THE PLANE FIXED-POINT PROBLEM

Charles L. Hagopian

Does every nonseparating plane continuum have the fixed-point property? This
is the plane fixed-point problem. It has been called the most interesting outstand-
ing problem in plane topology [Bi2]. A positive answer would provide a natural

generalization to the 2-dimensional version of the Brouwer fixed-point theorem.

A space S has the fized-point property if for every map (continuous function)
f of S into S there exists a point x of S such that f(z) = z. A continuum is a
nondegenerate compact connected metric space. A continuum in the plane that
has only one complementary domain is a nonseparating plane continuum. Every
nonseparating plane continuum is the intersection of a nested sequence of topological
disks.

To summarize related results, suppose C is a nonseparating plane continuum
and f is a fixed-point-free map of C into C. Ayers [Ay] in 1930 proved C is not
locally connected if f is a homeomorphism. In 1932 Borsuk [Bo] proved C cannot
be locally connected (even if f is not a homeomorphism). He accomplished this by
showing that every locally connected nonseparating plane continuum is a retract of
a disk. Stallings and Borsuk [St] pointed out that the plane fixed-point problem
would be solved if it could be shown that every nonseparating plane continuum is
an almost continuous retract of a disk. This approach was eliminated by Akis in
[A1].

Hamilton [Hal] in 1938 proved the boundary of C is not hereditarily decompos-
able if f is a homeomorphism. Bell [B1], Sieklucki [S], and Illidais [I] in 1967-1970
independently proved the boundary of C contains an indecomposable continuum
that is left invariant by f. The methods used to establish this theorem led to (but
did not answer) the following questions. Can the plane fixed-point problem be

solved by digging a simple dense canal in a disk? Can f? be fixed-point free?

In 1971 Hagopian [H1] proved C is not arcwise connected. Hagopian [H5] in
1996 improved this theorem by showing that an arcwise connected plane continuum

has the fixed-point property if and only if its fundamental group is trivial.

It is not known if the fixed-point-free map f can be a homeomorphism. Bell
[B2] in 1978 proved f cannot be a homeomorphism that is extendable to the plane.
Akis [A2] and Bell [B3] proved f is not a map that has an analytic extension to the
plane. In 1988 Hagopian [H3] proved f cannot send each arc-component of C into

itself. Hence f is not a deformation. Must f permute every arc-component of C?
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In 1951 Hamilton [Ha2] proved C is not chainable. We do not know if C can
be triod-like [M1-2]. More generally, can C be tree-like [Bil, p.653]?7 Bellamy [Be]
in 1979 defined a nonplanar tree-like continuum that admits a fixed-point-free map
(also see [OR1-2] and [Mi2-5]). Using this example and an inverse limit technique of
Fugate and Mohler [FM], Bellamy [Be, p.12] defined a second tree-like continuum
M that admits a fixed-point-free homeomorphism. It is not known if M can be
embedded in the plane. Note that such an embedding would solve the plane fixed-
point problem. Every proper subcontinuum of Bellamy’s continuum M is an arc.
This motivates another open question. Must a nonseparating plane continuum with
only arcs for proper subcontinua have the fixed-point property?

In 1990 Minc [Mil] proved C is not weakly chainable (a continuous image of
a chainable continuum). Minc [Mi4] in 1999 defined a weakly chainable tree-like
continuum that does not have the fixed-point property.

Kuratowski [Kul] defined a continuum K to be of type A if K is irreducible
and every indecomposable continuum in K is a continuum of condensation. Every
continuum K of type A admits a unique montone upper semi-continuous decompo-
sition to an arc with the property that each element of the decomposition has void
interior relative to K [Ku2, Th.3, p.216]. The elements of this decomposition are
called tranches.

Can C be a continuum of type A with the property that each of its tranches
has the fixed-point property? In answer to a question of Gordh [L, Prob.43, p.371],
Hagopian [H6| recently defined a nonplanar continuum M of type A such that each
tranch of M has the fixed-point property and M does not.

A fundamental exposition on the plane fixed-point problem is given in [KW,
pp.66 and 145] (also see [Bi3|, [H2], and [H4]).
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