equal to the set of all integer numbers.
Special cases of our results are contained in [2-5,11,12 16] for the general time scales
case, in [8-10,13] for the continuous case and in [1,14] for the discrete case. One can also
use our results for any other arbitrary time scale to obtain new inequalities, e.g., for the
quantum case.

The set up of this paper is as follows. In the next section, we give some necessary
details of the time scales calculus. Section 3 contains some auxiliary results as well as
the assumptions and notation used in this paper. Finally, in Sections 4-6, we prove time
scales analogues of Theorems 1.1-1.3. Each result is followed by several examples and
remarks. We would like to point out here that our results are new also for the discrete
case.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, VOLUME (ISSUE) (YEAR) 1-17 3

2 Preliminaries

Now we briefly introduce some necessary time scales elements and refer the reader to the
books [6,7] for further details.

Definition 2.1 A time scale T is a nonempty closed subset of R. The mappings
o,p: T — T defined by o(t) = inf{s € T:s >t} and p(t) = sup{s € T:s <t} are
called the forward and backward jump operators, respectively. A point t € T is said to
be right-dense, right-scattered, left-dense, and left-scattered provided o(t) =t, o(t) > t,
p(t) =t, and p(t) < t, respectively. The set T" is defined to be equal to the set T without
its left-scattered mazimum (if it exists). A function f : T — R is called rd-continuous
and we write f € Cq(T,R) if it is continuous at all right-dense points and its left-sided
limits exist and are finite at all left-dense points, and f is called delta differentiable at
t € T%, with delta derivative f2(t) € R, provided given ¢ > 0, there exists a neighborhood
U of t such that

[f(a(t)) = f(s) = fADo(t) —sl| <elo(t) —s| forall seU.

If f is differentiable such that f* is rd-continuous, then we write f € CL (T,R). The set
C2,(T,R) is defined similarly. A function F : T — R is called a delta antiderivative of
f:T — R if FA(t) = f(t) holds for all t € T*. Then the delta integral of f is defined by

b
/ f@)At = F(b) — F(a), where a,beT.
Example 2.1 If T =R, then o(t) =t and f2(t) = f'(t) for allt € R and

b b
/f(t)Atz/ f(t)dt  for all a,beR,

and if T =7, then o(t) =t + 1 and f2(t) = f(t+ 1) — f(t) for allt € Z and

n—1

/Onf(t)At:Zf(t) forall neN.

t=0

Some results about integrals, that will be used in this paper, are contained in [6,
Section 1.4] and collected as follows.

Theorem 2.1 If a function is rd-continuous, then it possesses a delta antiderivative.
For f,g € Cra([a,b],R) and a,b,c € T, we have

.fum+mmmzéﬁwM+LZwm,
L%wmz—AVwm,
LU@M=LV@M+[U@M,

[ s < [swra
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and, if additionally f,g € C;([a,b],R),

b b
[ #otg® at = f0g(e) - @@ ~ [ 1 Og(0)t
We also need the time scales monomials (see [6, Section 1.6]) defined as follows.

Definition 2.2 Define for allt,s € T
t t
ga(t,s) :== / (o(1) —s)AT, hal(t,s) :z/ (t — s)Ar,

gs(t, s) ::/ g2(o(7),s)AT, hs(t,s) ::/ ha(1,s)AT.

It is known that go(t, s), g3(t, s), ha(t, s), ha(t, s) are nonnegative for ¢ > s and that
g2(t,s) = ha(s,t) and gs3(t,s) = —hs(s,t). Moreover, the following formulas are used in
this paper.

Lemma 2.1 The time scales monomials satisfy the following formulas:

g2(t,a) — g2(¢,b) = g2(b,a) + (t — b)(b — a), (1)
ga(a,b) + ga(b,a) = (b —a)?, (2)
93(t,a) — g3(t,b) = g3(b,a) + (¢t — b)g2(b,a) + (b — a)ga(t, b). (3)

Proof The function F' defined by F'(t) := g2(t,a) — g2(t,b) — g2(b,a) — (t — b)(b — a)
satisfies FA(t) = o(t) —a — (o(t) = b) — (b—a) = 0 and F(b) = 0. Hence F = 0
and so (1) holds. Next, (2) follows by letting t = @ in (1). Moreover, the function G
defined by G(t) := g3(t,a) — g3(t,b) — g3(b,a) — (t — b)ga(b,a) — (b — a)ga2(t, b) satisfies
GA(t) = g2(0 (1), @) — ga(0 (1), b) — ga(b, @) — (b—a) (o(t) — b) = F(o(t)) = 0 and G(b) = 0.
Hence G = 0 and so (3) holds.

3 Auxiliary Results and Assumptions

Throughout this paper we assume that T is a time scale and that a,b € T such that
a < b. Moreover, when writing [a, b], we mean the time scales interval [a,b] N T. The
following two Montgomery-type results are used in the proofs of our three main results.

Theorem 3.1 Suppose f € CL(T,R). Let t € [a,b] and ui,us € CLy(T,R). If

_ Jui(o(s)) for a<s<t
u(o(s)) = {uQ(o(s)) for t<s<hb, @
then ,
[ o)A 6)8s = (ua(t) = ) £(0) ~ wa(@)f(a) + wa) £0)
‘ (5)

-/ ) f(5) s - / 2 (9 f(5)0s.
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Proof We use Theorem 2.1 to split the integral into two parts, each of which is
evaluated by applying the integration of parts formula, i.e.,

b

b t
[ wleenrA@as = [Cue) A @ast [ ne) A eas
— () - u@f(@) - [ wE)fEas

from which (5) follows.

Theorem 3.2 Suppose f € C%(T,R). Let t € [a,b] and u;,v; € CL (T, R) be such
that u2(s) = v;(0(s)) for all s € [a,b], where i € {1,2}. If u satisfies (4), then

b
[ ulo)r42 68 = (ua(t) = wa®)AO - (01(0) ~ va(t) )
— ur(@)F5 (@) + 0a(a)f(a) + w(B)FA(B) — waB)FB)  (6)
t b
+ [ @seast [ oreas

Proof Using (5) with f2 replaced by f2% and subsequently applying integration by
parts twice, we obtain

b
/ u(o(s))f22 () As = (ua(t) — uz(t)) f2(1) — ur(a) f2(a) +ua(b)f2 (b)

= (un () — un(£)) (1) — ua (@) £ (a) + ua(b) £ (D)
t b
- / 01(0(3) /2 (s)As — / va(0(5)) /2 (s)As
= (un () — us(£)) 2 (1) — un (@) 2 (@) + s (b) F2 (D)

o= [ oo
- ),

from which (6) follows.

Assumption (H) For the remaining three sections of this paper, we assume that T is
a time scale and that a,b € T such that a < b. We assume that f,g,h € Cfd('IF, R) are
such that

e e R e R e
€(a,
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and define
b b b
Alf.g.hli=gh [ 16)as+ fh [ g+ fo [ hs)as,
B[f,g,h] = |ghl || f22 | + [£Rl||g™2 | + [Fal |22

C[f, g, h] := ghf® + fhg™ + fgh®,

Mﬁ%Mz(/ )(/f A% (LU@W@AQ(LZwmQ
(o))

2(b,a ha(b,a)f (b 2(b, a)g(a) + ha(b,a)g(b
01 = LTI | 1 50010+ g
4 fggz(b, a)h(a) + ha(b,a)h(b)
(b—a)? ’

4 Time Scales Version of Theorem 1.1

Theorem 4.1 Assume (H). Then, for all t € [a,b], we have

@900 - 35 s Alfa 1) - 5 (¢ 0+ 20D ) cprgn)

%(@bt ”@ZW+§@?)BM%Mm (8)
and
1
= | som s—ap VN

1 %/(mmo+u—m%&?+*@”§3m%mmAt<m

< -
~3(b—a) J, b—a

Proof Fix t € [a,b] and define u by (4), where
ui(s) = g2(s,a), ua(s) = ha(b,s).
With the notation as in Theorem 3.2, using Definition 2.2, we have
vi(s)=s—a, vy(s)=s—b, v (s)=0v(s)=1
and uj(a) = v1(a) = uz(b) = va(b) = 0. Moreover, we have

@

\_/

ui(t) —ug(t) = (t—0)(b—a)+ ga(b,a), vi(t) —va(t) =b—a.
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By (6), we therefore obtain

b
/ u(o(s)) f22(s)As = ((t = b)(b— a) + g2(b, @) f2(t) — (b~ a) f / f(s

and thus

b b
10 =5 [ rass (-0 209 - L o 42 as. 0

Similarly, we get

b b
o) = 5o [Catonss (=04 20D) g3 - Lo [l 6as (1)

b—a J, a

b b
ht) = bia/ h(s)As + (t— b+ 92#?) hA (t) - bL/ w(o(s)HO5 (s)As. (12)

—-aJ,

Multiplying (10), (11) and (12) by g(t)h(t), f(t)h(t) and f(¢)g(t), respectively, adding
the resulting identities and dividing by three, we have

FOOORO - g Al )~ 5 (1= 0+ 20 ) crp g

a)
1 b -
- 3= | o) BlL g A (13
where
BIf, g, h](t,s) = g(&)h(t) FA2(s) + F(0)R(1)gD (5) + f(£)g(£)h™2 (s)
_ (14)
sothat | BLf,g,h(t,5)| < BIf.g, h](0).
By taking absolute values in (13) and using (7) and
t b

/ lu(o(s))|As = / g2(0(s),a)As —i—/t ha(b,o(s))As (15)

= g3(t,a) —gs3(t,b)

D galb,a) + (£ — b)ga(b,a) + (b — a)ha(b,t),

we obtain (8). Integrating (13) with respect to ¢ from a to b, dividing by b — a, noting
that

b
[ Alf.g.0(5)85 = DIf.g. 1 (16)
taking absolute values and using (7) and (15), we obtain (9).
Example 4.1 If we let T =R in Theorem 4.1, then, since C|f,g,h] = (fgh)’,

b g2(b,a) (b—a)? b—a a+b

b—a  2(b—a) 2 2
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and

R (R UG EE

Sa{(eote) e
()

we obtain [15, Theorem 1], in particular, Theorem 1.1.

Example 4.2 If we let T =7 and a =0, b =n € N in Theorem 4.1, then, since

(b,a) (b—a)b—a+1) b—a+1 a+b—-1 n-1
b- l2)fa =b- 2(b — a) A R B
and
ha(b,t) + (t — b) gz(f’z) + gz(f’z)
:%{(b—t)(b—t—1)+(t—b)(b—a+1)—|—(b_a+1)?)(b_a+2)}
1 b—a+2\> (b—a+2?% (b—a+1)(b—a+2)
e e e =)
1 a+b\> (b—a+2)(b—a—2)
25{(t+1_ 2 ) * 12 }
1 n\2 n?—4
:§{<t+1_§) T }
we obtain
@900 - g-alf. o0 - 3 (1= "5 ) Clra )
2 n2—
<t {(t+1-0) 5t mirane
and
1 1%/, n-1
LY F90n(0) - gDl - 53 (1= ") clngnlo
t=0 t=0
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where
Alf,g,h —thf +th +fg2h
B[f,g.h] = Ighl 1§g135<71|A2 |+|fh\1SI§§;Lgl|A2 9(s)| + 19l | max  [A%h(s)],

C[f.g,h] = ghAf + fhAg + fgAh,

DIf.g.h] = (ims)h(s)) (i f<s>> " (i f(s)h(s)> (ig@))
s=0 s=0 s=0 s=0
¥ (i f(s)g(s)> (i h<s>> .
s=0 s=0

These inequalities are new discrete Ostrowski—Griss type inequalities.

Remark 4.1 If we let h(t) = 1 in Theorem 4.1, then (8) becomes

b b
’f(t)g(t)—ﬁ{g(t) [ res s s [ g(s)As}
-5 (1= 0+ 22 (g0 + r0g )
< 5 (ma0+ -2 4 DO Gy |23 10 92 )

[\J|)—‘

and (9) turns into

b b b
| f(t)g(t)At—ﬁ< / f(t)At> ( / g(t)At>
b
sima | (-0 2 (ars )+ g 0) A1

1 ’ gQ(baa) g bCL
<spma [ (m0+ @Bl SO (123 10 92 A

If, moreover, we let g(t) = 1, then (8) becomes

‘ i [ 1ms (1- 04 20 g

< <h2(b,t)+(t—b)gz<f’z) + 9232 ) 1723 -

From these inequalities, special cases such as discrete inequalities can be obtained.
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5 Time Scales Version of Theorem 1.2

Theorem 5.1 Assume (H). Then, for all t € [a,b], we have

HO9OM) ~ 5o AL 910 + S L1F 9110

_% (t—b+ %) C[f,gvh](t)' =30 —a)

Blf,g,h]()I(t) (17)
and

1
b—a

b ) 1 b
[ sonst - 5t plf o+ e [ Lz oA

_ﬁ/f @w%) Clf, g, HI(H)AL

1 b
< = /|, Blrao10AL (18)

where

1
b—a

b
b i P /t 12(b — a)ha(b, 0 (s)) = (b — 0 (5))ha(b, a)| As.

Proof Fix t € [a,b] and define u by (4), where
ul(s) = 2(b - a’)g2(s7a) - (S - a)g2(b7 a)u UQ(S) = 2(b - a)hQ(b7 S) - (b - S)hZ(b7 a)'
With the notation as in Theorem 3.2, using Definition 2.2, we have
v1(s) =2(b—a)(s—a) — ga(b,a), wv2(s) =2(b—a)(s—"0b)+ ha(b,a),
v (s) = vy'(s) = 2(b — a)
and uy(a) = ug(b) =0, v1(a) = —g2(b,a), v2(b) = ha(b,a). Moreover, we have
ur(t) —ue(t) = 2(b—a)(g2(t,a) = ha(b,t)) — (t — a)g2(b,a) + (b — t)ha(b, a)
=" 2(b—a)(g2(b,a) + (t = b)(b - a))
—(t = a)ga(b,a) + (b—1) (b — a)* — g2(b, a))
= (b—a)gz(b,a) + (t = b)(b—a)?,
vi(t) —va(t) = 2(b—a)* - ga(b,a) — ha(b,a)
D 9h—a)2—(b—a)?=(b—a)

I(t) :=

/ 1206 — a)ga(o(s), a) — (0(5) — a)ga(b, a)] As

+

By (6), we therefore obtain
b
[ uloo) 225185 = (6= ) (g200.) + (¢ = )6~ ) 120

(b= ) f(t) — galb.a) f(a) — ha(b,a) F(b) +2(b — ) / f(5)As
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and thus

2 b _ g2(b,a) f(a) + ha(b,a) f(b)
b—a/a f(s)As (b—a)?

b
4 (t—b+ %) A — (bfa)Q/ w(o(s)) F25(s)As. (19)

ft) =

Similarly, we get

b
b
4 <t—b+ gz(f’;‘)) g2 (1) — (b_la)Q/ w(o(s))g>2 (s)As  (20)
and
b
) = 2 [ nas - 20 a)h((c;)):ral;z(b, a)h(b)

a b
- (tb+gz(f’a))hﬁ(t) (b—la)2/ u(o(s))h2(s)As.  (21)

Multiplying (19), (20) and (21) by g(¢t)h(t), f(t)h(t) and f(t)g(t), respectively, adding
the resulting identities and dividing by three, we have

FO9OMD = 3= AL (O + 3L{F0.1(0)
5 (o 2D et = -5t | u(o()Blf.g. 0t )As (22)
with B as in (14). By taking absolute values in (22) and using (7) and
o [ oo =10, (23)

we obtain (17). Integrating (22) with respect to ¢ from a to b, dividing by b — a, noting
(16), taking absolute values and using (7) and (23), we obtain (18).

Example 5.1 If we let T =R in Theorem 5.1, then, since C[f,g,h] = (fgh)’,

b g2(b,a) a+b
b—a 2
and (with p as defined in Theorem 1.2)

m):bla/at
+bia/tb
:/at (s —a) <s—“T+b)
Fheate-232

(b—a)?
2

(b—a)(s —a)®— (s —a) ds

—a)?
(bfa)(sfb)2f(bfs)(b 5 )

ds—l—/tb (s —b) (s—a;—b)‘ds

ds,

ds
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we obtain [15, Theorem 2], in particular, Theorem 1.2.
Example 5.2 If we let T=7Z and a =0, b =n € N in Theorem 5.1, then, since

g2(b,a) n—1

e T
and
I<t>—bia:§_§ <ba><s+1a><s+2a><s+1a>(b‘“)<”2‘““)\
+b#§:j R R s
~Sfer-a (-]
S feri-o(sr-2572)
“Sfern(ori- g e feron (-2
we have

aon - %A[f,g, )+ LU )~ 3 (1= "5 ) Clfa )

Blf,g,h] {;s ‘ zn:(n—s)

n—1
5 —

S —

s=t+1

n

n—1
§=—5— + Z (n—s)

s=t+1

where in addition to A, B,C, D defined in Example 4.2,
Lif.g.n] = gn " T E 0 ZDI0) gy (0 Dgle) (0= Do)

+ fo (n+ l)h(a)z—; (n— 1)h(b).

These inequalities are new discrete Ostrowski—Griss type inequalities.

)
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Remark 5.1 If we let h(t) =1 in Theorem 5.1, then (17) becomes

b b
F(t)g(t) bia{g@) [ sess s [ g(s)As}

g2(b,a) f(a) + ha(b, a) f(B) (1) 92(b, a)g(a) + ha(b, a)g(b)

13

2(b —a)? 2(b — a)?
3 (t b %) {920 + F(Dg° (1)}
= ﬁ {lgOI122 o + PO g2} T(2)

(observe (2) when calculating L) and (18) turns into

_a/ f(t) _2a)2 (/{ff(ﬂAt) (/abg(t)At>

+

b—a 2(b—a)? 2(b—a)?

_ﬁ/j( . b(b a)>{g(t)fA()+f ) At

/b {g(t)m(b ,a)f(a) + ha(b,a)f(b) +f(t)92(b’ a)g(a) + ha(b,a)g(b) } N

= ﬁ / {gOI 23] + 1@ g3} T At

If, moreover, we let g(t) =1, then (17) becomes

/ " H(s)as 4 200 (@) + ha(b )/ 0)

|f(t)_b—a a (b—a)?

(1= 2R iy < 20 1)

From these inequalities, special cases such as discrete inequalities can be obtained.

6 Time Scales Version of Theorem 1.3

Theorem 6.1 Assume (H). Then, for all t € [a,b], we have

FOROMO) = 375 AL 0u(0) — 5 (1= 22 ) arlf g,

1

< WB[f,g,h}(t)H(t)

(24)
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and
1
b—a/ f ( ) [f7ga ]()
b
_S(bl—a)/a (t‘“ b(fz)) MIf, g, hl(t)At §3(bia)3/a B[f, g, h](t)H(t)At,
(25)
where o
1) = [ [ et 9)] Asr
and

_Jo(s)—a for a<s<t
pts) = {O’(S)b for t<s<hb.

Proof Fix t € [a,b]. We use Theorem 3.1 three times to obtain

// (8, 7p( )23 >A5AT—/ p(t, ){/;pv,s)fM(s)As}m
:/a (tT){( —a)f3(r) /fA AS}AT

b

b
—(b—a) / p(t, 5)F2(5)As + (f(a) — £(b) / p(t, 5)As

b b
—(b—a) {(b —a)f(t) - / f(S)AS} +(f(a) - £ (b)) {(b —a)t - / sAs}
b a
= (b—a)*f(t) — (b a) / F(s)As + (f(a) — F(B)) / (s — )As

b
=(b-a)*f(t) - (b~ a)/ f(s)As + (92(t, a) — ha(b,1))(f(a) — f(D))

and thus (by using (1))

[ somer (10 220) 010

b—a /, b—a

flt) =

b—a
b rb
+ﬁ/ / p(t, 7)p(7, 8) 22 (5) AsAT.  (26)

Similarly, we get

’ - a
o) =5 [ ats)as+ (tb+92(f;l)> 5510

bia // (t,7)p(T, 5)g>2 (s)AsAT.  (27)
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ne) = / “h()ast <t . gz<§g>> h(bg - Z(a)

b rb
*‘@;%gpp/ /mp@/ﬂp@3$hAACﬂASAT. (28)

Multiplying (26), (27) and (28) by g(t)h(t), f(t)h(t) and f(t)g(t), respectively, adding
the resulting identities and dividing by three, we have

PN — g A o) = (1 0+ B2 ) arl7 0.0
b b
:ﬁ / / p(t,7)p(7, $)BIf, g, h](t, s) AsAr  (29)

with B as in (14). By taking absolute values in (29) and using (7) and the definition of
H, we obtain (24). Integrating (29) with respect to ¢ from a to b, dividing by b—a, noting
(16), taking absolute values and using (7) and the definition of H, we obtain (25).

Example 6.1 If we let T =R in Theorem 6.1, then, by the same calculations as in
Ezample 4.1, we obtain [15, Theorem 3], in particular, Theorem 1.3.

Example 6.2 If we let T =7 and a =0, b =n € N in Theorem 6.1, then, by the
same calculations as in Example 4.2, we obtain

900 - galf om0 - g (1= "5 ) MUanl0)

B[f, g, hl(t)H(t)

and
1n—1 1 n—1
2 SO0 gDl oot~ g 3 (1= "5 ) Mls )
1 n—1
< g5 2 Blha HOH ()
where in addition to A, B, D defined in Example 4.2,
170 = 0T, g 90 ola) b))
n—1ln—1
t) - Z Z ‘p(t,T)p(T, s)|
7=0 s=0
‘g = s+1 if 0<s<t
Pt s) = s+1—n if t<s<n.

These inequalities are new discrete Ostrowski—Griss type inequalities.
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Remark 6.1 If we let h(t) =1 in Theorem 6.1, then (24) becomes

b b
’f<t>g<t>2(bl_a{g<t> [ 185+ 510 / g(s)As}

_%< gzba){ ()+f(t) (bl)):z(a)}

S {Ig I3 + 1O 3 H @)

and (25) turns into

b b b
= f(t)g(t)At—(b_%)Q< / f(t)At> ( / g(t)At>

B, (H) {g<t>w+f<t>g“z_i’<‘”}m

< s [ o2+ 0 e Ao

If, moreover, we let g(t) =1, then (24) becomes

/f A3_< _b+gz(b a)) f(b) — f(a)

b—a

‘f(t (b—a) b—a

AA
< G 122 H
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