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A mean on a topological space X is defined as a mapping µ : X × X → X
such that µ(x, y) = µ(y, x) and µ(x, x) = x for every x, y ∈ X (in other words,
it is a symmetric, idempotent, continuous binary operation on X). In [30, p.
285] an approach to this concept is presented from the standpoint of the theory
of hyperspaces (a mean on a continuum X can be defined as a retraction of the
hyperspace F2(X) onto F1(X), see also [21, Section 76, p. 371]; compare also [16,
Section 5, p. 18] and [17, Section 6, p. 496]).

A natural problem that is related to this concept is what spaces, in particular
what metric continua, admit a mean? No characterization is known till now.

It is easy to give an example of a mean on the closed unit interval [0, 1] (e.g.,
the arithmetic mean µ(x, y) = x+y

2 ). Means on [0, 1], even in a more general
setting, were studied by A. N. Kolmogoroff who described a structural form of
these mappings in [24]. Functional equations of the type

(1) f(µ(x, y)) = µ(f(x), f(y))

with a given mean µ on [0, 1] and unknown mapping f : [0, 1] → [0, 1] have been
studied extensively, see [1]. Invertedly, a question about the existence of a mean on
[0, 1] for a given mapping f such that (1) holds for all x, y ∈ [0, 1] is also discussed
in some papers. E.g., in [9] it is shown that equation (1) has no solutions µ for
the tent map f (see [14] for an extension) and it is asked if a surjection f on [0, 1]
satisfying (1) for some mean µ must necessarily be monotone.

A study on basic properties of means defined on arbitrary spaces started with
the habilitation thesis of G. Aumann [2] and [3], and it was developed in [4], where
it is shown that the circle, or even k-dimensional sphere for each k ≥ 1 does not
admit any mean, while each dendrite (i.e., a locally connected metric continuum
containing no simple closed curve) does. An outline of a quite different proof

1



2 J. J. CHARATONIK

that the circle does not admit any mean is given in [30, (0.71.1), p. 50]. These
fundamental results have been generalized later in several ways.

Given a mapping f : X → Y , a mapping h : Y → X is called a right inverse of
f provided that f ◦ h = id |Y . If, for a given f , there exists a right inverse of f ,
then f is called an r-mapping. Each r-mapping is surjective. Let f : X → Y ⊂ X
be a retraction (i.e. such that f |Y = id |Y ; then Y is called a retract of X). Then
h = f |Y is a right inverse of f , so each retraction is an r-mapping. It is known that
if a space X admits a mean and f : X → Y is an r-mapping, then Y also admits a
mean, [27]. In particular, each retract of X admits a mean, [33].

A continuum X is said to be unicoherent provided that for each decomposition of
X into two subcontinua, their intersection is connected. It is known that if a locally
connected metric continuum admits a mean, then it is unicoherent; if, in addition,
it is 1-dimensional, then it is a dendrite, see [33] (compare also [16, Theorem 5.31,
p. 22]). Local connectedness is essential in this result because the dyadic solenoid
is 1-dimensional, unicoherent, and admits a mean, see [21, 76.6, p. 374] (also [16,
5.47, p. 24]; it admits an open and monotone mean, [22, Example 5]). For further
progress see [6], [8], [27], [28], [29].

In an early period of studies on means, majority of results was related to locally
connected spaces. One of the first examples of non-locally connected continua that
admit no mean was the sin(1/x)-curve, [7] (for an extension of this result see [5]).
This curve is acyclic (in the sense that all its homology groups are trivial). Known
examples of locally connected continua that do not admit any mean are cyclic. So,
a question arises if cyclicity is the only obstruction which does not let a locally
connected continuum to admit a mean, [6].

A (metric) continuum X is said to be arc-like provided that for each ε > 0 it has
an ε-chain cover; or, equivalently, if it is the inverse limit of an inverse sequence of
arcs with surjective bonding mappings.

Let an inverse sequence {Xn, fn : n ∈ N} be given each coordinate space Xn of
which admits a mean µn : Xn ×Xn → Xn such that for each n ∈ N the functional
equation fn(µn+1(x, y)) = µn(fn(x), fn(y)) is satisfied for all x, y ∈ Xn+1. Then the
inverse limit space X = lim←−{Xn, fn : n ∈ N} admits a mean µ : X×X → X defined
by µ({xn}, {yn}) = {µn(xn, yn)}. Some special results concerning this concept are
in [9] and [13]. As an answer in the negative to a question whether every mean on
an arc-like continuum is an inverse limit mean, [9], a suitable example showing that
inverse limit means are not preserved under homeomorphisms has been constructed
in [34].

In connection with the main result of [6] that the sin(1/x)-curve does not admit
any mean, P. Bacon asked the following.
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Questions [6, p. 13]. 1) Is the arc the only arc-like continuum that admits a
mean? 2) Is the arc the only continuum containing an open dense half-line that
admits a mean?

After more than thirty years, the questions still remain unanswered. However,
a sequence of important partial answers has been obtained.

The above mentioned result of Bacon (that the sin(1/x)-curve does not admit
any mean) has been essentially extended in [10], where some criteria are obtained
for the existence as well as for the non-existence of means on continua (the non-
existence criterium is also presented in [21, Section 76, p. 374-376]). A further
generalization was obtained in [23]. It runs as follows.

Two points a and b of an arc-like continuum are called opposite end points of the
continuum provided that for each ε > 0 there is an ε-chain cover of the continuum
such that only the first link of the chain contains a and only the last link of the
chain contains b. Let a continuum X contain an arc-like continuum A with opposite
end points a and b of A. A sequence {An : n ∈ N} of subcontinua of X is called a
folding sequence with respect to the point a provided that for each n ∈ N there are
two subcontinua Pn and Qn of An such that

An = Pn ∪Qn, Lim (Pn ∩Qn) = {a}, and LimPn = Lim Qn = A.

Theorem [23, p. 99]. Let a hereditarily unicoherent continuum X contain an arc-
like subcontinuum A with opposite end points a and b of A. If there exist folding
sequences {An} and {Bn} with respect to a and b correspondingly, then X admits
no mean.

The concept of a folding sequence is a generalization of the concept of type N [32,
p. 837] which in turn generalizes the concept of a zigzag [18, p. 78] and is related to
the notion of a bend set [26, p. 548] (These concept were exploited to obtain some
criteria for noncontractibility and nonselectibility of dendroids (i.e., hereditarily
unicoherent and arcwise connected continua) as well as for non-existence of means
on these curves. For details see [16, p. 23-32] and [17, p. 496-498].

The above theorem does not apply to hereditarily indecomposable continua,
because it assume the existence of decomposable subcontinua. The non-existence
of means on the pseudo-arc (and on each hereditarily indecomposable circle-like
continuum) follows from the following result, that is shown also in [23].

Theorem [23, p. 102]. If a hereditarily indecomposable contains a pseudo-arc,
then it admits no mean.
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Another famous arc-like continuum is the simplest indecomposable continuum
D [25, Fig. 4, p. 205] also called the buckethandle continuum or the Brouwer-
Janiszewski-Knaster continuum. It can be defined as the inverse limit of arcs with
tent bonding mappings. D has exactly one end point, each of its proper subcon-
tinua in an arc, and it again is an example to which the above theorem (on folding
sequences of arcs) does not apply. Answering my question [12] A. Illanes has shown
that D does not admit any mean [20]. Similarly constructed indecomposable con-
tinua with k end points (where k ≥ 2; for k = 3 see [19, p. 142] and [31, 1.10, p.
7]) also do not admit any mean, [15, Corollary 3.15]. Recently D. P. Bellamy [11]
presented an outline of a proof that each Knaster-type continuum (i.e., the inverse
limit of arcs with open bonding mappings) different from an arc admits no mean.
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