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Oscillation Criteria for Certain
Fourth-Order Nonlinear Delay
Differential Equations

Said R. Grace, Shurong Sun and Elvan Akın

Abstract. In this article, we establish some new criteria for the oscillation
of fourth-order nonlinear delay differential equations of the form

(r2(t)(r1(t)(y
′′(t))α)′)′ + p(t)(y′′(t))α + q(t)f(y(g(t))) = 0

provided that the second-order equation

(r2(t)z
′(t))′) +

p(t)

r1(t)
z(t) = 0

is nonoscillatory or oscillatory.
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1. Introduction

In this article, we consider nonlinear fourth-order functional differential equa-
tions of the form

(r2(t)(r1(t)(y′′(t))α)′)′ + p(t)(y′′(t))α + q(t)f(y(g(t))) = 0, t ≥ t0 > 0,
(1.1)

where α ≥ 1 is the ratio of positive odd integers. We assume that
(i) r1, r2 ∈ C([t0,∞),R+),R+ = (0,∞),
(ii) p, q ∈ C([t0,∞),R+),
(iii) g ∈ C1([t0,∞),R), g′(t) ≥ 0, g(t) → ∞ as t → ∞,
(iv) f ∈ C(R,R), xf(x) > 0 and f(x)/xβ ≥ k > 0, k is a constant, for x �= 0,

where β is the ratio of positive odd integers.
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We restrict our attention to those solutions of Eq. (1.1) which exist on
I = [t0,∞) and satisfy the condition

sup{|y(t)| : t1 ≤ t < ∞} > 0 for t1 ∈ [t0,∞).

Such a solution is called oscillatory if it has arbitrarily large zeros, oth-
erwise it is called nonoscillatory. Equation (1.1) is said to be oscillatory if it
has an oscillatory solution.

In the last three decades, there has been an increasing interest in study-
ing oscillation and nonoscillation of solutions of functional differential equa-
tions. Most of the work on this subject, however, has been restricted to first-
and second-order equations as well as equations of type (1.1) when α = 1,
p(t) = 0 and other higher-order equations. For recent contributions, we refer
to [1–16]. It appears that little is known regarding the oscillation of Eq. (1.1).
Therefore, our main goal is to establish some new criteria for the oscillation
of all solutions of Eq. (1.1).

Using a generalized Riccati transformation, integral averaging technique
and comparison with first-order delay equations, we shall establish some suf-
ficient conditions which insure that any solution of Eq. (1.1) oscillates when
the associated equation

(r2(t)z′(t))′) +
p(t)
r1(t)

z(t) = 0

is nonoscillatory or oscillatory.

2. Main Results

For the sake of brevity, we define

L0y(t) = y(t), L1y(t) = y′(t), L2y(t) = r1(t)((L0y(t))′′)α,

L3y(t) = r2(t)(L2y(t))′, L4y(t) = (L3y(t))′, t ∈ [t0,∞).

Then, Eq. (1.1) can be written as

L4y(t) +
p(t)
r1(t)

L2y(t) + q(t)f(y(g(t))) = 0.

Remark 2.1. If y is a solution of Eq. (1.1), then z = −y is a solution of the
equation

L4z(t) +
p(t)
r1(t)

L2z(t) + q(t)f∗(z(g(t))) = 0,

where f∗(z) = −f(−z) and zf∗(z) > 0 for z �= 0. Thus, concerning nonoscil-
latory solution of Eq. (1.1), we can restrict our attention only to the positive
ones.

Define the functions

R1(t, t1) =
∫ t

t1

r
−1/α
1 (s)ds, R2(t, t1) =

∫ t

t1

ds

r2(s)
,
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R12(t, t1) =
∫ t

t1

(
1

r1(s)
R2(s, t1)

)1/α

ds, R∗
12(t, t1)

=
∫ t

t2

∫ u

t2

(
1

r1(s)
R2(s, t1)

)1/α

dsdu,

for t0 ≤ t1 ≤ t < ∞.
We assume that

R1(t, t0) → ∞ as t → ∞, (2.1)
R2(t, t0) → ∞ as t → ∞. (2.2)

In this section, we state and prove the following lemmas which we will
use in the proof of our main results.

Lemma 2.1. Assume that

(r2(t)z′(t))′ +
p(t)
r1(t)

z(t) = 0 (2.3)

is nonoscillatory. If y is a nonoscillatory solution of Eq. (1.1) on [t1,∞), t1 ≥
t0, then there exists a t2 ∈ [t1,∞) such that y(t)L2(y(t)) > 0 or y(t)L2(y(t)) <
0 for t ≥ t2.

Proof. Let y be a nonoscillatory solution of Eq. (1.1) on [t1,∞), say y(t) > 0
and y(g(t)) > 0 for t ≥ t1 ≥ t0. Set x(t) = −L2y(t). From Eq. (1.1), the
function x(t) satisfies the equation

(r2(t)x′(t))′ +
(

p(t)
r1(t)

)
x(t) = q(t)f(y(g(t))) > 0, t ≥ t1. (2.4)

We claim that all solutions of Eq. (2.4) are nonoscillatory. Let u be a solution
of Eq. (2.3), say u(t) > 0 for t ≥ t1 ≥ t0. Note that if u(t) is negative, then
−u(t) is also a solution of Eq. (2.3).

Let x(t) be oscillatory and have consecutive zeros at a and b (t1 < a < b)
such that x′(a) ≥ 0, x′(b) ≤ 0 and x(t) ≥ 0 for t ∈ (a, b). Multiplying Eq.
(2.4) by u(t) and integrating over [a, b], we obtain

r2(b)x′(b)u(b)−r2(a)x′(a)u(a)−
∫ b

a

(r2(t)u′(t))x′(t)dt+
∫ b

a

p(t)
r1(t)

u(t)x(t)dt>0.

Integrating by parts again and using that x(a) = 0 and x(b) = 0, we get

r2(b)x′(b)u(b) − r2(a)x′(a)u(a) +
∫ b

a

(
(r2(t)u′(t))′ +

p(t)
r1(t)

u(t)
)

x(t)dt > 0.

Thus, we have a contradiction. This completes the proof. �

Lemma 2.2. Let y be a solution of Eq. (1.1) with y(t)L2y(t) > 0 for t ≥ t1 ≥
t0. Then,

L2y(t) > R2(t, t1)L3y(t), t ≥ t1, (2.5)

L1y(t) > R12(t, t1)L
1/α
3 y(t), t ≥ t1, (2.6)

and
y(t) > R∗

12(t, t1)L
1/α
3 y(t), t ≥ t1. (2.7)
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Proof. Let y be a solution of Eq. (1.1), say y(t) > 0, y(g(t)) > 0 and L2y(t) >
0 for t ≥ t1 ≥ t0. It is easy to see from (1.1) that [L3y(t)]′ < 0 for t ≥ t1 and
hence, we obtain

L2y(t) ≥
∫ t

t1

(L2y(s))′ds =
∫ t

t1

1
r2(s)

L3y(s)ds ≥ R2(t, t1)L3y(t).

From this inequality, we get

y′′(t) ≥
(

1
r1(t)

R2(t, t1)
)1/α

L
1/α
3 y(t).

Noting that L4y(t) < 0, y(t) > 0, then there are only the following two
possibilities Liy(t) > 0, i = 1, 2, 3 and L1y(t) > 0, L2y(t) < 0, L3y(t) > 0.
Thus, y′(t) > 0. Now, integrating this inequality twice from t1 to t and using
the fact that L3y is nonincreasing, we find

y′(t) ≥
[∫ t

t1

(
1

r1(s)
R2(s, t1)

)1/α

ds

]
L

1/α
3 y(t) for t ≥ t1

and

y(t) ≥
[∫ t

t1

∫ u

t1

(
1

r1(s)
R2(s, t1)

)1/α

dsdu

]
L

1/α
3 y(t) for t ≥ t1.

This completes the proof. �

In the following two lemmas, we consider the second-order delay differ-
ential equation

(r2(t)x′(t))′) = Q(t)x(h(t)), (2.8)
where the function r2 is as in Eq. (1.1), h ∈ C1(I,R) such that h(t) ≤ t and
h′(t) ≥ 0 for t ≥ t0 and Q ∈ C(I,R+).

Lemma 2.3 [17]. If

lim sup
t→∞

∫ t

h(t)

Q(s)R2(h(t), h(s))ds > 1, (2.9)

then all bounded solutions of Eq. (2.8) are oscillatory.

Lemma 2.4 [17]. If

lim sup
t→∞

∫ t

h(t)

(
(r−1

2 (u))
∫ t

u

Q(s)ds

)
du > 1, (2.10)

then all bounded solutions of Eq. (2.8) are oscillatory.

Now, we are ready to establish the main results of this paper.

Theorem 2.1. Let α ≥ β, conditions (2.1) and (2.2) hold and Eq. (2.3) be
nonoscillatory. If there exist two functions ρ and h ∈ C1(I,R) such that
g(t) ≤ h(t) ≤ t, h′(t) ≥ 0 and ρ(t) > 0 such that for t ≥ t0 such that

lim sup
t→∞

∫ t

t1

[
kρ(s)q(s) − A2(s)

4B(s)

]
ds = ∞ (2.11)
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for any t1 ∈ [t0,∞), where⎧⎪⎨
⎪⎩

A(t) = ρ′(t)
ρ(t) − p(t)

r1(t)
R2(t, t1),

B(t) = c∗ρ−1(t)g′(t)(R∗
12(g(t), t1))β−1(R12(g(t), t1))1/α, t ≥ t2 ≥ t1

(2.12)
and condition (2.9) or (2.10) holds with

Q(t) = [ckgβ(t)q(t)R1(h(t), g(t)) − (p(t)/r1(t))] ≥ 0, t ≥ t1,

where c and c∗ > 0 are any positive constants, then Eq. (1.1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of (1.1) on [t1,∞), t ≥ t1. With-
out loss of generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1
for some t1 ≥ t0. From Lemma 2.1, it follows that L2y(t) < 0 or L2y(t) > 0
for t ≥ t1.

If L2y(t) > 0 for t ≥ t1, then one can easily see that L3y(t) > 0 for
t ≥ t1. We define

w(t) = ρ(t)
L3y(t)

yβ(g(t))
, t ≥ t1. (2.13)

Differentiating the function w with respect to t and using Eqs. (1.1) and (2.5)
in the resulting equation, we have

w′(t) ≤ −kρ(t)q(t) +
[
ρ′(t)
ρ(t)

− p(t)
r1(t)

R2(t, t1)
]

w(t) − βg′(t)
y′(g(t))
y(g(t))

w(t).

(2.14)
From (2.6), we get

y′(g(t)) = L1y(g(t)) ≥ R12(g(t), t1)L
1/α
3 y(g(t)) for t ≥ t1,

and

y′(g(t))
y(g(t))

≥
(

R12(g(t), t1)
ρ(t)

)1/α
ρ1/α(t)L1/α

3 y(t)
yβ/α(g(t))

yβ/α−1(g(t))

=
(

R12(g(t), t1)
ρ(t)

)1/α

w1/α(t)yβ/α−1(g(t)),

and inequality (2.14) becomes

w′(t) ≤ −kρ(t)q(t) +
[
ρ′(t)
ρ(t)

− p(t)
r1(t)

R2(t, t1)
]

w(t)

−βg′(t)w1+1/α(t)yβ/α−1(g(t))
(

R12(g(t), t1)
ρ(t)

)1/α

. (2.15)

Now, there exists a constant c− and a t2 ≥ t1 such that L3y(t) ≤ c− for
t ≥ t2. It is easy to see that

y(t) ≤ c1

∫ t

t2

∫ v

t2

[
1

r1(s)

∫ s

t2

1
r2(u)

du

]1/α

dsdv = c1R
∗
12(t, t2) (2.16)

for some constant c1 > 0 and hence we have

yβ/α−1(g(t)) ≥ c
β/α−1
1 (R∗

12(g(t), t2))β/α−1 for t ≥ t2. (2.17)
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From (2.13) and (2.7), we get

w(t) = ρ(t)
L3y(t)

yβ(g(t))
≤ ρ(t)

L3y(g(t))
yβ(g(t))

≤ ρ(t)(R∗
12(g(t), t2))−αyα−β(g(t)) for t ≥ t1.

Using (2.16) in the above inequality, we have

w(t) ≤ (c1)α−βρ(t)R∗
12(g(t), t1))−β ,

and hence

w1/α−1(t) ≥ (c1)(α−β)(1/α−1)ρ1/α−1(t)R∗
12(g(t), t1))−β(1/α−1). (2.18)

Using (2.17) and (2.18) in (2.15), we have

w′(t) ≤ −kρ(t)q(t) +
[

ρ′(t)
ρ(t) − p(t)

r1(t)
R2(t, t1)

]
w(t)

−β(c1)(β−α)ρ−1(t)g′(t)(R∗
2(g(t), t2))(β−1)R∗

12(g(t), t1))1/αw2(t),
or

w′(t) ≤ −kρ(t)q(t) + A(t)w(t) − B(t)w2(t)

= −kρ(t)q(t) −
(√

B(t)w(t) − A(t)
2
√

B(t)

)2

+
A2(t)
4B(t)

= −kρ(t)q(t) +
A2(t)
4B(t)

, (2.19)

where A(t) and B(t) are as in (2.12) with c∗ = β(c1)(β−α).
Integrating inequality (2.19) from t2 to t, we find

∫ t

t2

[
kρ(s)q(s) − A2(s)

4B(s)

]
ds ≤ w(t2) − w(t) ≤ w(t2),

which contradicts condition (2.10).
Next, we let L2y(t) < 0 for t ≥ t1. We consider the function L3y(t).

The case L2y(t) ≤ 0 cannot hold for all large t, say t ≥ t2 ≥ t1, since by
integration of inequality

y′(t) = L1y(t) ≤ L1y(t2), t ≥ t2,

we obtain from (2.1) that y(t) < 0 for all large t, a contradiction. Thus, we
have y(t) > 0, L1y(t) ≥ 0, L2y(t) < 0 and L3y(t) ≥ 0 for all large t, say
t ≥ t3 ≥ t2. From the differential mean value theorem, and combing the
monotonicity of y′ and y′(t) > 0, there exists a constant θ ∈ (0, 1) such that

y(t) ≥ θty′(t) for t ≥ t3.

Using this inequality in Eq. (1.1) we get

(r2(t)(r1(t)w′(t))α)′ + p(t)(w′(t))α + k(θg(t))βq(t)wβ(g(t)) ≤ 0,

where w(t) = L1y(t), y′′(t) = w′(t) < 0 and so r1(t)(w′(t))α < 0 for t ≥ t3.
Also L3y(t) > 0 and so, we have (r1(t)(w′(t))α)′ > 0 for t ≥ t3.
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Now, for v ≥ u ≥ t3, we have

w(u) − w(v) = −
∫ v

u

r
−1/α
1 (τ) (r1(τ)(w′(τ))α)1/α dτ

≥
(∫ v

u

r
−1/α
1 (τ)dτ

)
(−r

1/α
1 (v)w′(v))

= R1(v, u)(−r
1/α
1 (v)w′(v)).

Setting u = g(t) and v = h(t), we get

w(g(t) ≥ R1(h(t), g(t)))(−r
1/α
1 (h(t))w′(h(t))) for t ≥ t3,

where z(t) = r1(t)(−w′(t))α > 0 for t ≥ t3. From Eq. (1.1) and the fact that
x is decreasing and g(t) ≤ h(t) ≤ t, we obtain

(r2(t)z′(t))′ +
(

p(t)
r1(t)

)
z(h(t))

≥ k(θgn−3(t))βq(t)R1(h(t), g(t))(z(h(t))(z(h(t))β/α−1.

Since z is decreasing and α ≥ β, there exists a constant C∗
1 > 0 such that

zβ/α−1(t) ≥ C∗
1 for t ≥ t2. Thus,

(r2(t)z′(t))′ ≥
(

C∗
1θβk(gn−3(t))βq(t)R1(h(t), g(t)) − p(t)

r1(t)

)
z(h(t)).

Proceeding exactly as in the proof of Lemmas 2.3 and 2.4, we arrive at the
desired conclusion completing the proof of the theorem. �

The following corollary is immediate.

Corollary 2.1. Let α ≥ β, conditions (2.1), (2.2) hold and Eq. (2.3) be
nonoscillatory. If there exist two functions ρ and h ∈ C1(I,R) such that
g(t) ≤ h(t) ≤ t, h′(t) ≥ 0 and ρ(t) ≥ 0 for t ≥ t0 such that the function
A(t) ≤ 0, where A(t) is defined as in (2.12),

lim sup
t→∞

∫ ∞

t1

ρ(s)q(s)ds = ∞ (2.20)

for any t1 ∈ [t0,∞) and condition (2.9) or (2.10) holds with Q(t) is as
Theorem 2.1, then Eq. (1.1) is oscillatory.

The following examples are illustrative.

Example 2.1. Consider the equation

((y′′(t))3)′′ + 9(y′′(t))3 + 6y(t − 2π) = 0. (2.21)

It is easy to check that all conditions of Corollary 2.1 are satisfied and hence
Eq. (2.21) is oscillatory. One such solution is y(t) = sin t.

Example 2.2. Consider the equation

((y′′(t))3)′′ + (y′′(t))3 +
10
e9

y3(t − 1) = 0. (2.22)

Here, we take k = 1, ρ(t) = 1 and h(t) = t − 1/2. Now, it is easy to check
that all hypotheses of Theorem 2.1 are fulfilled except that Q(t) is negative.
We note that Eq. (2.22) admits the nonoscillatory solution y(t) = e−t.
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For t ≥ t1 ≥ t0, we let

P (t) =
p(t)
r1(t)

R2(t, t1), Q−(t) = kq(t)(R∗
12(g(t), t1))β and μ(t)

= exp
(∫ t

t1

P (s)ds

)
.

Now, we present the following comparison result.

Theorem 2.2. Let α ≥ β. Assume that conditions (2.1) and (2.2) hold, Eq.
(2.3) is nonoscillatory and there exists a function h ∈ C1(I,R) such that
g(t) ≤ h(t) ≤ t, h′(t) ≥ 0 for t ≥ t0 and condition (2.9) or (2.10) holds with
Q(t) is as Theorem 2.1. If every solution of the first-order delay equation

z′(t) + (μ(g(t)))1+β/αQ−(t)zβ/α(g(t)) = 0 (2.23)

is oscillatory, then Eq. (1.1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of (1.1) on [t1,∞), t ≥ t1. With-
out loss of generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1
for some t1 ≥ t0. From Lemma 2.1, it follows that L2y(t) < 0 or L2y(t) > 0
for t ≥ t1. If L2y(t) > 0 for t ≥ t1, then one can easily see that L3y(t) > 0
for t ≥ t1. There exists a t2 ≥ t1 such that g(t) ≥ t1 for t ≥ t2 and

y(g(t)) ≥ R∗
12(g(t), t1)L

1/α
3 y(g(t)) for t ≥ t2. (2.24)

Using (2.5) and (2.24) in Eq. (1.1), we have

(L3y(t))′ +
(

p(t)
r1(t)

)
R2(t, t1)L3y(t)

+ kq(t)(R∗
12(g(t), t1))β(L3y(g(t)))β/α ≤ 0 for t ≥ t2

or

w′(t) + P (t)w(t) + Q−(t)wβ/α(t) ≤ 0 for t ≥ t2,

where w(t) = L2y(t) or

(μ(t)w(t))′ + μ(t)Q−(t)wβ/α(t) ≤ 0 for t ≥ t2.

Setting z(t) = μ(t)w(t) in the above inequality and noting that μ(g(t)) ≤
μ(t), we obtain

z′(t) + (μ(g(t)))1+β/αQ−(t)zβ/α(g(t)) ≤ 0.

This inequality has a positive solution and by [1, Corollary 2.3.5], we see that
Eq. (2.23) has a positive solution, a contradiction. The case is similar to that
of Theorem 2.1 and hence is omitted. This completes the proof. �

The following corollary is immediate.

Corollary 2.2. Let α ≥ β, conditions (2.1) and (2.2) hold and equation (2.3)
be nonoscillatory and there exists a function h ∈ C1(I,R) such that g(t) ≤
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h(t) ≤ t and h′(t) ≥ 0 for t ≥ t0 and condition (2.9) or (2.10) hold with Q(t)
being as in Theorem 2.1. If⎧⎪⎨

⎪⎩
lim inf
t→∞

∫ t

g(t)
μ2(g(s))Q−(s)ds > 1/e when α = β,

∫ ∞
μ1+β/α(g(s))Q−(s)ds = ∞ when α > β

(2.25)

then Eq. (1.1) is oscillatory.

Next, if Eq. (2.3) is oscillatory, we give the following result.

Theorem 2.3. Let conditions (2.1) and (2.2) hold and Eq. (2.3) be oscillatory.
If there exists a function h ∈ C(I,R) such that g(t) ≤ h(t) ≤ t and h′(t) ≥ 0
for t ≥ t0 such that condition (2.9) or (2.10) holds with Q(t) being as in
Theorem 2.1, then every solution y(t) of (1.1) either y(t) is oscillatory or
y′(t) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of (1.1) on [t1,∞), t ≥ t1. With-
out loss of generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1
for some t1 ≥ t0. Now, we consider the cases L2y(t) < 0 or L2y(t) > 0 for
t ≥ t1. If L2y(t) > 0 for t ≥ t1 holds, then Eq. (1.1) becomes

(r2(t)x′(t))′ +
p(t)
r1(t)

x(t) ≤ 0 for t ≥ t2 ≥ t1,

where x(t) = L2y(t). By [12, Lemma 2.6], Eq. (2.3) has a positive solution, a
contradiction. The proof of the case when L2y(t) < 0 for t ≥ t2 ≥ t1 is similar
to that of Theorem 2.1 and hence is omitted. This completes the proof of the
theorem. �

As an illustrative example, we consider the equation

y(4)(t) +
1
2
y(2)(t) +

1
2
y(t − π) = 0. (2.26)

Here, α = β = 1 and let h(t) = t − π. It is easy to check that all the
hypotheses of Theorem 2.2 are satisfied and hence every solution y of Eq.
(2.26) is oscillatory or y′ is oscillatory. One such solution is y(t) = sin t. We
note that none of the results in [2,7,9–14] are applicable to Eq. (2.26).

Finally, we can easily extend Theorem 2.3 to the equation

(r2(t)(r1(t)(y′(t))α)′)′ + p(t)y′(h(t)) + q(t)f(y(g(t))) = 0, (2.27)

where h ∈ C(I,R) such that g(t) ≤ h(t) ≤ t and h′(t) ≥ 0 for t ≥ t0.

Theorem 2.4. Let conditions (2.1) and (2.2) hold and the equation

(r2(t)x′(t)′ +
p(t)

r1(h(t))
x(h(t)) = 0 (2.28)

be oscillatory. If condition (2.9) or (2.10) holds with

Q(t) = [ckq(t)R1(h(t), g(t)) − (p(t)/r1(h(t))] ≥ 0 for t ≥ t1,

where c is any positive constant, then every solution y of Eq. (2.27) either
y(t) is oscillatory or y′(t) is oscillatory.
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Proof. Let y(t) be a nonoscillatory solution of (2.27) on [t1,∞), t ≥ t1. With-
out loss of generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1
for some t1 ≥ t0. As in the proof of Theorem 2.2 we obtain either L2y(t) < 0
or L2y(t) > 0 for t ≥ t1. If L2y(t) > 0 for t ≥ t1 holds, then Eq. (2.27)
becomes

(r2(t)x′(t)′ +
p(t)

r1(h(t))
x(h(t)) ≤ 0 for t ≥ t2 ≥ t1,

where x(t) = L2y(t) > 0. By [12, Lemma 2.6], Eq. (2.28) has a positive
solution, a contradiction. The proof of the case when L2y(t) < 0 for t ≥ t2 ≥
t1 is similar to that of Theorem 2.1 and hence is omitted. This completes the
proof of the theorem. �

We note that there are many criteria in the literature for the oscillation
of second-order dynamic equations, and so by applying these results to Eqs.
(1.1) and (2.27), we can obtain many oscillation results, more, for example,
than those presented in [1,6].

The following examples are illustrative.

Example 2.3. Consider the equation

y(4)(t) + y(2)(t − π) + 2y(t − 2π) = 0. (2.29)

It is easy to check that all the hypotheses of Theorem 2.4 are satisfied with
α = β = 1 and hence every solution y(t) of Eq. (2.29) either y(t) is oscillatory
or y′(t) is oscillatory. One such solution is y(t) = sin t.

We note that none of the known results appeared in the literature are
applicable to this equation because of the delay the appeared in the damping
term.

Next, we establish new oscillation results for Eq. (1.1) using the integral
averaging technique due to Philos [16]. We need the class of function H. Let

D0 = {(t, s) : t > s > t0} and D = {(t, s) : t ≤ s > t0}.

A function H ∈ C(D,R) is said to be the class H if
(i) H(t, s) > 0 for all (t, s) ∈ D0,H(t, t) = 0;
(ii) H has a continuous and nonpositive partial derivatives on D0 with re-

spect to the second variable and for a positive continuous function h(t, s)
such that

∂H(t, s)
∂s

= −h̄(t, s)
√

H(t, s) for all (t, s) ∈ D0.

For the choice H(t, s) = (t − s)n(n ≥ 1), the Philos type conditions
reduce to the Kamener type ones.

Theorem 2.5. Let α > 1, conditions (2.1) and (2.2) hold and the Eq. (2.3)
be nonoscillatory. If there exist two functions g and h ∈ C1(I,R) such that
g(t) ≤ h(t) ≤ t and h′(t) ≥ 0 and g(t) > 0 for t ≥ t0 and H ∈ H such that

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[
kg(s)H(t, s)q(s) − P 2(t, s)

4B(s)

]
ds = ∞, (2.30)
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for all large t ≥ t1, where

P (t, s) = h̄(t, s) −
√

H(t, s)
[
g′(s)
g(s)

− ρ(s)
R2(t, t1)

r1(s)

]
,

B(s) is defined as in Theorem 2.1, and condition (2.9) or (2.10) holds with
Q as in Theorem 2.1, then Eq. (1.1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of Eq. (1.1), say y(t) > 0 for
t ≥ t1 for some t1 ≥ t0. Proceeding as in the proof of Theorem 2.1, we obtain
the inequality (2.19), i.e.,

w′(t) ≤ −kg(t)q(t) + A(t)w(t) − B(t)w2(t),

and so,
∫ t

t1

kH(t, s)g(s)q(s)ds ≤
∫ t

t1

H(t, s)[−w′(s) + A(s)w(s) − B(s)w2(s)]ds

=−H(t, s)w(s)|tt1 +
∫ t

t1

[
∂H(t, s)

∂s
w(s)+H(t, s)(A(s)w(s)−B(s)w2(s))

]
ds

= H(t, t1)w(t1) −
∫ t

t1

[
w2(s)B(s)H(t, s) + w(s)

[
h̄(t, s)

√
H(t, s)

−H(t, s)A(s)
]]

ds ≤ H(t, t1)w(t1) +
∫ t

t1

P 2(t, s)
4B(s)

ds.

Thus, we obtain

1
H(t, t1)

∫ t

t1

[
kg(s)H(t, s)q(s) − P 2(t, s)

4B(s)

]
ds ≤ w(t1),

which contradicts condition (2.30). The rest of the proof is similar to that of
Theorem 2.1 and hence is omitted. �

Theorem 2.6. Let the hypotheses of Theorem 2.2 hold. Moreover, suppose that
for ever t1 > t0,

0 < inf
s≥t1

[
lim inf
t→∞

H(t, s)
H(t, t1)

]
< ∞, (2.31)

lim sup
t→∞

1
H(t, t1)

∫ t

t1

g(s)r1(h(s))P 2(t, s)
R2(s, t1)g′(s)

ds < ∞,

and there exists ψ ∈ C[t0,∞) such that
∫ t

t1

ψ2
+(s)

R2(s, t1)g′(s)
g(s)r1(h(s))

, ψ+ = max{ψ, 0},

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[
kg(s)H(t, s)q(s) − P 2(t, s)

4B(s)

]
ds ≥ ψ(t1). (2.32)

Then, Eq. (1.1) is oscillatory.
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Proof. Let y(t) be a nonoscillatory solution of Eq. (1.1), say y(t) > 0 for
t ≥ t1 for some t1 ≥ t0. Proceeding as in the proof of Theorem 2.2, we have∫ t

t1

kH(t, s)g(s)q(s) ≤ H(t, t1)w(t1) +
∫ t

t1

P 2(t, s)
4B(s)

ds

−
∫ t

t1

[√
H(t, s)B(s)w(s) +

P (t, s)
4B(s)

]2

ds.

Then,

lim sup
t→∞

1
H(t, t1)

[∫ t

t1

kH(t, s)g(s)q(s) − P 2(t, s)
4B(s)

]
ds

≤ w(t1) − lim inf
t→∞

1
H(t, t1)

∫ t

t1

[√
H(t, s)B(s)w(s) +

P (t, s)
2
√

B(s)

]2

ds.

Using (2.32), we obtain

w(t1) ≥ ψ(t1) + lim inf
t→∞

1
H(t, t1)

∫ t

t1

[√
H(t, s)B(s)w(s) +

P (t, s)
2
√

B(s)

]2

ds,

and hence

lim inf
t→∞

1
H(t, t1)

∫ t

t1

[√
H(t, s)B(s)w(s) +

P (t, s)
2
√

B(s)

]2

ds < ∞. (2.33)

Define

c1 =
1

H(t, t1)

∫ t

t1

H(t, s)B(s)w2(s)ds, c2 =
1

H(t, t1)

∫ t

t1

√
H(t, s)P (t, s)w(s)ds.

It follows from (2.33) that

lim inf
t→∞ [c1(t) + c2(t)] < ∞.

The remainder of the proof is similar to that of Theorem 3 in [18] and hence
is omitted. The rest of the proof of the case if y(t) > 0 and L1y(t) < 0 is
similar to that of Theorem 2.1 and hence is omitted. �

3. General Remarks

1. The results of this paper are presented in a form that is essentially new
and of a high degree of generality.

2. It would be of interest to consider Eqs. (1.1) and (2.27) and try to obtain
some oscillation criteria if for p(t) < 0 and q(t) < 0.

3. Finally, we note that our oscillation results are applicable to Eq. (1.1)
if g(t) < t. Thus, as is well known, it is the delay in Eq. (1.1) that can
generate the oscillations.

4. The results of this paper can be easily extended to dynamic equations
of the form

(r2(t)(r1(t)(yΔΔ(t))α)′)′ + p(t)(yΔΔ(t))α + q(t)f(y(g(t))) = 0,
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where r1, r2, p, q and g are rd-continuous functions defined on any time
scale T with supT = ∞. The function f and the constant α are as in
Eq. (1.1). The details are left to the reader.
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