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Preface

On becoming familiar with difference equations and their close re-

lation to differential equations, I was in hopes that the theory of

difference equations could be brought completely abreast with that
for ordinary differential equations.

[HuGH L. TURRITTIN, “My Mathematical Expectations”,

Springer Lecture Notes 312 (page 10), 1973]

A major task of mathematics today is to harmonize the continuous

and the discrete, to include them in one comprehensive mathematics,
and to eliminate obscurity from both.

[E. T. BELL, “Men of Mathematics”,

Simon and Schuster, New York (page 13/14), 1937]

The theory of time scales, which has recently received a lot of attention, was
introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd
Aulbach) in order to unify continuous and discrete analysis. This book is an intro-
duction to the study of dynamic equations on time scales. Many results concerning
differential equations carry over quite easily to corresponding results for difference
equations, while other results seem to be completely different in nature from their
continuous counterparts. The study of dynamic equations on time scales reveals
such discrepancies, and helps avoid proving results twice, once for differential equa-
tions and once for difference equations. The general idea is to prove a result for a
dynamic equation where the domain of the unknown function is a so-called time
scale, which is an arbitrary closed subset of the reals. By choosing the time scale
to be the set of real numbers, the general result yields a result concerning an ordi-
nary differential equation as studied in a first course in differential equations, and
by choosing the time scale to be the set of integers, the same general result yields
a result for difference equations. However, since there are many other time scales
than just the set of real numbers or the set of integers, one has a much more general
result. We may summarize the above and state that

Unification and Extension

are the two main features of the time scales calculus.

The time scales calculus has a tremendous potential for applications. For exam-
ple, it can model insect populations that are continuous while in season (and may
follow a difference scheme with variable step-size), die out in (say) winter, while
their eggs are incubating or dormant, and then hatch in a new season, giving rise
to a nonoverlapping population.

The audience for this book is as follows:
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1. Most parts of this book are appropriate for students who have had a first course
in both calculus and linear algebra. Usually, a first course in differential equations
does not even consider the discrete case, which students encounter in numer-
ous applications, for example in biology, engineering, economics, physics, neural
networks, social sciences and so on. A course taught out of this book would si-
multaneously teach the continuous and the discrete theory, which would better
prepare students for these applications. The first four chapters can be used for
an introductory course on time scales. They contain plenty of exercises, and we
included many of the solutions at the end of the book. Altogether, this book
contains 210 exercises, many of them consisting of several separate parts.

2. The last four chapters can be used for an advanced course on time scales at the
beginning graduate level. Also, a special topics course is appropriate. These
chapters also contain many exercises, however, most of their answers are not
included in the solutions section at the end of the book.

3. A third group of audience for this book might be graduate students who are
interested in the subject for a thesis project at the masters or doctoral level.
Some of the exercises describe open problems that can be used as a starting point
for such a project. The “Notes and References” sections at the end of each chapter
also point out directions of further possible research.

4. Finally, researchers with a knowledge of differential or difference equations, who
want a rather complete introduction into the time scales calculus without going
through all the current literature, may also find this book very useful.

Most of the results given in this book have recently been investigated by Stefan
Hilger and by the authors of this book (together with their research collaborators
R. P. Agarwal, C. Ahlbrandt, E. Akin, S. Clark, O. Dosly, P. Eloe, L. Erbe, B. Kay-
makcalan, D. Lutz, and R. Mathsen). Other results presented or results related
to the presented ones have been obtained by D. Anderson, F. Atici, B. Aulbach,
J. Davis, G. Guseinov, J. Henderson, R. Hilscher, S. Keller, V. Lakshmikantham,
C. Potzsche, Z. Pospisil, S. Siegmund, and S. Sivasundaram. Many of these re-
sults are presented in this book at a level that will be easy for an undergraduate
mathematics student to understand.

In Chapter 1 the calculus on time scales as developed in [160] by Stefan Hilger is
introduced. A time scale T is an arbitrary closed subset of the reals. For functions
f : T — R we introduce a derivative and an integral. Fundamental results, e.g.,
the product rule and the quotient rule, are presented. Further results concerning
differentiability and integrability, which have been previously unpublished but are
easy to derive, are given as they are needed in the remaining parts of the book.
Important examples of time scales, which we will consider frequently throughout
the book, are given in this chapter. Such examples contain of course R (the set
of all real numbers, which gives rise to differential equations) and Z (the set of all
integers, which gives rise to difference equations), but also the set of all integer
multiples of a number h > 0 and the set of all integer powers of a number ¢ > 1,
including 0 (this time scale gives rise to so-called g¢-difference equations, see e.g.,
[58, 247, 253]). Other examples are sets of disjoint closed intervals (which have
applications e.g., in population dynamics) or even “exotic” time scales such as the
Cantor set. After discussing these examples, we also derive analogues of the chain
rule. Taylor’s formula is presented, which is helpful in the study of boundary value
problems.
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In Chapter 2 we introduce the Hilger complex plane, following closely Stefan
Hilger’s paper [164]. We use the so-called cylinder transformation to introduce the
exponential function on time scales. This exponential function is then shown to
satisfy an initial value problem involving a first order linear dynamic equation. We
derive many properties of the exponential function and use it to solve all initial value
problems involving first order linear dynamic equations. For the nonhomogeneous
cases we utilize a variation of constants technique.

Next, we consider second order linear dynamic equations in Chapter 3. Again,
there are several kinds of second order linear homogeneous equations, which we
solve (in the constant coefficient case) using hyperbolic and trigonometric functions.
Wronskian determinants are introduced and Abel’s theorem is used to develop a
reduction of order technique to find a second solution in case one solution is already
known. Certain dynamic equations of second order with nonconstant coefficients
(e.g., the Euler-Cauchy equation) are also considered. We also present a variation
of constants formula that helps in solving nonhomogeneous second order linear dy-
namic equations. The Laplace transformation on a general time scale is introduced
and many of its properties are derived.

Next, in Chapter 4, we study self-adjoint dynamic equations on time scales. Such
equations have been well studied in the continuous case (where they are also called
Sturm-Liouville equations) and in the discrete case (where they are called Sturm-—
Liouville difference equations). In this chapter we only consider such equations of
second order. We investigate disconjugacy of self-adjoint equations and use the
corresponding Green’s function to study boundary value problems. Also the theory
of Riccati equations is developed in the general setting of time scales, and we present
a characterization of disconjugacy in terms of a certain quadratic functional. An
analogue of the classical Priifer transformation, which has proved to be a useful
tool in oscillation theory of Sturm—Liouville equations, is given as well. In the last
section, we examine eigenvalue problems on time scales. For the case of separated
boundary conditions we present an oscillation result on the number of zeros of
the kth eigenfunction. Such a result goes back to Sturm in the continuous case,
and its discrete counterpart is contained in the book by Kelley and Peterson [191,
Theorem 7.6]. Further results on eigenvalue problems contain a comparison theorem
and Rayleigh’s principle.

Chapter 5 is concerned with linear systems of dynamic equations on a time
scale. Uniqueness and existence theorems are presented, and the matrix exponential
on a time scale is introduced. We also examine fundamental systems and their
Wronskian determinants and give a variation of constants formula. The case of
constant coefficient matrices is also investigated, and a Putzer algorithm from [31]
is presented. This chapter contains a section on self-adjoint vector equations. Such
equations are a special case of symplectic systems as discussed in Chapter 7. They
are closely connected to certain matrix Riccati equations, and in this section we also
discuss oscillation results for those systems. Further results contain a discussion on
asymptotic behavior of solutions of linear systems of dynamic equations. Related
results are time scales versions of Levinson’s perturbation lemma and the Hartman—
Wintner theorem. Finally we study higher order linear dynamic equations on a time
scale. We give conditions that imply that corresponding initial value problems have
unique solutions. Abel’s formula is given, and the notion of a generalized zero of a
solution is introduced.
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Chapter 6 is concerned with dynamic inequalities on time scales. Analogues
of Gronwall’s inequality, Hoélder’s inequality, and Jensen’s inequality are presented.
We also derive Opial’s inequality and point out its applications in the study of initial
or boundary value problems. Opial inequalities have proved to be a useful tool in
differential equations and in difference equations, and in fact there is an entire book
[19] devoted to them. Next, we prove Lyapunov’s inequality for Sturm-Liouville
equations of second order with positive coefficients. It can be used to give sufficient
conditions for disconjugacy. We also offer an extension of Lyapunov’s inequality
to the case of linear Hamiltonian dynamic systems. Further results in this section
concern upper and lower solutions of boundary value problems and are contained
in the article [32] by Akn.

In Chapter 7 we consider linear symplectic dynamic systems on time scales.
This is a very general class of systems that contains for example linear Hamilton-
ian dynamic systems which in turn contain Sturm-Liouville dynamic equations of
higher order (and hence of course also of order two) and self-adjoint vector dynamic
equations. We derive a Wronskian identity for such systems as well as a close con-
nection to certain matrix Riccati dynamic equations. Disconjugacy of symplectic
systems is introduced as well. Some of the results in this chapter are due to Roman
Hilscher, who considered Hamiltonian systems on time scales in [166, 167, 168].
Other results are contained in a paper by Ondfej Dosly and Roman Hilscher [121].

Chapter 8 contains several possible extensions of the time scales calculus. In
the first section we present an introduction to the concept of measure chains as
introduced by Stefan Hilger in [159]. The second section contains the proofs of the
main local and global existence theorems, that are needed throughout the book.
Another extension, which is considered in this last chapter, concerns alpha deriva-
tives. The time scales calculus as presented in this book is a special case of this
concept.

Parts or earlier versions of this book have been proofread by D. Anderson,
R. Avery, R. Chiquet, C. J. Chyan, L. Cole, J. Davis, L. Erbe, K. Fick, J. Hen-
derson, J. Hoffacker, K. Howard, N. Hummel, B. Karna, R. Mathsen, K. Messer,
A. Rosidian, P. Singh, and W. Yin. In particular, we would like to thank Elvan
Akin, Roman Hilscher, Billir Kaymakcalan, and Stefan Siegmund for proofreading
the entire manuscript. Finally, we wish to express our appreciation to “Birkhiuser
Boston”, in particular to Ann Kostant, for their accomplished handling of this
manuscript.

Martin Bohner and Allan Peterson



CHAPTER 1

The Time Scales Calculus

1.1. Basic Definitions

A time scale (which is a special case of a measure chain, see Chapter 8) is an
arbitrary nonempty closed subset of the real numbers. Thus

R7 Z ) NJ NO )

i.e., the real numbers, the integers, the natural numbers, and the nonnegative
integers are examples of time scales, as are

[0,1]U[2,3], [0,1]UN, and the Cantor set,

while

QJ R \ Q7 C7 (07 1)7
i.e., the rational numbers, the irrational numbers, the complex numbers, and the
open interval between 0 and 1, are not time scales. Throughout this book we will
denote a time scale by the symbol T. We assume throughout that a time scale T
has the topology that it inherits from the real numbers with the standard topology.

The calculus of time scales was initiated by Stefan Hilger in his PhD thesis [159]
in order to create a theory that can unify discrete and continuous analysis. Indeed,
below we will introduce the delta derivative f2 for a function f defined on T, and
it turns out that

(i) fA = f'is the usual derivative if T = R and
(ii) f» = Af is the usual forward difference operator if T = Z.

In this section we introduce the basic notions connected to time scales and
differentiability of functions on them, and we offer the above two cases as examples.
However, the general theory is of course applicable to many more time scales T, and
we will give some examples of such time scales in Section 1.3 below and many more
examples throughout the rest of this book. Let us start by defining the forward
and backward jump operators.

Definition 1.1. Let T be a time scale. For t € T we define the forward jump
operator o : T — T by

o(t) :=inf{s € T: s> t},
while the backward jump operator p : T — T is defined by

p(t) :=sup{s e T: s <t}
In this definition we put inf() = supT (i.e., o(t) = t if T has a maximum t) and
supfd = inf T (i.e., p(t) = t if T has a minimum t), where () denotes the empty

set. If o(t) > t, we say that ¢ is right-scattered, while if p(t) < ¢t we say that ¢ is
left-scattered. Points that are right-scattered and left-scattered at the same time

1
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Table 1.1. Classification of Points

t right-scattered || o(t) > t

t right-dense || o(t) =t

t left-scattered || p(t) <t

t left-dense p(t) =t

Figure 1.1. Classifications of Points

t1 is left-dense and right-dense

t1
¢ o to is left-dense and right-scattered
ta
o ¢ t3 is left-scattered and right-dense
(2
o ¢ o t4 is left-scattered and right-scattered
ta

(t4 is isolated)

are called isolated. Also, if t < sup T and o(t) = t, then ¢ is called right-dense, and
if t > inf T and p(t) = ¢, then t is called left-dense. Points that are right-dense
and left-dense at the same time are called dense. Finally, the graininess function
p: T — [0,00) is defined by

u(t) :=o(t) —t.

See Table 1.1 for a classification and Figure 1.1 for a schematic classification of
points in T. Note that in the definition above both o(t) and p(t) are in T when
t € T. This is because of our assumption that T is a closed subset of R. We also
need below the set T* which is derived from the time scale T as follows: If T has a
left-scattered maximum m, then T® = T — {m}. Otherwise, T* = T. In summary,

T+ — {T\ (p(sup T),sup T] if supT < oo

T if supT = 0.
Finally, if f : T — R is a function, then we define the function f7 : T — R by

fe@) = f(o(¥)) forall teT,
ie, fo=foo.
Example 1.2. Let us briefly consider the two examples T =R and T = Z.

(i) If T = R, then we have for any ¢t € R
o(t) =inf{s € R: s>t} =inf(t,00) = ¢
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and similarly p(t) = t. Hence every point ¢ € R is dense The graininess
function p turns out to be

ut)=0 forall teT.
(if) If T = Z, then we have for any ¢t € Z
o(t)=inf{s€Z: s>t} =inf{t+1,t +2,t+3,...} =t+1

and similarly p(t) = t—1. Hence every point ¢ € Z is isolated. The graininess
function p in this case is

pt)=1 forall teT.

For the two cases discussed above, the graininess function is a constant function.
We will see below that the graininess function plays a central réle in the analysis on
time scales. For the general case, a lot of formulae will have some term containing
the factor p(t). This term is there in case T = Z since u(t) = 1. However, for the
case T = R this term disappears since p(t) = 0 in this case. In various cases this
fact is the reason for certain differences between the continuous and the discrete
case. One of the many examples of this that we will see later is the so-called scalar
Riccati equation (see formula (4.18))
2

z

p(t) +p(t)z

on a general time scale T. Note that if T = R, then we get the well-known Riccati
differential equation

22+ q(t) +

1
2 +qt)+ —=2=0
2 p(t)

and if T = Z, then we get the Riccati difference equation (see, e.g., [191, Chapter

6])

2

z
A Ht+—2 =0
z+q()+p(t)+z

Of course, for the case of a general time scale, the graininess function might very
well be a function of ¢t € T, as the reader can verify in the next exercise. For more
such examples we refer to Section 1.3.

Exercise 1.3. For each of the following time scales T, find o, p, and y, and classify
each point ¢t € T as left-dense, left-scattered, right-dense, or right-scattered:

i) T={2": neZ};
(i) T={L: neN}U{0}
(i) T={2: neNo };

(iv) T={y/n: neNo};
(v) T={¥n: neNp}.
Exercise 1.4. Give examples of time scales T and points ¢ € T such that the

following equations are not true. Also determine the conditions on ¢ under which
those equations are true:

() o(plt) =t
(i) plo() =t
Exercise 1.5. Is o : T — T one-to-one? Is it onto? If it is not onto, determine the

range o(T) of 0. How about p : T — T? This exercise was suggested by Roman
Hilscher.
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Exercise 1.6. If T consists of finitely many points, calculate »7, . u(t).

Throughout this book we make the blanket assumption that a and b are points
in T. Often we assume a < b. We then define the interval [a,b] in T by

[a,b] :={t€T: a<t<b}.
Open intervals and half-open intervals etc. are defined accordingly. Note that
[a,b]" = [a, b] if b is left-dense and [a, b]* = [a,b) = [a, p(b)] if b is left-scattered.

Sometimes the following induction principle is a useful tool.

Theorem 1.7 (Induction Principle). Let to € T and assume that
{S(t): t € [to,00)}

is a family of statements satisfying:

I. The statement S(to) is true.

II. If t € [tg,00) is right-scattered and S(t) is true, then S(o(t)) is also true.

III. If t € [to, 00) is right-dense and S(t) is true, then there is a neighborhood U of
t such that S(s) is true for all s € U N (¢, 0).

IV. If t € (to,00) is left-dense and S(s) is true for all s € [to,t), then S(t) is true.

Then S(t) is true for all t € [tg, 00).

Proof. Let
S* = {t € [to,00) : S(t) is not true}.

We want to show S* = ). To achieve a contradiction we assume S* # (. But since
S* is closed and nonempty, we have

inf §* =:¢t* € T.

We claim that S(t*) is true. If t* = tp, then S(¢*) is true from (i). If t* # to and
p(t*) = t*, then S(¢*) is true from (iv). Finally if p(t*) < t*, then S(¢*) is true
from (ii). Hence, in any case,

t* ¢ §*.

Thus, t* cannot be right-scattered, and ¢* # max T either. Hence ¢* is right-dense.
But now (iii) leads to a contradiction. O

Remark 1.8. A dual version of the induction principle also holds for a family of
statements S(t) for ¢ in an interval of the form (—oo,%o]. I.e., to show that S(t) is
true for all ¢t € (—o0,t9] we have to show that S(to) is true, that S(¢) is true at a
left-scattered ¢ implies S(p(t)) is true, that S(t) is true at a left-dense ¢ implies S(r)
is true for all r in a left neighborhood of ¢, and that S(r) is true for all r € (¢, o]
where ¢ is right-dense implies S(t) is true.

Exercise 1.9. Prove Remark 1.8.
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1.2. Differentiation

Now we consider a function f : T — R and define the so-called delta (or Hilger)
derivative of f at a point t € T*.

Definition 1.10. Assume f: T — R is a function and let ¢ € T*. Then we define
f2(t) to be the number (provided it exists) with the property that given any € > 0,
there is a neighborhood U of ¢ (i.e., U = (t —d,t+ ) N T for some § > 0) such that

1 e®) — 1] - FAOlo®) - )| <clo(t) —s] forall seU.
We call f2(t) the delta (or Hilger) derivative of f at t.

Moreover, we say that f is delta (or Hilger) differentiable (or in short: differen-
tiable) on T* provided f2(t) exists for all ¢ € T*. The function f2 : T — R is
then called the (delta) derivative of f on T*.

Exercise 1.11. Prove that the delta derivative is well defined.

Exercise 1.12. Sometimes it is convenient to have f2(t) also defined at a point
t € T\ T". At such a point we use the same definition as given in Definition 1.10.
Prove that an f: T — R has any a € R as its derivative at points t € T \ T*.

Example 1.13. (i) If f : T — R is defined by f(t) = a for all t € T, where
a € R is constant, then f2(t) = 0. This is clear because for any & > 0,
1f(o(t)) = f(s) = 0-[o(t) — 5] = [« —a| =0 < elo(t) — 5|
holds for all s € T.
(ii) If f : T — R is defined by f(t) =t for all t € T, then f2(t) = 1. This
follows since for any € > 0,
|f(o(t) = f(s) = 1-[o(t) = s]| = |o(t) —s — (o(t) — 5)| =0 <elo(t) — s
holds for all s € T.

Exercise 1.14. (i) Define f : T — R by f(t) = for all t € T. Find f2.
(ii) Define g by g(t) = v/t for all t € T with ¢ > 0. Find g*.

Exercise 1.15. Using Definition 1.10 show that if ¢ € T* (¢ # minT) satisfies
p(t) =t < o(t), then the jump operator o is not delta differentiable at t.

Some easy and useful relationships concerning the delta derivative are given
next.

Theorem 1.16. Assume f : T — R is a function and let t € T*. Then we have
the following:

(i) If f is differentiable at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t

with Fo(t) — 11
PO=""w

(i) If t is right-dense, then f is differentiable at t iff the limit
L F0 £

s—t t—s
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ecists as a finite number. In this case

fA(t) — lim f(t) - f(S) .

s—t t—s

(iv) If f is differentiable at t, then
Flo(t) = f() + u(O)F2(2)-
Proof. Part (i). Assume that f is differentiable at t. Let € € (0,1). Define
" = e[l +|fA()] +2u(®)] .
Then e* € (0,1). By Definition 1.10 there exists a neighborhood U of ¢ such that
[fe(®) = f(s) = [o(t) = sIf2 ()| < e*lo(t) —s| forall seU.
Therefore we have for all s e U N (t —e*, ¢t + &)
£ (&) — f(5)] {f(@(®) = f(s) = FAB)o(t) - 5]}

—{f(a(t)) = (&) = u@®) F2 D)} + (¢ = 8)F2 ()]
*la(t) — s| +e*u(t) + |t — 5| F2(2)]
e*[u(t) + It — sl + u(t) + |2 ()]

e [L+ [F2()] + 2u(t)]
e.

A CIAIA

It follows that f is continuous at t.

Part (ii). Assume f is continuous at ¢ and ¢ is right-scattered. By continuity

i FOW@) = 1) _ flo(®) = £8) _ fo(t) = £&)

sot o(t) —s o(t) -t u(t)
Hence, given € > 0, there is a neighborhood U of ¢ such that
flo() = f(s) _ flo(®) - f(t)‘ <.
oft)—s p(t) -
for all s € U. It follows that
flo(®) - F(®)

o) - - L2
for all s € U. Hence we get the desired result
Ay _ flo(®) — f(B)
FO=""w

Part (iii). Assume f is differentiable at ¢ and ¢ is right-dense. Let € > 0 be
given. Since f is differentiable at t, there is a neighborhood U of ¢ such that

(o) = f()] = FAB)[o(t) = 5| <elo(t) — s
for all s € U. Since o(t) =t we have that
(@) = F()] = FA @)t = s]| <elt — ]
for all s € U. It follows that
f(t) —f(S) _fA(t) <e

t—s

[o(t) — 5]

< elo(t) s
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for all s € U, s # t. Therefore we get the desired result

Pty TO = 10)

s—t t—s
The remaining part of the proof of part (iii) is Exercise 1.17 below.
Part (iv). If o(t) = t, then p(t) = 0 and we have that

flo(®) = f(t) = F() + u) f2 ().
On the other hand if o(t) > ¢, then by (ii)

fle®) = f(t)+u@)-
= f(t) + u) f2 (@),

and the proof of part (iv) is complete. O

Exercise 1.17. Prove the converse part of the statement in part (iii) of Theorem
1.16: Let t € T* be right-dense. If

i 10 = 1)

s—t t—s

exists as a finite number, then f is differentiable at ¢t and

30 i 1O =16)

s—t t—s
Example 1.18. Again we consider the two cases T =R and T = Z.
(i) If T = R, then Theorem 1.16 (iii) yields that f : R — R s delta differentiable
at t € Riff
t) —

exists,
s—t t—s

i.e, iff f is differentiable (in the ordinary sense) at ¢. In this case we then
have
30 = 1 TO =10

s—t t—s
by Theorem 1.16 (iii).
(if) If T = Z, then Theorem 1.16 (ii) yields that f : Z — R is delta differentiable

= f'(t)

at t € Z with
o(t)) — f(t t+1)— f(t
u(t) 1
where A is the usual forward difference operator defined by the last equation
above.

Exercise 1.19. For each of the following functions f : T — R, use Theorem 1.16
to find f2. Write your final answer in terms of ¢ € T:

G) f(t) = ()forteT—{lzneN}u{O};
(i) f(t) =t orte']I‘—N0 ={t=+vn: neN};
(iii) f(t) =1¢2 orte']I‘—{":neNo};

(iv) f(t)=1¢ orteT—N§ ={t=¥n: neNy}.
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Next, we would like to be able to find the derivatives of sums, products, and
quotients of differentiable functions. This is possible according to the following
theorem.

Theorem 1.20. Assume f,g: T — R are differentiable at t € T*. Then:
(i) The sum f+g: T — R is differentiable at t with
(f +9)2(@) = f2() + g (1)
(ii) For any constant o, af : T — R is differentiable at t with
(@))2(t) = af2(1).
(iii) The product fg: T — R is differentiable at t with
(f9)2 () = f2()g(t) + F(o()g™ () = f(t)g> (&) + 2 (D) g(o(?))-

(iv) If f(t)f(a(t)) #0, then % is differentiable at t with

(ﬁA R0
f F®f®)
) If g(t)g(o(t)) # 0, then L g is dzﬂerentzable att and

At —
(q = 20501050

g 9()g(o (1))

Proof. Assume that f and g are delta differentiable at ¢t € T*.
Part (i). Let € > 0. Then there exist neighborhoods U; and Uz of ¢t with
|F(a(8)) = £(5) = FA(B)(o(t) — 8)| < %IU(t) —s| forall selh
and
l9(a(t)) — g(s) — g2 () (o () — 8)| < gla(t) —s| forall s€Us.
Let U = U; NUy. Then we have for all s € U
I(f +9)(0(®)) = (f + 9)(s) = [f2(®) + g* ()](a(t
= |f(a(®) = f(s) = FAD)(o(t) — 8) + 9o (1) — g(s) — g () (o (¢) — 9)|
[f(e(®) = £(s) = F2 () (0 (t) = 9)| + |g(o (1)) — 9(s) — g™ () (o (2) — 5)]|
€ €
lo(t) — 8] + Sla(t) — 5

IN A

elo(t) — s|.
Therefore f + g is differentiable at ¢ and (f + g)® = f* + ¢° holds at .
Part (iii). Let ¢ € (0,1). Define e* = e[1 + |f(t)| + |g(a())| + [g2(t)|]!. Then

e* € (0,1) and hence there exist neighborhoods Uy, Us, and Us of ¢ such that
[f(o()) = f(s) = ) (0(t) = 5)| <e¥lo(t) —s| forall seln,
l9(a(8)) = 9(5) = g® () (0(t) = 5)| < e*|o(t) —s| forall seUs,

and (from Theorem 1.16 (i))

|f(t) = f(s)| <e* forall seUs.
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PutU=U;NUsNU;3 and let s € U. Then

|(f9)(@ (1)) = (£9)(s) = [f2()g(a () + F(D)g> )](o(t) — 9]
= |[f(e®) = f(s) = 2D (0(t) — 9)lg(a(?))
+Hg(o() = g(s) — g (2) )
+g(o(t) = g(s) — g™ (¢
+(a(t) = 5)g*(O[f(s) = FB)]]
"o (t) — sllg(o(®)] + "o (t) — 5] f(2)]
+e*e*|o(t) - s| +€*|o(t) — sllg” (t)]
e*lo(t) = slllglo @I + 1) +* + g D)]]
e*lo(t) = sl + £ ()] + lg(e(®)] + |9 @)]]

glo(t) —s|.

~— ~—

-9
-9

(VAN

Thus (fg)® = f2¢% + fg* holds at t. The other product rule in part (iii) of this
theorem follows from this last equation by interchanging the functions f and g.

For the quotient formula (v), we use (ii) and (iv) to calculate

(o - ()’
1
g

Il
I
~
~~
~
S—r
NSy

The reader is asked in Exercise 1.21 to prove (ii) and (iv). O

Exercise 1.21. Prove parts (ii) and (iv) of Theorem 1.20.

Exercise 1.22. Prove that if z, y, and z are delta differentiable at ¢, then
(zy2)® = 22yz + 27y> 2 + 27y 22

holds at ¢t. Write down the generalization of this formula for n functions.

Exercise 1.23. We have by Theorem 1.20 (iii)

(1.1) (P2 = D=3+ 17F5 = (F + F)F5

Give the generalization of this formula for the derivative of the (n + 1)st power of
f,n €N, ie., for (frH)A.

Theorem 1.24. Let o be constant and m € N.
(i) For f defined by f(t) = (t — a)™ we have

m—

,..

V(t— )™,

u:O
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(ii) For g defined by g(t) = (= a)m we have

- 1
Z _am V(t_ )V+1’

provided (t — a)(o(t) —a) #0.

Proof. We will prove the first formula by induction. If m = 1, then f(t) =1t — a,
and clearly f2(t) =1 holds by Example 1.13 (i), (ii), and Theorem 1.20 (i ) Now

we assume that
m—

Z t _ Ot)mflfu

holds for f(t) = (t — )™ and let F(t) = (t — @)™ = (t — a)f(t). We use the
product rule, Theorem 1.20 (iii), to obtain

FA() = flo@®)+(t—a)f2()
= (ot)—a)"+(t—q) Z (o(t) — )" (t—a)™ '

= +§: Y(t— )™

= > (et) - t—a)™".

v=0
Hence, by mathematical induction, part (i) holds.

Next, for g(t) = = ﬁ we apply Theorem 1.20 (iv) to obtain

(t*a)m

Ay - _ )

Z,T,n::)l(a(t —a)’(t — )1V
t

provided (t — a)(o(t) — a) # 0. O
Example 1.25. The derivative of 2 is
t+o(t).

The derivative of 1/t is
1

Cto(t)
Exercise 1.26. Use Theorem 1.24 to find the derivatives in Exercise 1.19.

We define higher order derivatives of functions on time scales in the usual way.
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Definition 1.27. For a function f : T — R we shall talk about the sec-
ond derivative f&2 provided f2 is differentiable on T+ = (T*)* with deriv-
ative fA8 = (fA)A ™ - R Similarly we define higher order derivatives
fA" . T%" — R. Finally, for t € T, we denote o%(t) = o(c(t)) and p?(t) = p(p(t)),
and o™ (t) and p™(t) for n € N are defined accordingly. For convenience we also put

@)=t p°(t)=t, f2°=f, and T =T.

Exercise 1.28. Find the second derivative of each of the functions given in Exercise
1.19.

Exercise 1.29. Find the second derivative of f on an arbitrary time scale:

(i) f(H)=1;
(ii) £(t) =1t
(iii) f(¢) = 2.

Exercise 1.30. For an arbitrary time scale, try to find a function f such that
A% =1

Example 1.31. In general, fg is not twice differentiable even if both f and g are
twice differentiable. We have

(f9)* = f29+ f79°.
If f and g are twice differentiable, and if f7 is differentiable, then
(f9)® = (fP9+f7¢9%)">
_ fAAg + fA"gA + faAgA + fangA
— fAAg + (an + fO'A)gA 4 fo’agAA,

where we wrote fA7 for fA7 etc.; we shall also use such notation in the sequel for
combinations of more than two “exponents” of the form A or o. The formula for
the nth derivative under certain conditions is given in the following result.

Theorem 1.32 (Leibniz Formula). Let S,(c") be the set consisting of all possible
strings of length n, containing exactly k times o and n — k times A. If

A emists for all A€ S,(c"),
then

n

(1.2) G2 =3 3 e

k=0 1 Acs(™
holds for all n € N.
Proof. We will show (1.2) by induction. First, if n = 1, then (1.2) is true by the

product rule from Theorem 1.20 (iii). (With the convention that Y,y f* = f,
(1.2) also holds for n = 0.) Next, we assume that (1.2) is true for n = m € N.
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Then, using Theorem 1.20 (i) and (iii), we obtain

- - A
m k
AmtL Al A
(f9) = XY Ay
k=0 | Aes{™
r 70 A
i k41 k
A A A A
= 2| X e X e
k=0 | [Aes(™ Aes™
m+41 . m .
Ac| A AA| A
= 2 MMlet | X e
k=1 laesi™ | k=0 | Aes{™
A AmF AA
= | > Mt + Y
Aesim Aesi™
m k
D3 DIFEEI S P
k=1 | Aesi™) Aes(™
™ k
Al ATH A Al A
= | X et X et X
Aes{mHY Aes{mth k=11 Ags{mtD
m—+1

= 2| X e

k=0 | Aes(m+D)

so that (1.2) holds for n = m+ 1. By the principle of mathematical induction, (1.2)
holds for all n € N,. O

Example 1.33. If T = R, then
A=k forall A€ S,(c"),
where f(") denotes the nth (usual) derivative of f, if it exists, and since
n
- (k)
where |M| denotes the cardinality of the set M, we have

Z fA — Z f(n) — f(nfk) Z 1= (Z)f(nk)

Aes( Aes(® Aes(™

i

and therefore

n n

FORED SIS FEEDY (Z)f("’“’g(’“)-

k=0 AES,(Cn) k=0

This is the usual Leibniz formula from calculus.
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Exercise 1.34. Use Theorem 1.32 to find A"(fg), i.e., (fg)*" if T = Z.

Exercise 1.35. Show that in general, even if both f2” and f"A exist,

(1.3) A=

does not hold. Is (1.3) true for T = R and T = Z? Give a sufficient condition that
guarantees that (1.3) holds.

Exercise 1.36. Suppose p is differentiable.

(i) If fA” and f°° both exist, give a formula that actually relates these two
functions.
(ii) Give a similar formula that relates the functions (if they exist) f772, f7A,
and fA77,
(iii) Give the corresponding formula that relates the functions (if they exist)
fa"A and an"_

1.3. Examples and Applications

In this section we will discuss some examples of time scales that are considered
throughout this book.

Example 1.37. Let h > 0 and
T=hZ={hk: keZ}.
Then we have for t € T
o(t)=inf{seT: s>t} =inf{t+nh: ne N} =t+h
and similarly p(t) = ¢t — h. Hence every point ¢ € T is isolated and
ut)=oc(t)—t=t+h—-t=h forall teT
so that p in this example is constant. For a function f: T — R we have

fle@®) = f#) _ fE+h) = f(#)

A = "0 = - forall teT.
Next,
angy _ fR®) - A0
O]
_ fAt+h) - FA
h
F(42h) = F(t4h) _ ft+h)=F (D)
— h h
h
_ f(t+2h)— f(t+h)— f(t+h)+ f(t)
- =
_ f@+2h)—2ft+h)+ f(t)
= - :

It would be too tedious to calculate f2"(¢) in a similar way, so we consider another
method. First, note that

o"(t)=t+nh and p"(t)=t—nh forall neN.
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Figure 1.2. Some Time Scales

R

Z ° [ [ ) L] L] L] L] L] °

hZ.....................

P

We now introduce an operator Ay by
1
Ap = E(U —I), I being the identity operator.

Recall that the binomial theorem says that

n
n
> <k> ao" * = (a+b)".
k=0
We use an operator version of this binomial theorem to obtain the nth power of Ay,

as
n

1 1 n
AT — —_ " = k(_1yn—k.
P (3)e D
Applying the obtained operator to the function f, we find

n 1 <= /n
120 = 3 (1) 0 Hrte k),
k=0
This time scale is of particular interest: It is in some cases possible to obtain
“continuous” results, i.e., results for T = R, via letting h tend to zero from above
in the corresponding “discrete” results, i.e., results for T = hZ.

We now give some examples of time scales with nonconstant graininess.

Example 1.38. Let a,b > 0 and consider the time scale

Pop = | Jk(a+b),k(a+Db) +a].
k=0
Then
o(t) = {t it te U lk(a+D),kla+b)+a)
t+b if teUpolk(a+bd)+a}
and
) = {0 it te U, [k(a+D),k(a+b)+a)

b if teUpo{k(a+b)+a}.

See Figure 1.3 for a graph of the forward jump operator.
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Figure 1.3. Forward jump operator for P,

o(t)
3a+2b L

2(l+2b 4 °

2a+b |

a+b 1 .

] ]
0 a a+b 2a+ b 2a+2b 3a+2b t

Example 1.39. Assume that the life span of a certain species is one unit of time.
Suppose that just before the species dies out, eggs are laid which are hatched one
unit of time later. Hence we are interested in the time scale
oo
Py = J[2k 2k +1].
k=0

For this time scale,

() = 0 for teUpol2k,2k+1)
U211 for teUR {2k +1).

For a specific example of this type see Christiansen and Fenchel [96, page Tff].
A couple of examples of this type, where the time scale consists of a sequence of
disjoint closed intervals, are the 17 year cicada magicicada septendecim which lives
as a larva for 17 years and as an adult for perhaps a week, and the common mayfly
stenonema canadense which lives as a larva for a year and as an adult for less than
a day.

Example 1.40 (S. Keller [190, Beispiel 2.1.13]). Consider a simple electric circuit
with resistance R, inductance L, and capacitance C (see Figure 1.4). Suppose we
discharge the capacitor periodically every time unit and assume that the discharging
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Figure 1.4. An Electric Circuit

Resistance
AMN— |
|
Capacitance
C
Current Inductance
I L

takes 6 > 0 (but small) time units. Then this simulation can be modeled using the
time scale

P55 = U [k, k+1—4].
k€eNp

If Q(¢) is the total charge on the capacitor at time ¢ and I(¢) is the current as
a function of time ¢, then we have

A bQ(t) if te U {k-4}
QA (t) = kEN
I otherwise

and

IA(t): 0 ) ! te‘kL€JN{k—5}

—2=Q(t) — £1(¢) otherwise,
where b is a constant satisfying —1 < bJ < 0.
Example 1.41. Let ¢ > 1 and
“:={¢": kezZ} and ¢%:=q¢*U{0}.

Here we consider the time scale T = ¢%. We have

o(t) =inf{g" : n € [m+ 1,00)} = ¢" = q¢™ = qt
if t = ¢™ € T and obviously o(0) = 0. So we obtain

a(t)=qt and p(t) = 2 forall teT

and consequently

pt)=0c(@)—t=(¢—1)t foral ¢teT.
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Hence 0 is a right-dense minimum and every other point in T is isolated. For a
function f: T — R we have

flo@®) = f(t) _ f(at) = F ()

A = @) = TR forall teT)\{0}
and £(0) - £(s) £(s) - £(0)
fA(O):li—rf(l) 0—s :;i—% S

provided this limit exists. Now we calculate the second derivative of f at ¢ # 0
(refer to Definition 1.27 for how f22 is defined) as

fAe®) - 21

AA —
0= T
_ A -2
(¢—1)t
HPO)—f(at) _ Fla)—F(8)

_ a(g—1)t (g—1)t

(g—1)t
_ f(@*t) — flgt) —qf(gt) +af()
a q(q — 1)t
_ f@) - (@+1)f(at) +af()

(g — 1)t '

Notice that u(t) =t above in the particular case ¢ = 2.

Exercise 1.42. Let ¢ > 1. For the time scale T = ¢Z, evaluate
i) o2
(i) p?.
Exercise 1.43. Find fAS for the time scale T = ¢Z. Find fA4 and finally find a

formula for f2" for any natural number n.

Example 1.44. Consider the time scale
T=N ={n?: neN}.
We have o(n?) = (n+1)? for n € Ny and
pn?) =om?) —n? =mn+1)%-n2=2n+1.

Hence
ot)=(Wt+1)?® and p)=1+2vt for teT.

Example 1.45. Let H,, be the so-called harmonic numbers

n
1

Hy =0 and H":;E for n € N.

Consider the time scale
T:{Hn: TLGN(]}.
We have o(H,) = Hyy1 for all n € Ny, p(Hy) = Hy—1 when n € N, and p(Hp) =
Hj. The graininess is given by
1

,U(Hn) = U(Hn) - H, = Hn+1 —H, = n+1
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Table 1.2. Examples of Time Scales

T | w() o(t) p(t)

R 0 t t

V/ 1 t4+1 t—1
hZ h t+h t—h
¢ || (¢— 1)t qt :

2N t 2t L

N | 2vVi+1| (VE+1) | (Vi-1)?

foralln € Ny. If f: T — R is a function, then

A _ f(Hpy1) — f(Hp)
f () = (Hy)

Example 1.46. We let {a,}nen, be a sequence of real numbers with a,, > 0 for

all n € N and put
n—1
tn = Z Q-
k=0

T = {t,:

= (n+1)Af(H,).

Consider the time scale
n € N}
if Y poy ap = 0o or

T = {t, :
if > po g ar = L converges. We have

n € N} U{L}
o(tn) =tnyr  and  p(t,) = an
for all n € N. For a function y : T — R we find

yA(tn) _ Y(tnt1) — y(tn) — Ay(tn)

foralln e N.

We remark that using the harmonic series above corresponds to Example 1.45,
while using the geometric series corresponds to Example 1.41.

Example 1.47 (The Cantor Set). Consider Ky = [0,1]. We obtain a subset K7 of
Ky by removing the open “middle third” of Ky, i.e., the open interval (1/3,2/3),
from Ky. K» is obtained by removing the two open middle thirds of K3, i.e., the
two open intervals (1/9,2/9) and (7/9,8/9) from K;. Proceeding in this manner,
we obtain a sequence {K, },en, of subsets of [0,1]. See Figure 1.5 for Ky, K1, Ko,
and K3. The Cantor set C' is now defined as

o= i,
n=0
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and hence is closed. Therefore T = C is a time scale. Each z € [0,1] can be
represented in its ternary expansion as

T = Z g—']:, where ay, € {0,1,2} for each k € N.
k=1

It is known that a number z is an element of C' if and only if it can be represented
by a ternary expansion, where the aj, are either 0 or 2 (see e.g., [142, page 38]).
Let L denote the set of all the left-hand end points of the open intervals removed,
ie.,

m

a 1

L:{Z3_ll:+3m+1 : m € N and a; € {0,2} foralllgkgm}.
k=1

Then L C T. The set of all right-hand end points of the open intervals removed is

given by

“ 2
R:{Z;—l’z-i—w: meNandakE{O,2}fora111§k§m},
k=1

and we also have R C T. It follows that

m
ay 1

Whenever t= Z 3_k —+ W
k=1

3m+1

Each point ¢ € T \ L has other points of T in any neighborhood of ¢, and therefore
satisfies o(t) = t. Altogether,

sy = AT Ee =N g e L
t if teT\L

and similarly

@%_t—ﬁ% if t=Yj ., %+ 5 €ER
A= if teT)\R.

Now we obtain the graininess function p of the Cantor set as

(t) = ST if t=Yj % +zar €L
0 if teT\L.

Hence L consists of the right-scattered elements of T, and R consists of the left-
scattered elements of T. Thus, T does not contain any isolated points.

We now discuss some results for the time scale T = Z.

Definition 1.48. Let ¢t € C (i.e., t is a complex number) and k € Z. The factorial
function t*) is defined as follows:
(i) If k € N, then
t®) =t —1)--- (t—k+1).
(if) If £ = 0, then
t© =1,
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Figure 1.5. The Cantor Set

. . Ko
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(iii) If —k € N, then
1

(k) —
G+1)E+2)---(t—k)

fort #-1,-2,--- k.
In general
L(t+1)

A0 e S
Ft—k+1)

(1.4)

for all t,k € C such that the right-hand side of (1.4) makes sense, where I' is the
gamma function. See [191] for some results concerning the gamma and factorial

functions.

Exercise 1.49. Show that the general definition (1.4) of the factorial function ¢(*)

gives parts (i), (ii), and (iii) in Definition 1.48 as special cases.

Exercise 1.50. Show that for any constant ¢
u(t) = cat Dt —t)T(t —t2)---T(t — tn)
Pt —s1)T(t—s2)---T(t — sm)

is a solution of the recurrence relation
(t=t)(t —t2) - (t = 1p)
(t—s1)({t—52) - (t— sm)

ut+1)=a u(t),

where a,t1,... ,tn, 81, ..
the difference equations

(i) Au= pHE5u, where t € N;
(il) Au= %u, where t € Ny.

Next we define a general binomial coefficient (3).

Definition 1.51. We define the binomial coefficient (g) by

o ol®
(5)

rg+1)

, Sm are real constants and n,m € N. Use this to solve
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for all a, 8 € C such that the right-hand side of this equation makes sense.

Exercise 1.52. Assume o,k € C and # is differentiation with respect to ¢ on the
time scale T = Z. Show that
@) [(t+a)®] =kt +a) D,
(i) (@) = (a—1)a’;
A
(i) (&) = (aLs)-

Exercise 1.53. Prove the following well-known formula concerning binomial coef-

ﬁc.

Exercise 1.54. Introduce some of the above concepts for the time scale T = hZ
and prove some of the above results for this time scale.

We conclude this section by giving some examples concerning the jump operator.

Example 1.55 (o is in general not continuous). Here we present an example of
a time scale T whose jump function ¢ : T — T is not continuous at a point ¢t € T
which is left-dense and right-scattered at the same time. This example is due to
Douglas Anderson. Let

1
T:{tn:HEN}UNo, tn:_E'
Then 1
O'(tn):tn_l,_l:—n—_i_l—)(]#l:(f(o), n — o0,

and hence lim;_,¢ o(s) # ¢(0) so o is not continuous at 0. According to Theorem
1.16 (i), o is not differentiable at 0 either, and this can also be shown directly in this
case using the definition of differentiability, Definition 1.10. However, note that o
is continuous at right-dense points and that lim,_,;- o(s) exists at left-dense points
teT.

Example 1.56 (o is in general not differentiable). Here we present an example of
a time scale T whose jump function ¢ : T — T is continuous but not differentiable
at a right-dense point ¢t € T. Let

on
1
T:{m:nef%}UﬂL—H,t":<§> .
Then
o(ty) =tn—1 > 0=0(0), n — oo,
= 0(0) so o is continuous at 0. But

9(0(0)) — o(s) a(s)

lim ———~———~* = lim —=
s—0 (T(O) — 8 s—0

and hence lim;_,0 o(s)

. S
= lim —
s—0 8§

— 1' 1 i

D= IV A
so that ¢ is not differentiable at 0 (regardless, in fact, whether 0 is left-dense or
left-scattered). Note that ¢ is twice differentiable at 0 (see Example 1.13) while
t-t =12 is not.
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1.4. Integration

In order to describe classes of functions that are “integrable”, we introduce the
following two concepts.

Definition 1.57. A function f : T — R is called regulated provided its right-sided
limits exist (finite) at all right-dense points in T and its left-sided limits exist (finite)
at all left-dense points in T.

Definition 1.58. A function f : T — R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist (finite) at left-
dense points in T. The set of rd-continuous functions f : T — R will be denoted in
this book by

Cra = Crd(T) = Crd(TaR)'
The set of functions f : T — R that are differentiable and whose derivative is
rd-continuous is denoted by

C%d = Cid(']r) = Cid(']ra R).
Exercise 1.59. Are the operators o, p, and u

(i) continuous;
(if) rd-continuous;
(iii) regulated?

Some results concerning rd-continuous and regulated functions are contained in
the following theorem.

Theorem 1.60. Assume f: T — R.

(i) If f is continuous, then f is rd-continuous.

(ii) If f is rd-continuous, then f is regulated.

(iii) The jump operator o is rd-continuous.

(iv) If f is regulated or rd-continuous, then so is f7.

(v) Assume f is continuous. If g : T — R is regulated or rd-continuous, then
f o g has that property too.

Exercise 1.61. Prove Theorem 1.60.

Definition 1.62. A continuous function f : T — R is called pre-differentiable with
(region of differentiation) D, provided D C T*, T* \ D is countable and contains
no right-scattered elements of T, and f is differentiable at each t € D.

Example 1.63. Let T :=P»; and let f : T — R be defined by
£) = {0 it e U3k, 3k + 1]
t—3k—1 it te[3k+1,3k+2], keN.
Then f is pre-differentiable with
D =T\ U2y {3k + 1}.

Exercise 1.64. For each of the following determine if f is regulated on T, if f is
rd-continuous on T, and if f is pre-differentiable. If f is pre-differentiable, find its
region of differentiability D.

(i) The function f is defined on a time scale T and every point ¢ € T is isolated.
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(if) Assume T = R and
0 if t=0
t) =
1) {% if teR\{0}.
(iii) Assume T=NoU{l—1/n: n € N} and

0 if teN
t otherwise.

ft) =

(iv) Assume T=R and f(t) =|t|, t € R
(v) Assume T =P, ; and
=0 if t=2k+1, ke N
o lt—2k if te[2k,2k+1), keN.
(vi) Assume T =P;; and
f) =k, te2k2k+1], kely.

Theorem 1.65. FEvery regulated function on a compact interval is bounded.

Proof. Assume f : [a,b] — R is unbounded, i.e., for each n € N there exists
t, € [a,b] with |f(t,)| > n. Since

{tn: n €N} CJa,b],
there exists a convergent subsequence {tn, }ren, i.€.,

(1.5) lim t,, =ty for some to € [a,b].

k—o0

Note that to € T since {tn, : k € N} C T and T is closed. By (1.5), to cannot
be isolated, and there exists either a subsequence that tends to ¢y from above or a
subsequence that tends to tg from below, and in any case the limit of f(t) as t — g
has to be finite according to regularity, a contradiction. O

Remark 1.66. If f is regulated or even if f € Ciq, maxq<<p f(t) and
min,<¢<p f(t) need not exist. See Exercise 1.64 (iii) for an example of a function
which is rd-continuous but does not attain its supremum on [0, 1].

The following mean value theorem holds for pre-differentiable functions and will
be used to prove the main existence theorems for pre-antiderivatives and antideriva-
tives later on in this section. Its proof is an application of the induction principle.

Theorem 1.67 (Mean Value Theorem). Let f and g be real-valued functions de-
fined on T, both pre-differentiable with D. Then

IFA(4)| < g®(t) forall teD
implies

[f(s) = F(r)| <g(s) —g(r) foral rseT,r<s.

Proof. Let r,s € T with r < s and denote [r,s) \ D = {t, : n € N}. Let £ > 0. We
now show by induction that

S |f®) - f)<g(t) —g(r) +e

t—r+z2_"]

tn <t
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holds for all ¢ € [r,s]. Note that once we have shown this, the claim of the mean
value theorem follows. We now check the four conditions given in Theorem 1.7.

I. The statement S(r) is trivially satisfied.
II. Let ¢ be right-scattered and assume that S(¢) holds. Then

If@®) = f(r)] = 1f(t) +u®)F2@) = £(r)]
< p@IA@O1+ £ = ()

p(t)g™ () + g(t) — g(r) +¢

IN

t—r+z2"]

tn, <t

= g(o(t) —g(r)+e|t—r+ Z 2"]

tn<o(t)

< g(o(®) —glr)+e o) —r+ Z 2"] )

tn<o(t)

Therefore S(o(t)) holds.

ITI. Suppose S(t) holds and t # s is right-dense, i.e., o(t) = t. We consider two
cases, namely t € D and t ¢ D. First of all, suppose t € D. Then f and g are
differentiable at ¢ and hence there exists a neighborhood U of ¢ with

FO = F@) = FAOE =TI < Sle—7 forall reU

and
() — g(1) — g2 () (t — 7)| < %|t —7| forall TeU.
Thus
f(t) — F(7)] < [IfA(t)| + g] lt—7| forall reU
and

9(7) — g(t) — AW — 1) > —g|t —7| forall TeU.
Hence we have for all 7 € U N (¢, 00)
() = f()| < [f(7) = F@O + £ () = f(r)]
< [IFr@1+ 5] =71+ 1£() - £

IN

t—r+z2_"]

ta <t

|92+ 5] 1t= 71+ 9(t) = () +

= POE -0+ =0 +9() —g() +e(t—1) + et2<t2_"
9(r) = g(t) + SJt = 7 + S(r — 1) + 9(t) — 9(r)

+e(t—r) +e Z 27"

ta <t

T—7r+ 22—"]

tn<T

IN

= g(r) —g(r) +e
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so that S(7) follows for all 7 € U N (¢, 00).

For the second case, suppose t ¢ D. Then t = t,, for some m € N. Since
f and g are pre-differentiable, they both are continuous and hence there exists a
neighborhood U of ¢ with

F() - fWI< 52 foral TEU
and .
lg(m) —g(®)] < 52_7” forall Te€U.
Therefore
9(1) —g(t) > —%2"“ forall TeU
and hence
[F(m) =)l < (1) = F@OI+ 1) = f(r)]
< %2_’” +9(t)—g(r)+e|t—r+ thZ‘"]
< 22_'” +g(1) + 32_’” —g(r)
e |T—1r+ Z 2_"]
ta<t
= 27"+ g(r)—g(r)+e|T—r+ Z 2_"]
tn<t
< g(n)—g(r)+efr—r+ )Y 27"
tn<T

so that again S(7) follows for all T € U N (¢, 00).
IV. Now let ¢ be left-dense and suppose S(7) is true for all 7 < ¢. Then

lim |f(r)=f(r)] < lim <g(r)—g(r)+e|7—7+ 22_"
Tt Tt~ oot
<  lim {g(T)—g(r)+5 T—r+22_"]}
Tt~ to<t
implies S(t) as both f and g are continuous at t.
An application of Theorem 1.7 finishes the proof. O

Corollary 1.68. Suppose f and g are pre-differentiable with D.
(i) If U is a compact interval with endpoints r,s € T, then

Iﬂﬁ—fWNS{ sup u%w@w—rL

teUu=nND

(ii) If fA(t) =0 for allt € D, then f is a constant function.
(iil) If fA(t) = g2 (t) for all t € D, then

gt)=f@t)+C forall teT,

where C is a constant.
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Proof. Suppose f is pre-differentiable with D and let r,s € T with r < s. Define

T€[r,s]*ND

g(t) := { sup |fA(T)|} (t—r) for teT.

Then

A= swp [P0/ forall teDAfr,s
TE[r,s]*ND

By Theorem 1.67,

g(t) —g(r) > |f(t) = f(r)| forall t€]r,s]
so that

T€[r,s]*ND

1F(s) = F(r)] < g(s) —g(r) = g(s) = { sup IfA(T)I} (s —7).
This completes the proof of part (i). Part (ii) follows immediately from (i), and
(iii) follows from (ii). O
Exercise 1.69. Prove Theorem 1.68 (ii) and (iii).

The main existence theorem for pre-antiderivatives now reads as follows. We
will prove this theorem in a more general form in Chapter 8.

Theorem 1.70 (Existence of Pre-Antiderivatives). Let f be regulated. Then there
ezists a function F which is pre-differentiable with region of differentiation D such
that

FA®{) = f(t) holds for all te D.

Proof. See the proof of Theorem 8.13. O

Definition 1.71. Assume f: T — R is a regulated function. Any function F' as in
Theorem 1.70 is called a pre-antiderivative of f. We define the indefinite integral
of a regulated function f by

/ F()AL = F(t) + C,

where C' is an arbitrary constant and F is a pre-antiderivative of f. We define the
Cauchy integral by

/8 f@)At=F(s) — F(r) forall r,seT.

A function F : T — R is called an antiderivative of f : T — R provided
FA(t) = f(t) holds for all ¢ & T*.

Example 1.72. If T = Z, evaluate the indefinite integral

/ atAt,
where a # 1 is a constant. Since

A
T

a—1 a—1 a—1
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we get that

t
/atAt: T 4o,

a—1
where C' is an arbitrary constant.

Exercise 1.73. Show that if T = Z, k # —1, and a € R, then

(i) [(t+a)® A= B o
() [(H)Aar=(1,)+C.

Theorem 1.74 (Existence of Antiderivatives). Every rd-continuous function has
an antiderivative. In particular if to € T, then F defined by

¢
F@t):= [ f(r)Ar for teT
to
is an antiderivative of f.

Proof. Suppose f is an rd-continuous function. By Theorem 1.60 (ii), f is regu-
lated. Let F' be a function guaranteed to exist by Theorem 1.70, together with D,
satisfying F'(tg) = xo and

FA()=f(t) forall teD.
This F is pre-differentiable with D. We have to show that F*(t) = f(t) holds for
all t € T* (this, of course, includes all points in T\ D). So let ¢t € T* \ D. Then ¢
is right-dense because T* \ D cannot contain any right-scattered points according

to Definition 1.62. Since f is rd-continuous, it is continuous at t. Let € > 0. Then
there exists a neighborhood U of ¢ with

[f(s)—f(¥)| <e foral seU.
Define
h(r):=F(r) — f(t)(r —ty) for Te€T.
Then h is pre-differentiable with D and we have
A (1) = FA(1) — f(t) = f(r) — f(t) forall 7€ D.
Hence
[RA(s)| = |f(s) — f(t)| <e forall seDNU.

Therefore

sup [h2(s)] < e.
seDNU

Thus, by Corollary 1.68, we have for r € U
|F(t) — F(r) — f(t)(t — )| |h(t) + f()(t —to) — [A(r) + f(£)(r — to)]

_F@)(t—1)
= [h(t) — h(r)|

< {sesggUmA(sn}u—m
< elt—r.

But this shows that F is differentiable at ¢t with F2(t) = f(t). O
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Table 1.3. The two most important Examples

Time scale T R Z
Backward jump operator p(t) t t—1
Forward jump operator o () t t+1
Graininess p(t) 0 1
Derivative f2(t) ') Af(t)
Integral [ f(t)At I? f@at ML f(¢) (if a < b)
Rd-continuous f continuous f any f

Theorem 1.75. If f € Cq and t € T", then
a(t)
/' F()AT = p(t) £ (2).
t

Proof. By Theorem 1.74, there exists an antiderivative F' of f, and

/t " rar

Fo(t)) - F(t)

= WOFA)
= ub)f (),

where the second equation holds because of Theorem 1.16 (iv).

Theorem 1.76. If f» > 0, then f is increasing.
Proof. Let f2 >0 on [a,b] and let s,t € T with a < s <t < b. Then
t
£O =16+ [ £20A7 > 1)
e
so that the conclusion follows.

Theorem 1.77. If a,b,c € T, a € R, and f,g € C.q, then

0 [IIF@) +g(t)]At = fbf )AL+ [7 g(t)At

(ii) fabaf(t At— ozf f

i) f, FB)At=— [ f

(v) [ F)At= [°f(t At+ f fH)A

V) [} flo(t)g (t)At = (£g)(b) — (fg)(a) — [2 fA b)) At;
Vi) [ FOg* AL = (F9)(b) - (fg)(a) — [7 fA(1)g(o(t)At;
(vii) [, f(t)At =0;
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(viii) if |f(t)] < g(t) on [a,b), then

/f HAt| < /()A

(ix) if f(t) >0 for all a <t < b, then [’ f(H)At > 0.

Proof. These results follow easily from Definition 1.71, Theorem 1.20, and Theorem
1.67. We only prove (i), (iv), and (v), and leave the rest of the proof as an exercise
(see Exercise 1.78). Since f and g are rd-continuous, they possess antiderivatives F
and G by Theorem 1.74. By Theorem 1.20 (i), F' + G is an antiderivative of f + g
so that

b
/ (f+9MAL = (F+G)b) - (F +G)a)
F(b) - F(a) + G(b) - G(a)

/f At+/ g(t) AL,

/ "fwar = F) - Fla
= F(c¢)—F(a)+ F(b) — F(c)

/acf(t)At + /be(t)At

Finally, since fg is an antiderivative of f7¢2 + f2g,

b
[ 1r7gt + oAt = (190 - (Fo)a),
so that (v) follows by using (i). O

Also

Note that the formulas in Theorem 1.77 (v) and (vi) are called integration by
parts formulas. Also note that all of the formulas given in Theorem 1.77 also hold
for the case that f and g are only regulated functions.

Exercise 1.78. Finish the proof of Theorem 1.77. Also prove each item of Theorem
1.77 assuming that the functions f and g are merely regulated rather than rd-
continuous.

Theorem 1.79. Let a,b € T and f € Cyq.

(i) If T =R, then
b b
/ f(H)AE = / f()dt

where the integral on the right is the usual Riemann integral from calculus.
(ii) If [a,b] consists of only isolated points, then

Ltelapy BB () if a<b

b s
/f(t)Atz 0 if a=b

= 2tep,a) #(E)F (E) if a>b.
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(iti) If T=hZ ={hk: k € Z}, where h > 0, then

b_q

b Z,::% f(kh)h if a<b
/ F)AL =40 if a=b
. ~YE fkl)hif a>b.
~h
(iv) If T = Z, then
b —a f(®) if a<b
/ f®)At=40 if a=b
’ - f) i a>b.
Proof. Part (i) follows from Example 1.18 (i) and the standard fundamental the-
orem of calculus. We now prove (ii). First note that [a,b] contains only finitely

many points since each point in [a,b] is isolated. Assume that a < b and let
[a, b] = {to,tl, ce. ,tn}, where

a=th <t <ty <---<t,=>0.

/abf(t)At = n /ttHlf(t)At

Then

t€fa,b)
where the third equation above follows from Theorem 1.75. If b < a, then the
result follows from what we just proved and Theorem 1.77 (iii). If a = b, then
fab f()At = 0 by Theorem 1.77 (vii). Parts (iii) and (iv) are special cases of (ii)
(see Exercise 1.80). O

Exercise 1.80. Prove that Theorem 1.79 (iii) and (iv) follow from Theorem 1.79
(ii).
Exercise 1.81. Let a € T, where T is an arbitrary time scale and evaluate f; 1As.

Also evaluate fot sAsfort € T, for T = R, for T = Z, for T = hZ, and for
T =1[0,1U][2,3].

We next define the improper integral faoo f(t)At as one would expect.

Definition 1.82. If a € T, sup T = o0, and f is rd-continuous on [a, o), then we
define the improper integral by

oo b
/ F)AL = b]i)m fH)At

provided this limit exists, and we say that the improper integral converges in this
case. If this limit does not exist, then we say that the improper integral diverges.
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We now give two exercises concerning improper integrals.

Exercise 1.83. Evaluate the integral
<1
[ iae
1t

Exercise 1.84. Assume a € T, a > 0 and sup T = oo. Evaluate

/a N St

1.5. Chain Rules

if T = ¢"°o, where ¢ > 1.

If f,g:R — R, then the chain rule from calculus is that if g is differentiable at
t and if f is differentiable at g(t), then

(fog)(t)=f(9(t) g'(t).
The next example shows that the chain rule as we know it in calculus does not hold
for all time scales.

Example 1.85. Assume f,g: Z — Z are defined by f(t) = t2, g(t) = 2t and our
time scale is T = Z. It is easy to see that

(fog)®(t) =8t+4#8t+2=f2(g(t) g™(t) forall teZ.

Hence the chain rule as we know it in calculus does not hold in this setting.
Exercise 1.86. Assume that T = Z and f(t) = g(t) = t2. Show that for all ¢ # 0
(fog)®(t) # £ (9() g™ (B).

Sometimes the following substitute of the “continuous” chain rule is useful.

Theorem 1.87 (Chain Rule). Assume g : R — R is continuous, g : T — R is
delta differentiable on T*, and f : R — R is continuously differentiable. Then there
exists ¢ in the real interval [t, o(t)] with

(1.6) (fo9)(t) = ' (9(c)) g* (1)
Proof. Fix t € T*. First we consider the case where ¢ is right-scattered. In this

£ (9o () - £ (9(®)
oA B g(o(t))) — f (g(t

If g(o(t)) = g(t), then we get (f o g)*(t) = 0 and ¢g*(t) = 0 and so (1.6) holds for
any c in the real interval [t,o(t)]. Hence we can assume g(o(t)) # g(t). Then

A Flae®) = F®) g(o@) - gt
(Fe9)™® = = @ =g (D)
= f(&g™ ()

by the mean value theorem, where £ is between g(t) and g (o(¢)). Since g : R —» R
is continuous, there is ¢ € [t,o(t)] such that g(c) = £, which gives us the desired
result.
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It remains to consider the case when t is right-dense. In this case

f(g(t) = £ (9(s))

(Fog)(t) = lim == —
_ oy L ey 9() —g(s)
= ll_)H% {f (&) - ﬁ}

by the mean value theorem in calculus, where &; is between g(s) and g(t). By the
continuity of g we get that lims_,; £ = g(¢) which gives us the desired result. O

Example 1.88. Given T = Z, f(t) = 2, g(t) = 2t, find directly the value ¢
guaranteed by Theorem 1.87 so that

(fo9)2B3) = f'(9(c)) 9 (3)
and show that c is in the interval guaranteed by Theorem 1.87. Using the calcula-
tions we made in Example 1.85 we get that this last equation becomes

28 = (4c¢)2.
Solving for ¢ we get that ¢ = I which is in the real interval [3,0(3)] = [3,4] as we

are guaranteed by Theorem 1.87.

Exercise 1.89. Assume that T = Z and f(t) = g(t) = t2. Find directly the ¢
guaranteed by Theorem 1.87 so that (f o 9)2(2) = f’ (g(c)) g*(2) and be sure to
note that c is in the interval guaranteed by Theorem 1.87.

Now we present a chain rule which calculates (f o g)®
g:T—>R and f:R—>R

This chain rule is due to Christian Potzsche, who derived it first in 1998 (see also
Stefan Keller’s PhD thesis [190] and [234]).

Theorem 1.90 (Chain Rule). Let f : R — R be continuously differentiable and
suppose g : T — R is delta differentiable. Then fog:T — R is delta differentiable
and the formula

o VA () — t o A A
(Fog) () { [ 760+ s ) dh}g (0

, where

holds.

Proof. First of all we apply the ordinary substitution rule from calculus to find

g(a(t))
Fa(e®) - fla(s) = /() f(r)dr
g9(s

= [9(o()) —9(8)]/0 f'(hg(o(t)) + (1 — h)g(s))dh.

Let ¢t € T and € > 0 be given. Since g is differentiable at ¢, there exists a
neighborhood U; of t such that

l9(a(t)) = 9(5) = g () (0 (1) — 8)| < e*[o(t) — 5,

where
. £

ST T2 7 hg(o(®) + (1 )g(t)[dh
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for all s € U;. Moreover, f' is continuous on R, and therefore it is uniformly
continuous on closed subsets of R, and (observe also that g is continuous as it is
differentiable, see Theorem 1.16 (i)) hence there exists a neighborhood U, of ¢ such
that

! ! €
|f'(hg(a(t)) + (1 = h)g(s)) — f'(hg(a(t)) + (1 — h)g(D))| < e T 0D

for all s € Uy. To see this, note also that

lhg(o () + (1= h)g(s) = (hg(o(?)) + (1 = h)g(t))| (1—="h)lg(s) = g(t)|

< g(s) —g(®)]

holds for all 0 < h < 1. We then define U = U; NU; and let s € U. For convenience
we put

a=hg(o(t)) + (1 —h)g(s) and S =hg(o(t)) + (1 —h)g(t).

Then we have

(f o 9)(o(®) = (f 0 9)(s) — (o(t) — ) At/f’ 8)dh

- ‘[g(a( /f Jdh /f dh‘

‘[g(a(t)) —g(s) = (o(t) — 8)g” (t)]/0 f'(e)dh

+o(0) =)0 [ (@) - f’(ﬂ))dh‘

1
< |g(o(®) - 9(s) - (o(t) - 5) At|/ () |dh
Ho®) = llg* @) [ 17/@ - P @an
< o) —s|/|f )Jdh + [o(£) — s]1g° |/|f 8)dh

VA

Elo(t) - s / FB)ldh + [ + 19> O]l (t) — s / 1F'(a) — £(B)|dh
= Zlo(®) =+ lo(®) —s|
= glo(t) —s|.

Therefore f o g is differentiable at ¢ and the derivative is as claimed above. O

Example 1.91. We defineg:Z - Rand f: R — R by

g(t)=t* and f(z) = exp(x).
Then
P =0+1)2-2=2t+1 and f'(z) = exp(z).
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Hence we have by Theorem 1.90
Gop*® = {[ 760+ me* )} o0
= (2t+ 1)/ exp(t* + h(2t + 1))dh
0

= @t +1)exp() /0 " exp(h(2t + 1))dh

= (2t +1)exp(t?)

57 [P (h2t + D)),

= (2t +1)exp(t?)

2t+1) -1

s+ - 1)
= exp(t?)(exp(2t +1) —1).

On the other hand, it is easy to check that we have indeed

Af(g(t) = flg

(t+1))—fg(®))
exp((t +1)*) — exp(t?)
exp(t? + 2t + 1) — exp(t?)
= exp(t?)(exp(2t + 1) —1).

+
+

In the remainder of this section we present some results related to results in the
paper by C. D. Ahlbrandt, M. Bohner, and J. Ridenhour [24]. Let T be a time
scale and v : T — R be a strictly increasing function such that T = »(T) is also
a time scale. By & we denote the jump function on T and by A we denote the
derivative on T. Then voo =G ov.

Exercise 1.92. Prove that v o 0 = ¢ o v under the hypotheses of the above para-
graph.

Theorem 1.93 (Chain Rule). Assume v : T — R is strictly increasing and T :=
v(T) is a time scale. Let w : T — R. If v2(t) and w™(v(t)) exist for t € T*, then

(wor)® = (w

- -1
Proof. Let 0 < € < 1 be given and define e* = ¢ [1 + |2 (1) + |wA(1/(t))|] . Note
that 0 < e* < 1. According to the assumptions, there exist neighborhoods N7 of ¢
and N, of v(t) such that

[v(a(t)) — v(s) — (o(t) — s)v2(t)| < e*|o(t) —s| forall seN;

and

w(E@ () - w(r) = @) -t @E)] < F@E) - 1|, r €N,
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Put N =Ny Nv—Y(N,) and let s € N. Then s € N and v(s) € N> and
lw(v(a(t))) — w(v(s)) — (o(t) — 8)[w w(t))v (t)_]|
= |w(v(o(t)) — w(v(s)) — (G(v(t) — v(s))w (v(t))
)

(v ()]
o(t) = s)r2 ()| + |o(t) — s[lv™ (1)

IN A
OYS)

|
m
*
—N
m
_*
Q

= ¢glo(t) —s|.

This proves the claim. O
Example 1.94. Let T =Ny and v(¢) = 4t + 1. Hence

T=v(T)={4n+1: neNy}=1{1,59,13,...}.
Moreover, let w : T — R be defined by w(t) = 2. Then

(wov)(t) =ww(t) =w(dt + 1) = (4t + 1)

and hence

(won)A(®) = [(t+1)+1] = (4 +1)
= (4t+5)%— (4t +1)?
= 16t +40t+25—16¢> — 8¢t — 1
= 32t+24.

Now we apply Theorem 1.93 to obtain the derivative of this composite function.
We first calculate v*(t) = 4 and then
X w(G(t)) —w(t) (t+4)2*—1> 8t+16

A
w=(t) 5(t) — t trd—t 1 +

and therefore

WD o)) = wPr (V1) = wPr (At +1) = 2(4t + 1) + 4 = 8¢ + 6.
Thus we obtain
[(w™ o v)r2](t) = (8t + 6)4 = 32t + 24 = (w o v)2 ().

Exercise 1.95. Let T = Ny, v(t) = 2, T = »(T), and w(t) = 2¢> + 3. Show

directly as in Example 1.94 that
(wov)® = (wA ov)vA.

Exercise 1.96. Find a time scale T and a strictly increasing function » : T — R
such that v(T) is not a time scale.
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As a consequence of the above Theorem 1.93 we can now write down a formula
for the derivative of the inverse function.

Theorem 1.97 (Derivative of the Inverse). Assume v : T — R is strictly increasing
and T := v(T) is a time scale. Then

1 ~
R = (1/_1)A ov

at points where v™ is different from zero.
Proof. Let w = v~ : T — T in the previous theorem. O

Another consequence of Theorem 1.93 is the substitution rule for integrals.

Theorem 1.98 (Substitution). Assume v : T — R is strictly increasing and
T := v(T) is a time scale. If f : T — R is an rd-continuous function and v is
differentiable with rd-continuous derivative, then if a,b € T

b v(6) i
/ FOA (AL = / (o r-1)(s)As.
a v(a)

Proof. Since fv” is an rd-continuous function, it possesses an antiderivative F by
Theorem 1.74, i.e., FA = fv®, and

b b
[ rormar = [riwar
F(b) — F(a)
= (Fovr H(w®) = (Fov 1) (v(a))

v(b) L
/ (Fov™12(s)As
v(a)

v(b) ~
- / o) v e DA
v(b) o
RIS CROLE
v(b) _ B
L U IO v s

v(b) 5
/ o, For s

where for the fifth equal sign we have used Theorem 1.93 and in the last step we
have used Theorem 1.97. O

T T

Example 1.99. In this example we use the method of substitution (Theorem 1.98)

to evaluate the integral
¢
/ ( T2 +1+T) 37 AT
0

fOI‘tET::N;E:{\/ﬁ:TLGN()}. We take
v(t) =t
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L L L
for t € Nj. Then v : N§ — R is strictly increasing and v (NOQ) =Ny is a time
scale. From Exercise 1.19 we get that

vA(t) = V2 +1+t.

Hence if f(t) := 3%", we get from Theorem 1.98 that

/Ot< T2+1+T)3T2AT = /Otf(T)llA(T)AT

f(V/3)As

0

t2
/ 3°As
0
11"
5]
2 0

= Lge .

Exercise 1.100. Evaluate the integral

t
/ 2127 — 1)AT
0
fort € T:= {3 :n € No} by applying Theorem 1.98 with v(t) = 2t.

Exercise 1.101. Evaluate the integral
¢
/ [(7'3 + 1)% +7(m% + 1)% + 7'2] 27’ AT
0

forteT:={In: neNg}.

1.6. Polynomials

An antiderivative of 0 is 1, an antiderivative of 1 is ¢, but it is not possible to find
a closed formula (for an arbitrary time scale) of an antiderivative of ¢. Certainly #?
is not the solution, as the derivative of #2 is

t+o(t)

which is, as we know, e.g., by Example 1.56, not even necessarily a differentiable
function (although it is the product of two differentiable functions). Similarly,
none of the “classical” polynomials are necessarily more than once differentiable,
see Theorem 1.24. So the question arises which function plays the role of e.g., 2,
in the time scales calculus. It could be either

¢ ¢
/ o(T)AT or / TAT.
0 0

>t 5) = /St(a(f)—s)m and  ha(t, s) = /:(T—S)AT,

In fact, if we define
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we find the following relation between g5 and ha:
t
wlts) = [ (o) -9ar

st t t
/ (o(1) + 1)AT —/ TAT —/ SAT

St s L El
/ (7'2)AAT + / TAT — 8(t — 5)

s t

/ TAT + 1% — 8% — 5(t — 5)
t

= /ts(T—t)AT
= hQ(S,t).

In this section we give a Taylor’s formula for functions on a general time scale.
Many of the results in this section can be found in R. P. Agarwal and M. Bohner
[9]. The generalized polynomials, that also occur in Taylor’s formula, are the
functions g, hy : T2 = R, k € Ny, defined recursively as follows: The functions go
and hg are

(1.7) go(t,8) = ho(t,s) =1 forall s,t€T,

and, given g and hy, for k € Ny, the functions gi+1 and hgy1 are

t
(1.8) Irr1(t, s) =/ gr(o(7),8)Ar  forall s,t€T
and

¢
(1.9 hi+1(t, 8) :/ hi(r,8)AT forall s,teT.

Note that the functions g and hj are all well defined according to Theorem 1.60
and Theorem 1.74. If we let h% (¢, s) denote for each fixed s the delta derivative of
hi(t, s) with respect to ¢, then

R (t,s) = hy_1(t,s) for keN, teTr.
Similarly
g (t,s) = gr_1(o(t),s) for keN, teT".
The above definitions obviously imply

g1(t,8) = hi(t,s) =t—s forall s,teT.

However, finding g, and hy for £ > 1 is not easy in general. But for a particular
given time scale it might be easy to find these functions. We will consider several
examples first before we present Taylor’s formula in general.

Example 1.102. For the cases T = R and T = Z it is easy to find the functions
gr, and hg:
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First, consider T = R. Then o(t) =t for t € R so that gy = hy for k € Ny. We
have

¢
p(ts) = ho(t,s) = / (r — 8)dr
B (7_ B 8)2 T=t
a 2 T=s
o (t= 5)?
o 2
We claim that for k € Ny
(t —s)*

(1.10) gr(t,s) = hy(t,s) = forall s,teR

as we will now show using the principle of mathematical induction: Obviously
(1.10) holds for £ = 0. Assume that (1.10) holds with k replaced by some m € Ny .
Then

Im+1 (ta 3) = hmi1 (ta 3)

= /t 7(7- _ S)de
R m!

(r— )™t |7"
(m+1)!

(t—s)m*!

(m+1)1°

T=8

i.e., (1.10) holds with k replaced by m + 1. We note that, for an n-times differen-
tiable function f : R — R, the following well-known Taylor’s formula holds: Let
a € R be arbitrary. Then, for all ¢ € R, the representations

n—1 — k t
10 = XG0 + gy [0 0@

(1.11) = ihk(t,a)f(k)(a)+ / hn1(t, o (7)) f ™ (1)dr
k=0 @
n—1 t

112) = 3 (-Dfgila, )P (a) + / (1) g1 (o (r), ) (r)dr
k=0 @

are valid, where f(¥) denotes as usual the kth derivative of f. Above we have used
the relationship

s — )k _ o)k
113 (D =0 )

which holds for all £ € Ny.
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Next, consider T = Z. Then o(t) =t + 1 for t € Z. We have for s,t € Z

/ ha ( TSAS—/( —s)DAs
[(T —28)(2)]

- 527

We claim that for k € Ny, we have

hQ (t, S)

k! k
Assume (1.14) holds for k replaced by m. Then

hmy1(t,s) = /h (r,8)AT

= / 7(7 _ S)(m) AT
s m!
(t — s)(mt1)

(m+1)!

which is (1.14) with &k replaced by m + 1. Hence by mathematical induction we
get that (1.14) holds for all k¥ € Ny. Similarly it is possible to show that

t—s+k—1)®

_ g\(k) _
(1.14) ha(t,s) = L= (t 8) forall ste.

?

(1.15) gr(t,s) = X forall s,teZ
holds for all k£ € Ny. As before we observe that the relationship
s—t+k—1)®

(1.16) (=) gr(s,t) = (—1)k( X )
B 1k(s—t+k—1)(s—t+k—2)---(s—t)
_ (t=s8)(t—s+2-Fk)(t—-s+1-k)
N k!
 (t—s)®
N k!

holds for all £ € Ng. The well-known discrete version of Taylor’s formula (see
e.g. [5]) reads as follows: Let f : Z — R be a function, and let @ € Z. Then, for
all t € Z with t > a + n, the representations

n=l )k t—n
f@ = Z%AW(OA%— 1 Y (t—T—1)"VA(r)

(n—=1)! &
k=0 T=x
Ly = nth(taAf +Zhn1ta A" f(7)
k=0
118) = S (-DralaHA*f(@) + 3 (~1) g 1(o(r), DA F(7)

k=0 T=
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hold, where A is the usual k-times iterated forward difference operator.

Exercise 1.103. Verify that formula (1.15) holds for all k € Ny.

Example 1.104. We consider the time scale
T=¢% forsome ¢>1

from Example 1.41. The claim is that
k—1

(1.19) h(tys) = || L
v=0

——— forall s,teT
= Z;:Oqu ’

holds for all ¥ € Ny. Obviously, for £ = 0 (observe that the empty product is
considered to be 1, as usual), the claim (1.19) holds. Now we assume (1.19) holds

with k replaced by some m € Ny. Then
A m  o(t)—q”s m t—q”s
{ m t— qVS } _ H,,:O Z:=0 qH - Hu:O Z;=0 qH

3 ST 10
 EE (0 (1), 5) = S (1 5)
1(t)
qgt — q™s A t—q™s
= —c=m o {hm(t8) +phn (¢, 8)} — =
S | TO)>
gt —t gt —q"s A
= —=m o hm(ts) + = bt s
W0 s o) T s i)
1 gt —q™s
= = hm(ts)+ = hm-1(t; s
Eu:() q“ ( ) Eu:() (]N 1( )
1 m—2 _ q"s
= w7  m(t;s) + (gt —q™s) -
Eu:O qN { Vl;[() E;},:O qﬂ

14

m—1 m—1
1 —q"s
= = { hm(t,8) +q q" = Vi
Lm0 0" { (;;) 1/1;[0 2 =0 4"

hon(t, 5) =
= =m ;3 1+¢ q"

u_
1+ g
= hm(tﬂs)%
Zp,:()qu
= hn(t,s)

n=0 q”/

hm(t, s)

so that (1.19) follows with k replaced by m + 1. Hence, by the principle of mathe-

matical induction, (1.19) holds for all £ € Np.
As a special case, we consider the choice ¢ = 2. This yields

hi(t,8) = sor1 5 forall s, teT.

E.g., we have
(t —s)(t —2s)

(t—s)(t —2s)(t — 4s)

ha(t,s) = ——F——, hs(t;s) = a1

?
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and

(t — s)(t — 2s)(t — 4s)(t — 8s)
315

Exercise 1.105. Find the functions g; for k¥ € Ny, where T is the time scale

considered in Example 1.104.

hy (t, 8) =

Exercise 1.106. Let T = ¢Z for some ¢ > 1. For n € N, evaluate

t
/ s" As.
0

Exercise 1.107. Find the functions hg(-,0), for £ =0,1,2,3 if T := [0,1] U [3,4].
Now we will present and prove Taylor’s formula for the case of a general time

scale T. First we need three preliminary results.

Lemma 1.108. Let n € N. Suppose f is n-times differentiable and py, 0 < k <
n — 1, are differentiable at some t € T with

(1.20) pkA_H(t) =pi(t) forall 0<k<n-—2.
Then we have at t
n—1 A
k n
lz(—l)ka pk] = (=1)" ' AP+ fr6
k=0
Proof. Using Theorem 1.20 (i), (ii), (iii), and (1.20) we find that
n—1 . A n—1 . A
lZ(—l)’“fA pk] =Y 0F [ ]

k=0 k=0

= > (-1* [f““p‘é + fAkpkA]

k=0
n—2 _ n—1 .
= Y DR P (DT A P+ Y (DR A R+ fp
k=0 k=1
n—2 n—2
R+l o _ n 4 k41
= D (DR pg+ (1A P = Y (DR pRy + ff
k=0 k=0
= ()" AP+ fop
holds at t. This proves the lemma. O

Lemma 1.109. The functions gi defined in (1.7) and (1.8) satisfy for all t € T
gn(pF(t),t) =0 forall neN andall 0<k<n-1.

Proof. We prove this result by induction. First, for £ = 0, we have
gn(p°(t), 1) = gn(t,t) = 0.
To complete the induction it suffices to show that
gn1(p*(), 1) = gu(p*(),t) =0  with 0<k<n

implies that
gn (P (1), 1) = 0.
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First, if p*(t) is left-dense, then p*t1(t) = p*(t) so that

gn(P"(1), 1) = ga(p*(2),t) = 0.

If p*(t) is not left-dense, then it is left-scattered, and o (p**1(t)) = p*(t) so that by
Theorem 1.16 (iv) and (1.8)

gn(P"TH@), 1) = gn(a(PFT (X)), 8) — (" ()95 (p" T (1), 1)

= ga(p"(®),) = n(P* () gn-1(0 (0" (1)), 1)
= ga(P"(®),1) = ("1 (1) gn-1(p" (1), 1)
=0
(observe n # 1). This proves our claim. O

Lemma 1.110. Letn € N, t € T, and suppose that f is (n—1)-times differentiable
at p"~1(t). Then we have

n—1

(1.21) STEDEFA M O)gk (0" 1), 1) = F(1),

k=0

where the functions gy are defined by (1.7) and (1.8).

Proof. First of all we have

(=122 (0 ()90 (0° (), 8) = f(t)go(t,t) = F(t)

so that (1.21) is true for n = 1. Suppose now that (1.21) holds with n replaced
by some m € N. Then we consider two cases. First, if p™~1(¢) is left-dense, then
p™(t) = p™1(t) and hence

S D (PO 0.0 = 3 (<D (7 0k (™ (0,
- +(—1)mfA’”(pm<t))gm<pm<tﬁ;
S )™ 00 + (™ T (o () g (1)1
%:t; (=)™ A (0 () g (0™ (1), 1)
= f(t),

where we used Lemma 1.109 to obtain the last equation. Hence (1.21) holds with
n replaced by m + 1. We have to draw the same conclusion for the case that p™(t)
is left-scattered. In this case we have o(p™(t)) = p™1(t) and hence by Theorem
1.16 (iv) and (1.8) for k € N

gk(P™ HB),t) = gr(o(p™ (1)), 1)
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Therefore we conclude (apply Lemma 1.109 for the third equation)

ST DR 0™ ()i (0™ (1), 1)
k=0
= (™) + Y (=DFFA (0™ (1) gk (0™ (1), 1)
k=1
S (00)
+ 3 DR (™) [96 (0™ (@), 8) — plp™ (1) gi—1 (0™ (), )]
k=1
= FEmO) + S DA M)k (0™ (0, 1)
k=1
+ 3 (DR (™)) FAT (0™ (8) k-1 (0™ (1), 1)
k=1
= Y D ) 0,0
k=0
+ 3 (DR ) 2 (™)) gk (0™ (2), 1)
k=0
m—1

3 =
1l
~ o

I
3 =
1M
- o

|

—

S—

B

)

s

>

=

S—

Q

)

hs)

3

~~

~

e

N

NS

~~~

hs)

3

-

—~~

~

S—r

~

e

I
3 =
1M
- O
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—

S—r

ol

~~

s
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=

S—r

—~~
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SN

SN—
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As before, (1.21) holds with n replaced by m+ 1, and an application of the principle
of mathematical induction finishes the proof. O

Theorem 1.111 (Taylor’s Formula). Let n € N. Suppose f is n-times differen-

tiable on T*". Leta € T*" ', t € T, and define the functions gy by (1.7) and (1.8),
i.€.,

go(r,s) =1 and grsa(r,s) =/ 9k (0(7), 8)AT for k € Ny.

Then we have

n—1 P ()

FO = S Dol @+ [ ) (o), 0f (AT

k=0 @
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Proof. By Lemma 1.108 we have
n—1 A
lZ(—l)’“gk(-,t)fAk] (1) = (=)' gn-1(a(r),0) f2" (7)
k=0

for all 7 € T*". Since a,p" () € T*" ', we may integrate the above equation
from a to p"~1(t) to obtain

PR ) P l(t) [n—1 ) A
/ GWHﬁdmeAwN:/ [ZewquA]va
(o3 (o3 k=0
= Y DEg( O, 0 2 (0 1) = Y (D gk, )52 (o)
k=0 k=0
= 1) - (=1 gelan ) 2 (@),
k=0
where we used formula (1.21) from Lemma 1.110. O

Our first application of Theorem 1.111 yields an alternative form of Taylor’s
formula in terms of the functions hj rather than gy.

Theorem 1.112. The functions gi and hy, defined in (1.7), (1.8), and (1.9) satisfy

Bo(t,s) = (=1)"gn(s,t) forall teT andall seT<.

Proof. Welet t € T, s € T*", and apply Theorem 1.111 with
a=s and f=h,(,s).
This yields f2 = h,,_1(-,s) and (apply (1.9) successively)
A = hy_k(,s) forall 0<k<n.

Therefore
fAk(s) = hp—r(s,s) forall 0<k<n-1,

f2"(s) = ho(s,s) = 1, and fA"+1(T) = (0. An application of Theorem 1.111 now
shows

hn(t,s) =

<
~~

t)
R P (t) 1
(—1)*gr(a,t) /2 (a)+/ (=1)"gn(o(r), 1) /2" () AT

a

I
NE

=~
Il
<

Il
NE

. P (1) 1
GN%@WA@+/ (=1)"gn(o(r), 72" (1) AT

Il
o

—1)"gn(s,8) 2" (5)
_1)ngn(37 t):

and this completes the proof. O

—_~ =
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Theorem 1.118 (Taylor’s Formula). Let n € N. Suppose f is n-times differen-
tiable on T*". Let o € ’H‘“n_l, t € T, and define the functions hy by (1.7) and
(1.9), i.e.,

ho(r,s) =1 and hggi(r,s) = / hi(r,8)AT for k € Ny.

Then we have
P ()

10 = S halta s> @+ [ ot (.
k=0 @

Proof. This is a direct consequence of Theorem 1.111 and Theorem 1.112. O

Remark 1.114. The reader may compare Example 1.102 (i.e., the cases T = R and
T = Z) to the above presented theory. Theorem 1.112 is reflected in formulas (1.10)
and (1.16). While the first version of Taylor’s formula, Theorem 1.111, corresponds
to formulas (1.12) and (1.18), the second version, Theorem 1.113, corresponds to
formulas (1.11) and (1.17).

1.7. Further Basic Results

We now state the intermediate value theorem for a continuous function on a
time scale.

Theorem 1.115 (Intermediate Value Theorem). Assume z : T — R is continuous,
a < b are points in T, and
z(a)z(b) < 0.
Then there exists ¢ € [a,b) such that either x(c) =0 or
z(c)z’ (c) < 0.
Exercise 1.116. Prove the above intermediate value theorem.

We will use the following result later. By f2(t,7) in the following theorem we
mean for each fixed 7 the delta derivative of f(¢,7) with respect to t.

Theorem 1.117. Leta € T*, b € T and assume f : T x T® — R is continuous at
(t,t), wheret € T® with t > a. Suppose that for all € > 0 there exists a neighborhood
U of t (independent of T) such that

[fe(),7) = f(s,7) = fA(tT)(0(t) —5)| <éelo(t) —s| forall seU,
where f2 denotes the derivative of f with respect to the first variable. Then

(i) g(t) := [, f(t,7)Ar  implies  g™(t) = [} fA(t,T)AT + f(o(t),1);
(i) h(t) = [} f(t,7)AT  implies  hA®E) = [ At T)AT — f(o(t),1).

Proof. We only prove (i) while the proof of (ii) is similar and is left to the reader
in Exercise 1.118. Let € > 0. By assumption there exists a neighborhood U; of ¢
such that
A g
— — 1) — < - -
£(o0).7) = f(a.7) = FA L7 () = ) < 5o is

Since f is continuous at (t,t), there exists a neighborhood Us of ¢ such that

lo(t) —s| forall seU.

|f(s,7) = f(t, )| < g whenever 5,7 € Us.
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Now define U = U; NUs and let s € U. Then

9(o(t)) —g(s) — [f(a(t);t) +/ A, T)AT} (o(t) = 9)

a(t) s
/ f(o(t),7) AT — / (5,7 AT — (o(t) — 8) f(o(t), 1)

—~(o(t) — 5) / A7) AT

o(t)
/ [£(o(t),7) — £(5,7) — FA () (0(t) — 5)] Ar

o(t)
/ 1F(o(t),7) - 1(5,7) — f2 (6, 7)(0(t) — 5)| AT

IN

a(t)
+ / 1£(s5,7) — £(t, )] Ar

o(t)
/S gAT

o(t) e
< / oo —slAr+

3 3
= Zlo®) —sl+Slott) - o

= 6|0'(t) - S|7
where we also have used Theorem 1.75 and Theorem 1.16 (iv). O
Exercise 1.118. Prove Theorem 1.117 (ii).

Finally, we present several versions of L’Hospital’s rule. We let

T =TU {supT} U {inf T}.
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If oo € T, we call oo left-dense, and —oc is called right-dense provided —oo € T.
For any left-dense tg € T and any € > 0, the set
L (to)={teT: 0<to—t<e}

is nonempty, and so is L.(c0) = {t € T: t> 1} if co € T. The sets R.(to) for

right-dense to € T and € > 0 are defined accordingly. For a function h : T — R we
define

liminf h(t) = lim inf h(t) for left-dense 1ty € T,
t—ty e—0% tEL(to)

and liminf, St h(t), limsup, o h(t), limsup, St h(t) are defined analogously.

Theorem 1.119 (L’Hospital’s Rule). Assume f and g are differentiable on T with

(1.22) lim f(t) = lim g(t) =0 for some left-dense t, € T.
t—ty t—ty
Suppose there exists € > 0 with
(1.23) g(t) >0, g™(t) <0 forall te L.(to).
Then we have
lim inf %) < lim inf @ < limsup @ <limsup U

t—ty gA(t) t—ty g(t) — t—ty g(t) = t—ty gA(t)'

Proof. Let § € (0,¢] and put o = inf i 7 120 T
roof. Le € ( 76] and put & = Ml ecrs(to) 95 (1)’ B SUPreLs(to) GR en

ag®(r) > fA(r) > Bg™(r) forall T € Ls(to)
by (1.23) and hence

/t ag®(r)AT > /t fA(r)Ar > /t Bg™(T)AT for all s,t € Ls(to), s <t
so that
ag(t) —ag(s) > f(t) — f(s) = Bg(t) — Bg(s) for all s,t € Ls(to), s <t.
Now, letting t — t5, we find from (1.22)
—ag(s) > —f(s) > —Bg(s) forall se€& Ls(to)
and hence by (1.23)

A A
i BRI (C N O DT o}
T€Ls(to) g (T) s€Ls(to) g(s) s€Ls(to) g(S) T€Ls(to) 9 (T)
Letting § — 07 yields our desired result. O

Theorem 1.120 (L’Héspital’s Rule). Assume f and g are differentiable on T with
(1.24) lim g(t) = oo for some left-dense o € T.

t—tg
Suppose there exists € > 0 with
(1.25) g(t) >0, g2(@t) >0 forall te L.(t).

Then lim, - ;igg =r € R implies lim, - % =r.
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Proof. First suppose r € R. Let ¢ > 0. Then there exists § € (0,¢] such that
‘f

A(r)
C

<c forall 7€ Ls(to)

and hence by (1.25)
—cgP (1) < fA(r) —rg® (1) < cg®(r) forall T € Ls(to).
We integrate as in the proof of Theorem 1.119 and use (1.25) to obtain

(r—c (1—@) SM—@S(T+C) (1—®) for all s,t € Ls(tg); s < t.

9(t) g(t)  9(t) 9(t)
Letting ¢t — ¢, and applying (1.24) yields
r—cgliminf@ SlimsupM <r+ec.

t—ty g(t) t—ty g(t) —
: F() s
Now we let ¢ — 0% to see that lim, —t5 90D exists and equals r.

Next, if r = oo (and similarly if r = —00), let ¢ > 0. Then there exists ¢ € (0,¢]

with fA( ) .
T
A0 e

for all 7 € Lg(to)
and hence by (1.25)

FAE) 2 gt forall 7 e Lyto).
We integrate again to get

f@)  fls) 1 (1 _ @> for all  s,t € Ls(to);s < t.

g(t)

g(t) g(t) ¢

Thus, letting ¢t — ¢, and applying (1.24), we find lim inft_%— % > %, and then,
letting ¢ — 01, we obtain lim,_, - % =0 =r. O

1.8. Notes and References

The calculus of measure chains originated in 1988, when Stefan Hilger completed
his PhD thesis [159] “Ein MaBlkettenkalkiil mit Anwendung auf Zentrumsmannig-
faltigkeiten” at Universitdt Wiirzburg, Germany, under the supervision of Bernd
Aulbach. The first publications on the subject of measure chains are Hilger [160]
and Aulbach and Hilger [49, 50].

The basic definitions of jump operators and delta differentiation are due to
Stefan Hilger. We have included some previously unpublished but easy examples
in the section on differentiation, e.g., the derivatives of t* for k& € Z in Theorem
1.24 and the Leibniz formula for the nth derivative of a product of two functions
in Theorem 1.32. This first section also contains the induction principle on time
scales. It is essentially contained in Dieudonné [110]. For the proofs of some of
the main existence results, this induction principle is utilized, while the remaining
results presented in this book can be derived without using this induction principle.
The induction principle requires distinction of several cases, depending on whether
the point under consideration is left-dense, left-scattered, right-dense, or right-
scattered. However, it is one of the key features of the time scales calculus to unify
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proofs for the continuous and the discrete cases, and hence it should, wherever
possible, be avoided to start discussing those several cases independently. For that
purpose it is helpful to have formulas available that are valid at each element of
the time scale, as e.g. in Theorem 1.16 (iv) or the product and quotient rules in
Theorem 1.20.

Section 1.3 contains many examples that are considered throughout this book,.
Concerning the two main examples of the time scales calculus, we refer to the
classical books [103, 152, 237] for differential equations and [5, 125, 191, 200,
216] for difference equations. Other examples discussed in this section contain the
integer multiples of a number h > 0, denoted by hZ; the union of closed intervals,
denoted by P; the integer powers of a number ¢ > 1, denoted by ¢%; the integer
squares, denoted by Z2; the harmonic numbers, denoted by H,; and the Cantor
set. Many of these examples are considered in this book for the first time or are
contained in [90]. The example on the electric circuit is taken from Stefan Keller’s
PhD thesis [190], 1999, at Universitit Augsburg, Germany, under the supervision
of Bernd Aulbach.

In the section on integration we define the two crucial notions of rd-continuity
and regularity. These are classes of functions that possess an antiderivative and a
pre-antiderivative, respectively. We present the corresponding existence theorems;
however, delay most of their proofs to the last chapter in a more general setting.
A rather weak form of an integral, the Cauchy integral, is defined in terms of
antiderivatives. It would be of interest to derive an integral for a more general
class of functions than the ones presented here, and this might be one direction of
future research. Theorem 1.65 has been discussed with Roman Hilscher and Ronald
Mathsen.

Section 1.5 contains several versions of the chain rule, which, in the time scales
setting, does not appear in its usual form. Theorem 1.90 is due to Christian
Potzsche [234], and it also appears in Stefan Keller’s PhD thesis [190]. The chain
rule given in Theorem 1.93 originated in the study of so-called alpha derivatives.
These alpha derivatives are introduced in Calvin Ahlbrandt, Martin Bohner, and
Jerry Ridenhour [24], and some related results are presented in the last chapter.
This topic on alpha derivatives could become a future area of research.

The time scales versions of L’Hospital’s rules given in the last section are taken
from Ravi Agarwal and Martin Bohner [9]. Most of the results presented in the
section on polynomials are contained in [9] as well. The functions gj and hy are
the time scales “substitutes” for the usual polynomials. There are two of them, and
that is why there are also two versions of Taylor’s theorem, one using the functions
gr and the other one using the functions hj, as coefficients. The functions g; and
hy, could also be used when expressing functions defined on time scales in terms of
“power” series, but this question is not addressed in this book. It also remains an
open area of future research, and one could investigate how solutions of dynamic
equations (see the next chapter) may be expressible in terms of such “power” series.
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