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In this paper, we explore the solution properties of ut’ ) + p(Hu¥(c(t)) = 0 on a time scale T with only isolated
points, where p(¢) is defined on T and vy is a quotient of odd positive integers. Oscillation, nonoscillation, and
solution comparisons, all depending on the sign of p, are included.
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INTRODUCTION AND PRELIMINARIES

In this paper, we explore the solution properties of

u® (8) + p(tyu(o(t) = 0 )

on a time scale T which contains only isolated points and is unbounded above, with the
eventual goal of showing that if ff: o(t)p(H)At = oo then Eq. (1) is oscillatory. The function
p(t) is defined on T and yis a quotient of odd positive integers. Some of the proof techniques
in this paper are similar to those in a relatively recent book by Agarwal [1] on difference
equations. An excellent resource for calculus on time scales is the Bohner and Peterson
book [2]. :

By a solution u(¢) of the given dynamic equation we shall mean a nontrivial solution which
exists on [a, o) for some a € T. We now define oscillation and nonoscillation in this setting.

DerNITION 1 A solution u(t) is called oscillatory if for any t| € [a, ®), there exists a
ty € [t1, ) such that u(t)u(o(tz)) = 0.

The given dynamic equation itself is called oscillatory if all its solutions are oscillatory. If the
solution u(t ) is not oscillatory, then it is said to be nonoscillatory. Equivalently the following
definition can be made. '
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DEFINITION 2 The solution u(t ) is nonoscillatory if it is eventually positive or negative, i.e. P
there exists a t; € [a, ) such that u(t)u(o()) > 0 for all t € [t1, ).
The given dynamic equation is called nonoscillatory if all of its solutions are nonoscillatory.

Example 1 A given dynamic equation can have both oscillatory and nonoscillatory
solutions. Take

) fg-uﬁ(t) +§u(t) =0

where ¢t € T = Z. Solutions to this difference equation are easily found (see Ref. [3]). Two .
solutions are u;(f) = (—1)" and uy(f) = (1/3). Clearly uy(t) is oscillatory and uy(t) is
nonoscillatory.

The sign properties of the exponential function -on time scales are explored in Ref. [4].

Example 2 Let T be a time scale such that u(s) = 1 for all + € T. The dynamic equation

. I VI S
u (t)+3u (t)-|—3u(t)—0

is regressive (see Ref. [2]). Then for zp € T, ey3(t,fo) and e_4(z,%,) are two solutions of the
above dynamic equation. However

2
e1(t, to)ey(o(t), to) = <1 +%u(t)> (e;(t, to)) >0
3 3 3
and
e-1(t, to)e-1(o(0), 1) = (1 — plE)(e-1(t,t)* = 0.

Thus ey/3(t,20) and e_(2,%p) are nonoscillatory and oscillatory solutions of above dynamic
equation, respectively.

A VARIETY OF PROPERTIES OF SOLUTIONS

The following are some basic properties of solutions of Eq. (1).

LemMma 1 If u(t) is a nontrivial solution of Eq. (1) with

wa@u(o(@) = 0
for some c; € T, then either
wa) # 0
or
u(o(a) # 0

Proof Lett = p(a)for a € T and suppose u(a) = 0. We desire to show that u(o(a) #-0. By
Eq. (1) we have ' ’

u¥ (p(a)) = 0,
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or expanding

uA(@) — u(p(@)) _

0
wpla) .

which implies that

wo(@) — wa) _ wa) — ulp(@) _ 0
p@up@)  pipa) '

However if both u(a) = 0 and u(o(a) = 0, it must be the case that u(p(a) = 0. This process
can be continued for t = p*(a), etc. implying that the solution u(t) is actually trivial. But this
contradicts the assumption that our solution is nontrivial. Similarly, if we assume u(o(a) =
0, then it must be the case that u(a) # 0. Thus either u(a) # 0 or u(a(a) # 0. 0

Remark 1 If in addition, a € T, u(a) = 0, then
plp(@yu(o(a) = — u@u(p(a)).
Thus an oscillatory solution of Eq. (1) must change sign infinitely many times. -

Lemma 2 Assume p(t) =0 for all t €T, and for every a €T, p(f) < 0 for some t €
[o(a), ). If u(t) is a solution of Eq. (1) with

u(p(@) = u(a) @)

and .
ua) =0 3)
for some a € T, then u(t) and u A( t) are nondecreasing and nonnegative for all t € [a, ).

Proof We will show the desired result by mathematical induction on t. Let t = p(a) for
a € T in Eq. (1). Then by our assumption on p, Egs. (2) and (3)

u® (p(@) = ~p(p(@)u"(@) = 0 @
and
8y = M@~ ) _
VD =
It follows from Eq. (4) that
qu(p(a)) = M@ >

m(p(a))

Therefore u(a) = _uA(p(a)) = 0. Suppose the desired result is true for t = 0™ ' (a) for some
nEN,n>1,ie

u(o™(@) = ut (0" (@) = 0 )
and '

w(a™(@) = u(o™ @) = 0. (6)
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We wish to show that the desired result is true for t = o(0" (@) = o™(a) for somen € N,
n > 1. By Eq. (5),

wo" (@) — u(a"(@))
(™)) '

0 < ul(c"(a) =

Because of this and by Eq. (6),

u(o" (@) = u(c™(@) = 0.

- Therefore
u? (o"(@)) = —p(o™(@m (0" (@) = 0.
Using
2 Ap ntl Y. Yo |
B PN ) b Gl O N
wo™(@)
and Eq. (5),
ui(o" () = ud(c™a) = 0.

Hence by induction the result holds. O

Remark 2 Similarly, if p(¢) is as in Lemma 2, u(p(a)) = u(a), and u(a) = 0 for some
a €T, then u(t) and u A(t) are nonincreasing and nonpositive for all ¢ € [a, o).
The pext lemma follows immediately from Lemma 2.

Lemma 3 Ifp(t) is as in Lemma 2, then all nontrivial solutions of Eq. (1) are nonoscillatory
and eventually monotonic.

LevMa 4 Assume that p(t) =0 for all t €T, and for every a € T, p(t) > 0 for some
t € [o(a), ). If u(t) is a nonoscillatory solution of Eq. (1) such that

u(t) >0
for all t € [a, ), then ,
uo®) > ut) Q)
and
0 < uh(o®) = u'® | ®)

for all t € [a, ).

Proof If u(t) is a nonoscillatory solution of Eq. (1), then since u(t) > 0 for t € [a, o©) we
have uw(du(a(t)) > 0, which implies that u(a(t)) > 0 on [a,®) as well. Thus

u? () = —pOu"(o(t) =0
on [a, ). Using

uA(o) — ul()

A
W= ()

)
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we have

u(a() — uh®) _ 0
u(t) B

¥

and so for t € [a, )
u(a(t) < ). ©)

It remains to show that Eq. (7) holds which will imply that 0 < uA(0(r)). Assume not, then we
have.u(a(b)) < u(b) for some b € [o(a), o). By Eq. (9) we have

0= u?®) = u(o) = - = u(d"®B) = ---. (10)
However there exists a sequence {t,},en € T such that t, — o and p(t,) < 0. Thus

w¥ (t) = —p(t)u"(0(tn) < O.

But
a4 A4
uAZ(tn) — u (U(tn)) u (tn) < O,
w(tn)
so infinitely many of the inequalities in Eq. (10) must be strict, contradicting the fact that
u(t) > 0 for all t € [a, o), a

Remark 3 If instead u(t) is a nonoscillatory solution of Eq. (1) such that u(¥) < 0 for all
t € [a, ), then

u(o(®)) < u(®)
and
0> ut(a(0)) = u™®)
for all ¢ € [a, 00).

Remark 4 Fora,t € T, t > a we can write ¢t = 0"*(a) for some n € N. Thus we can write

n—1
t= ola) = 0"(@) — ol@) = ) u(o’(@).
=1
If instead t < a we can write t = p"(q) for some n € N, so

n

o(a) = t=0(a) ~ p"(@) = ) _ p(p'(@)).

i=0

THEOREM 1 Assume p(t) =0 for all t ET, and for every a €T, p(t) <0 for some
t € [o(a), ) and for some t € (—oo0, p(a)]. Let u(t) and v(t) be solutions of Eq. (1)
satisfying

w(b) = v(b) 1D
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and
(o) > o) 12
for some b € T. Then for t € [o(b), ),
) = o) = (o) ~ oot a3
and for t € (—o0,b]
) = o) = Z 2t ub) = (b a9
In addition
u(t) > o(t)
for all t € [o(b), ®),
u(t) < o)

for all t € (—o0, p(b)], and u(t) — v(t) is nondecreasing for all t € T,

Proof Fixr€ T, r > b, and let w(a™(r)) = u(c"(b)) — v(a™(b)) for n € Ng. From Egs.
(11) and (12) it is clear that w(r) = u(b) — v(b) = 0 and w(o(r) = u(a(b)) — v(a(b)) > 0.
By induction we shall show that

Sy w(a (b))
S E wai(b))
where n € N, n = 2. From Eq. (1) we have
u? (b) = —pBYu?(o(B)) = —pb)o"(o(b)) = v* (b)
it follows that for n =2, t = a*(b),
w(a(n) = u(a*(b)) — v(oX(b)) -
= u(a(b)) + ploB)u(o(b)) — v(a(h)) — o b)) (a(b))
= w(a(r)) + wo®)[u (a(B)) — v (a(B))]

w(a™(r)) = w(a" 1(r)) >0 15)

= w(o(r) + (o) uA®) + ub? ) — vA®) — ub)w? B)]

> w(o(r) + p(o(b)) [%—@] = w(o(r) +w(o(r)) M%;»
B) + u(otb
= OB oty > 0.

Hence Eq. (15) is true for n = 2. Now suppose that Eq. (15) is true for some n = 2. We wish
to show Eq. (15) holds for n + 1. As before we have that

1 (@) = v ("))
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Hence

W™ (1) = u(o™(B)) — v(o™ (B))
= U(o"B) + W EIAGB) = o (B) — wlo" B0 B)
= w(o"(") + p(o”"ENIu(a"(B)) — vA(a"(B))]
= w(a™ (") + "GN (™ B) + po™ G (0" L (b))

— oX0" 7 (B)) — wo BT (0" B))]

o s [W(E () = W@ L ()
= w(o" () + wo (b))!: w(a™=1(b)) J
) n n n—2 i
= W(o™() + W™ () wa®) e (B) Yo Mo (b))w(c,,(r))

W™ 1E)  ue ) YT (o))

wa"®) o) g ma'®))
=1 _ .
T o) T e Io) S iy |

— Z:';O /"’(O-l(b)) w(a’"(r)) > 0.

S woi(B))

Thus Eq. (15) holds for n + 1 as well. From Eqs. (12) and (15), it is clear that u(f) > o(t) for
all t € [o(b), ). Further we have

S wot(b)
SE waib))

o T M) Yy OB aa
SIS we' (1) Y5 w(ai(B))

w(o™ () = w(a"™ ()

o s
i=0 .
"b) — b

= TS W)

which is the same as Eq. (13) for t = o™(b).
For the last part of the theorem, we let w(p™(r)) = u(p"(b)) — v(p™(b)) for n € Ny. By Eq.
(1) we have

u (o) = —ppB)U () =< —p(pb))w¥(B) = v2 (o(b)).
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In addition w(r) = uw(b) — v(b) = 0 and w(o(r)) = u(a(b)) — v(a(b)) > 0. For t = p(r) we

have
w(p(r)) = u(p(b)) — v(p(b)) = u(d) — lp(®B)u"(p())
— v(b) + p(p(B))v (p(b))
= w(r) — p(p®N[wA®) — plp®)u® (pb))]
+ upBNILA®) — plp®d)o (p(b))]
= w(r) — pp®)u"(B) — v (B)]
+ PN p®NI? (p(®)) — v (pB))]

= w(r) — wp®d)uAb) — v4(®)]

= wi) ~ EE P uiotr) + )
IO RS WG B
ZCORTT, A
so w(p(r)) < 0 as well. We shall show that
W) <%§:_oﬁ—i((%w<p"“‘<r» <0 (16)

where n = 2. Using the same relationships as previous in the proof we have

Wp(r) = u(p(B)) — v(p*(B)) = wip(r)) — wpXENIHA(p(B)) — vA(p(B))]

WePB) . kB
PO MNO)

_ Hp2(®)) + plp®) #p*(b)
w(p(b) w(p(b))

p(p*(®)) + pp(b)) + (b)
w(p(b)) + u(b)

= w(p(r)) ~ w(p(r))

w(p(r)) — w(r)

w(p(r)) <0

so Eq. (16) is true for n = 2. Suppose Eq. (16) is true for n = 2, then we wish to show it is
true for n + 1. As before

W 1 ®) = o (" B)).
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Thus
w(p"™ () = u(p™ () — v(p™ (b))
= u(p"(B) — plp™ 1 ®NU (™ (B)) — v(p™(B)) + p(p™ (B A" (B))
= wl(p"(") = u(e" OV (" (B)) — 24" BN] + ™ BYu(e™ ()
X [ (p"1(B)) — 0¥ (o™ ))]

= w(p"(M) — plp" L BN A(p™(B)) — vA(p"(B)]

n+1 n+1
= (o) — L OD L ny  BOTED

wo"(®) (o))
") + pp™I®)) | HEMONT IS woih))
n+1 i
_ Zi:() wp'(B)) Ww(p"(r)) < 0,

o k' (®))
and Eq. (16) holds for n+ 1. As before we can use Egq. (16) to obtain
o(b)) ~ p"(b)

w(p™(r)) < w(r
@00 < T2 )
forn € N, which is equivalent to Eq. (14). In addition u(z) — (t) is nondecreasing on T and
u(®) < o(t) for all t € (—o0, p(b)]. : ]

Remark 5 In the case T = Z, Eq. (13) reduces to
u@®) —v(t) = (@ —b)ubd+1) — b + 1),
for t € [b + 1, ). In addition for ¢ € (—oo, b], Eq. (14) reduces to
u(t) — o(t) < (b+ 1 — )(ubd) — v(b))
which is as expected from Ref. [1].

Remark 6 In Lemma 2 we assumed that u(a) = u(p(a)), u(a) = O,‘and concluded that u(z)
was nondecreasing for all ¢ € [a, ), If we assume that u(a) > u(p(a)) = 0, then u(z) is
strictly increasing on [p(a), o) and u(f) — o as t — oo,

Proof By assumption u?(p(a)) > 0. Using Lemma 2 u*(t) is nondecreasing, but this
implies that u@) > 0 for t € [p(a), ). Thus u(t) is strictly increasing on [p(a ), ).
Let z(t) be a solution of Eq. (1) defined by

«a) = 2(p(@)) = u(p(a)).
By Lemma 2, z(t) is nonnegative on [a, ). Now apply Theorem (1) with b = p(a). Since
u(b) = z(b) and u(o(b)) > z(a(b)), we have from Theorem (1) that

=) — = PD o _t—p@
u(H) = () = 2() = 7 (@) — oa) ooty 4@ ~ up(@)

where w(a) — u(p(a)) > 0. Thus u(f) — © as t— 00, . . O
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The following Corollary is a direct result of Theorem 1.

CoROLLARY 1 If p(t) is as in Lemma 2 and u(t), v(t) are solutions of Eq. (1) satisfying
u(a) = v(a) and u(b) = v(b) for some a < b, a,b € T, then u(t) = v(t) forallt € T.

Lemva 5 Ifp(t) is as in Lemma 2, then for any o(a) > b, a,b € T, there exists a unique
solution of Eq. (1) such that u(b) = uy and u(o(a)) = 0, where uy is any positive constant.

Proof Letz(t) be a solution of Eq. (1) such that z(o(a)) = 0. If z(a) > 0 and z(p(a)) =< z(a),
then Lemma 2 implies that z(0(a)) = z(a) > 0, which is a contradiction. Thus z(p(a)) >
z{a) > 0. Proceeding in this way we obtain

Ub) > z(a(b)) > -+ > 2(a@) > z(a(a)) = 0. an

Since z(o(a)) =0, if z(a) is also specified then z(t) is uniéuely determined for all t €
[b, o(@)] by Eq. (1). Thus in particular z(b )) is determined by z(a ). Let f be the mapping from
z{a) to Z(b). From Eq. (1) it is clear that each z(t), t € [b, p(a)] continuously depends on
z(a), and so the function z(b) = f(z(a)) is continuous. If we let z(a) = ug, then Eq. (17)
implies that f(ug) > uo; if we let z(a) = 0, so that z(o(a)) = z(a) =0, then z(f) = 0 by
Lemma 2, so f(0) = 0. Thus since f is continuous, there exists a B, 0 < B < uy, such that
f(B) = ug. Therefore there exists a solution u(t) of Eq. (1) determined by u(o(a)) = 0 and
u(a) = B which must satisfy w(b) = up. Finally the uniqueness of the solution follows from
Corollary 1. |

THEOREM 2 Ifp(t) is as in Lemma 2, then Eq. (1) has a positive nonincreasing solution u(t)
and a positive strictly increasing solution v(t ) such that v(t) — % as t — oo, In addition, the
nonincreasing solution u(t) is uniquely determined once u(a ) is specified.

Proof If we choose a € T, v(a) = 1 and v(0(a)) > 1, then the existence of an increasing
solution v(t) satisfying the stated properties-is an immediate consequence of Remark 6. We
wish to show the existence of a positive nonincreasing solution u(t ). It is clear from Lemma 5
that for each n € T, n = max{1, o(a)}, there is a unigue solution u,(t), t € T of Eq. (1)
such that

Un(@) = ey Up(m) = 0. (18)
Further, in view of Eq. (17) we know that for every n = max{1, o{a)},
e = 1n(®) > 1n(0() = 0 for 1€ [a,pm)]. a9
We claim that for every n = max{1, o(a)},
Uomy(®) > uy(t) for t € [o(a), ). 20)
For this, by Theorem 1 it suffices to show that
Uam)(0(a)) > un(o(a)).

By way of contradiction suppose that Ug((0(a)) = u,(0(a)). If Uam(0(@)) = u(0(a)), then
since un(a) = Uo(m)(@) = Ua, the solutions un(t) and Uy (t) are identically equal. However
Uo(ny(0(1)) = u,(n) = 0, so both u,(t) and Uon )(t) are identically zero, which contradicts
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un(@) = ug > 0. On the other hand, if uom(0(a)) < u,(0(a)) then from Theorem 1 we have
un(t) > to(t) for all t € [o(a), ). In particular for t = n we find

0 = un(n) > uon)(n) > tg(y(o(m) =0,

which is also a contradiction. Hence Eq. (20) holds.
Combining Egs. (19) and (20) we find for each t € [0{(a), ), the sequence {u, (D)} et is
increasing, bounded above by u,, and is eventually positive. For each t € T, let

u(t) = limun (7).

Then 0 < u(t) = u, for t €T, and from Eq. (19) we have u(t) = u(o(t)). Now since n €
[o(a), ), u,(t) is a solution of Eq. (1), and we have

)Y = ~pO) (s ())".

Thus as n— oo, we find that u(t) is a nonincreasing positive solution of Eq. (1).
Finally we show that the solution u(t) is unique once u, is specified. For this let z(t) be
another positive nonincreasing solution of Eq. (1) such that z{a) = u,. Then either z(o{a)) <

w(o(a)), w(o(@)) > u(o(a)), or z(o(a)) = u(o(a)).
If 2(0(a)) < u(o(a)), then there exists an € T and a solution u,(t) defined by Eq. (18) such
that

A0(@) < ux(0(a)) < u(o(a)).

Since w,(a) = z(a) and u,(o(a)) > z(a(a)), Theorem 1 implies that w,(t) > z(t) for all t €
[o(a), ). In particular this implies 0 = w,(n) > z(n), which is a contradiction. If instead
Z{a{a)) > u(o(a)) then Theorem (1) implies that

20 — u() = %(z@(a)) — u(o@)), 1€ [o(@), ).

This means that z(t ) becomes unbounded as t — o since (t — a)/ pu(a) — o0 as t — oo, whichis
again a contradiction. Thus z(o(a)) = u(o(a)). By Corollary 1 z(t) = u(®) forallt € T. O

THEOREM 3 Let p(t) be as in Lemma 4, a € Ta=0,and y> 1. If
j SOP(AL = o,
then the dynamic Eq. (1) is oscillatory.

Proof Let u(t) be a nonoscillatory solution of Eq. (1), and u(t) > 0 for all t € [a, ).
Multiply both sides of Eq. (1) by o(t)u”"(o(t)) to obtain

oo &) + oEp®) = 0.

Using the integration by parts formula for k € [a, o)

k . k
J oMo (AL = k" (RuAK) — au " V(@u(@) — J (@) ul () At
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yields

ku " Y(E)uA k) — au”(@u(@)

k k
- J (Y)Y 2w (D) At +J o(Dp(t)At = 0.

In view of Lemma 4 and the hypothesis, it must be the case that

k
J (tu YO ul () At — 0 as k— oo (21)

a

We shall show that Eq. (21) is impossible.
Note that ud(t) > 0 implies uw~"®))* < 0. Thus

k

k k
J (™Y U (At = J [ ™(o() + 1Y@ WA O At = J u A DAL

and it suffices to show that

. .
J u” (o)l (DAt < 0. (22)

We define r(s ), a continuous function on [t, of(t)] by
r(s) = u(t) + (s — Hu().

Notice that r(f) = u(t), r(o(t)) = u(o(®)), and r(s) = ud(¥) > 0. Hence r(s) is continuous
and increasing for s € [t, o(t)]. From this we get

WA = — Jw)u‘7<o<r)>u“(r>ds - —I—Jdt)r”(o(t»/(s)ds
w® t () t

(&

1 [°® 1 .1 _ -

M@J rH s = eI o) — )
t

1 [P o) —r' 701 _ 1
=y  u® 1=

=

7(rl“h“(r).

This implies that for k € T,

k
|5 otomtr = =0t - v,

a

However since y>1 and r is an increasing function, it follows that Eq. (22) holds,
completing the proof. ' O

There are still many more possible results for Eq. (1) regarding oscillation; such as
whether or not u(z) being an oscillatory solution implies that jzoo(t)p(t)At = 00, and how
0 < vy <1 affects the results. However that is a subject for later work.
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