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Abstract

Let X be a metric continuum. A mean on X is a continuous function
w: X X X — X such that for each z,y € X, p(z,y) = p(y,z) and
u(z,z) = z. In this paper we prove that if X is chainable and admits a
mean, then X is an arc. This answers a question stated by Philip Bacon
in 1970.

Introduction

Troughout this paper the letter X will denote a metric continuum. A mean
on X is a continuous function p : X x X — X such that for each z,y € X,
pw(z,y) = ply, x) and p(x,x) = x. A chain in X is a sequence Y = {Uy,..., Uy}
of open subsets of X such that X =U; U...UU, and U; NU; # 0 if and only
if | — j| < 1. Given a positive number &, the chain & = {Uy,...,U,} is said to
be an e-chain provided that diameter(U;) < € for each i € {1,...,n}. We say
that X is chainable provided that, for each £ > 0 there exists an e-chain in X.

The problem of determining which continua X admit means has been studied
by a number of authors. In [2] P. Bacon proved that if a continuum X admits
a mean then X is unicoherent, he also showed ([1]), answering a question by A.
D. Wallace ([15]), that the sin(%)-continuum admits no means. This was the
first example of an acyclic continuum admitting no means. More information
about means can be found in [6], [9, Section 76] and [10].

In [1] P. Bacon posed the following questions: (1) Is the arc the only chainable
continuum that admits a mean? (2) Is the arc the only continuum containing
an open dense half-line that admits a mean?

Question (2) has been recently answered, in the positive, by the first named
author ([7]). With respect to question (1), answering a question by J. J. Chara-
tonik, the first named author, showed that the simplest indecomposable con-
tinuum (also called the buckethandle continuum or the Brouwer-Janiszewski-
Knaster continuum) does not admit means ([8]). Recently, D. P. Bellamy ([4])



has shown that each Knaster-type continuum (i.e., the inverse limit of arcs with
open bonding mappings) different from the arc admits no mean. Some partial
answers to question (1) can be obtained by using the results contained in the
papers [3], [5] and [11]. In this paper we give the final answer to question (1)
by showing the following.

Theorem 1. If X is chainable and X admits a mean, then X is an arc.

This paper is devoted to prove Theorem 1.
A property in the plane

We denote by R? the Euclidean plane. Given points p,q € R?, where p # g,
let pg be the convex segment in R? joining p and gq.

Theorem 2. Let p = (0,0), ¢ = (1,0) and r = (3,1) in R%. Let A be the
convex triangle in R? with vertices p, ¢ and r. Suppose that H and K are closed
disjoint subsets of A such that pr Urq C H and K Npq # (. Then there exists
an arc « in A, with end points p and ¢ such that c N K =0 and aN H C pq.

Proof. Let V.= A — H. Then V is an open subset of A and K C V. Let
Ko = K Npq. Since the components of V' are open in A and they cover the
nonempty compact set Ky, there exist n € N and components Vi,...,V, of V
such that Ko C V3 U...UYV,, and K intersects each V;.

For each ¢ € {1,...,n}, let K; = K NV;. Notice that K; is compact. Let
m; = min{z € [0,1] : (z,0) € K;} and M; = max{z € [0,1] : (z,0) € K;}.
Since ) # KoNV; ¢ KNpgnV;, m; and M; are well defined. Since V; is
arcwise connected, there exists a continuous function ~y, : [0,1] — V; such that
7:(0) = (m;,0) and (1) = (M;;, 0).

Since r ¢ V;, we can apply Theorem 2 of [12, §57, III, p. 438], to the closed
sets A—V; and K;UIm v, and the points r € A—V; and (m,,0) € K;Ulm~,, then
there exists a locally connected subcontinuum C; of A such that C; C V; — (K;U
Im~,) and C; separates r and (m;, 0) in A. Thus C; intersects the connected set
rpUp(m;,0). Since rpN'V; = (), there exists a point p; = (u;,0) € p(m;,0)NC;.
Similarly, there exists a point g; = (v;,0) € (m;,0)gNC;. Since p, (m;,0) and ¢
do not belong to C;, we have that 0 < u; < m; <v; < 1. Let «; : [0,1] — C; be
a continuous one-to-one function such that a;(0) = (u;,0) and «;(1) = (v;,0),
we may assume that Im a;; Np(m;,0) = {(u;,0)} and Im o; N (m;,0)g = {(v;,0)}.
Thus Im «; intersects the boundary of A only at the points (u;,0) and (v;,0)
and we can apply the lemma of the f-curve ([12, § 61, II, Theorem 2, p. 511])
and conclude that A — Im «; has exactly two components D; and E;, where D;
and F; are the respective component of A — Im a; which contain the connected



sets F; = piqi — {pi,¢i} and G; = p;pUprUrqUqq; — {pi,q:}. Since F; UIm~,
is a connected subset of A —Im «;, F; UIm~y, C D;, So (M;,0) € D;Npq C p;q;.
This implies that M; < v;. Notice that Ime; C V;—K; =V;—(KNV;) C V;— K,
soIma; N (KUH) =0.

Let 4,5 € {1,...,n} such that i # j. If u; € [u;,v;], then F; UIma; is a
connected subset of A —Im v, so ¢; € (F;UIma;) Npg C D; Npg C pig;. Thus
vj € [u;,v;]. Similarly, it can be shown that if v; € [u;, v;], then u; € [u;, v;]. We
have shown that [u;, v;] and [u;, v;] are disjoint or one is contained in the other.
Therefore, taking the maximal intervals of the form [u;, v;], there exist m € N
and 41,...,%, € {1,...,n} such that 0 < u;, < v, < wjy < Vi < ... < Uy, <
v, < Land [ui;, v, |Uts,, vi,]U. . U, 05, ] = [u1, v1]U[ug, v2]U. . .U [t O]

Given a point w = (u,0) € KNpg = K, there exists i € {1,...,n} such that
w € K;. Thus u € [m;, M;] C (us,v;) C (i, viy) U (Wig, vig) U ..o U (w05, )
This proves that K Npg C ((ws,,viy) U (Uiy, viy) U ... U (u4,,,v5,.)) x {0}

Let 8 : [0,1] — A be the continuous, one-to-one function such that 8(0) = p,
ﬂ(l) =q an%ﬁ([QfmlJrlD PPy, ﬂ([zmler zn%%]) = Ima“, B([Q?H’lzm:}l]) =
i, Dis /B([Qerl’ 2m+1]) = Imaj,, ﬁ([2m+1’ 2m+1]) = %plm“"ﬁ([zz+1’ Qmﬁl]) =
Im «,,, , ﬁ([2m+1’ 1]) = 4,9

Finally, let o = Im 8. It is easy to check that « has the required properties.
|

PL mappings

A continuous function f : [0,1] — [0, 1] is called a PL mapping (piecewise
linear mapping), provided that there exists a partition P : 0 = ¢y < t; <

... < tn, =1 of [0,1] such that, for each ¢ € {1,...,n} and each ¢t € [t;_1,%;],
f(t) = tif_tg:l (ti) + & t_lt L_f(t;_1) in this case we say that f is supported by
P. Tt is easy to see that the clasb of PL mappings is closed under compositions.

A PL mapping [ is said to be a jump mapping provided that f(0) = 0 and
1) =1.

The following theorem can be proved with the techniques of the paper [14].
We include its proof here for completeness.

Theorem 3. If f and g are jump mappings, then there exist jump mappings
«a and B such that foa=gog.

Proof. Let A = {(z,y) € [0,1]* : f(z) = g(y)}. The set A is a compact
subset of [0, 1]? such that (0,0), (1 1) € A. Let L be the component of A such
that (0,0) € L



We are going to prove that (1,1) € L. Suppose to the contrary that (1,1) ¢
L. Then (see [13, Theorem 5.2, p. 72]) there exist compact disjoint subsets H
and K of [0,1]” such that A = HUK, (0,0) € H and (1,1) € K. By [12, §57, I1I,
Theorem 2, p. 438], there exists a separator C between (0, 0) and (1, 1) which is
a locally connected continuum disjoint from A. Thus there exist points (z/,y") €
({0} 0, 1) U([0, 1 x {1})) and (&, /) € CA(([0,1] x {O)U({1} x [0, 1])).
Notice that f(z') < g(y') and f(u') > g(v'). Since C is connected, there exists
a point (¢,s) € C such that f(t) = g(s). This implies that (t,s) € CN A, a
contradiction. Hence (1,1) € L.

Since f and g are PL mappings, there exists a partition 0 = g < t; <

... < t, = 1 such that, for each ¢ € {1,...,n} and each t € [t;_1,%], f(t) =
t—ti— i— t—t— =
ti*ti—ll (tl) + titftit_1 (tifl) and g(t) - ti*ti—llg(ti) + tit*tit_l g(tifl)'

It is easy to prove that, if 4,5 € {1,...,n}, z,u € [t;i_1,t], y,v € [t;_1,t;],
f(z) = g(y) and f(u) = g(v), then the segment (z,y)(u,v) is contained in A.

Let p = (x,y) € A, now we prove that there exists ¢, > 0 such that if (u, v)
belongs to the set D(gp,p) = AN ((x —ep,x +€p) X (y — €p,y + €p)), then
the segment (z,y)(u,v) is contained in A. In order to prove this claim, by the
paragraph above, it is enough to take €, > 0 such that if u € [z—¢,, x+¢,]N[0, 1]
and v € [y — &p,y +&,] N[0, 1], then both points z and u belong to a set of the
form [t;—1,¢;] and both points v and y belong to a set of the form [¢;_1,¢;].

By the connectedness of the segments of the form (z,y) and (u,v) the claim
proved in the paragraph above implies that, if p = (x,y) € L, and ¢, > 0 is as
before, then for each (u,v) € D(gp,p), the segment (z,y)(u,v) is contained in L.
Since the family {D(ep,p) : p € L} is an open cover of L and L is connected, it
follows that L is connected by polygonals. In particular, there exist m € N and
points py = (u07 UO)a p1 = (ula Ul)a ceyPm = (um, Um) in L such that Po = (07 0);
Pm = (1,1) and popr Upipa U ... Upp—1pm C L.

Define a, 8 : [0,1] — [0,1] by a(t) = (mt — i + 1)u; + (i — mt)u;—1 and
B(t) = (mt — i+ 1)v; + (i — mt)v;_q, if t € [, L], Clearly, @ and 3 have the
required properties. l

Theorem 4. If f is a PL mapping such that f(1) = 1 and g is a jump
mapping, then there exist a jump mapping o and a PL mapping 8 such that

B(l)=1and foa=gop.
Proof. In the case that f(0) = 0, both mappings f and g are jump map-
pings, so the existence of o and g follows from Theorem 3. Thus, suppose that

f£(0) > 0.

Let h,k : [0,1] — [0, 1] be the mappings given by



and

B 0, if t €0, 1],
k(t) = { g2t —1), ifte [%,21].

Clearly, h and k are jump mappings. By Theorem 3, there exist jump
mappings v and A such that hoy = ko . Let sg = maxv_l(%). Since v(1) = 1,
0<sg <.

Define o, 8 : [0,1] — [0,1] by a(t) = 2y(t + (1 — t)sg) — 1 and B(t) =
max{2A(t + (1 —t)sp) — 1,0}. For each ¢ € [0,1], since so < ¢+ (1 —t)so <1
and (1) = 1, by the definition of so, (¢ + (1 — t)so) € [3,1]. Thus «a is a well
defined jump mapping, § is a PL mapping and 8(1) =1

In order to check that foa = gof, let t € [0,1]. If A(t + (1 —t)so) > 4
then 2A(¢ + (1 —t)sp) —1 > 0, so g(B(¢)) = g2A(t + (1 —t)so) — 1) = k(A(t +
(1—1)50)) = h(x(t + (1 — £)s0)) = F((E+(1— B)s0) — 1) = f(a(t)). Thus
g(B(t)) = f(a(t)). And in the case that A(t+(1—t)so) < 3, g(B(t)) = g(0) = 0.
Notice that h(v(t—l—(l t)so)) E(A(t+(1—t)so)) = 0. On the other hand, since

Y(t+(1-t)s0) € [3,1], 0 = h(y(t+(1—t)s0) = f(2y(t+(1—1)s0) — 1) = f(a(t)).
Ij—rIence 9(6 (ﬁ)).: = (oz(t)). In both cases g(5(t)) = f(a(t)). Therefore,
o = g @]

Theorem 5. If f is a PL mapping such that f(0) = 0 and g is a jump
mapping, then there exist a jump mapping o and a PL mapping 8 such that
B(0)=0and foa=gof.

Proof. Let f1,01 : [0,1] — [0,1] be given by fi1(t) = 1 — f(1 —¢) and
91(t) =1 —g(1 —t). Then f; is a PL mapping such that f1(1) = 1 and ¢;
is a jump mapping. By Theorem 4, there exist a jump mapping «; and a PL
mapping £ such that £;(1) =1 and f; o aq = g1 0 5.

Define o, 5 : [0,1] — [0,1] by a(t) =1 — a1 (1 —¢) and B(¢t) =1 — B1(1 = ¢t).
Then « is a jump mapping and j is a PL mapping such that 3(0) = 0. Moreover,
for each t € [0,1], f(a(t)) = f(l—a1(1—¢t)) =1— fi(e1(1—-1t)) =1—g1 (B, (1 —
t)) =g(1 —pB1(1 —t)) =g(B(t)). Therefore, foa=go . A

Theorem 6. Let P: 0=ty <t; <...<t,=1land Q:0 =35 < s1 <
... < 8m = 1 be partitions of [0,1]. Let f,g : [0,1] — [0,1] be PL mappings
such that f is supported by P and g is supported by ). Suppose that there
exists a function o : {0,1,...,m} — {0,1,...,n} such that ¢(0) = 0, o(m) = n,
f(to@y) = g(s;) for each i € {0,1,...,m} and |o(i) —o(i —1)| < 1 for each
i € {1,...,m}. Then there exists a jump mapping « such that foa =g.



Proof. Let a : [0,1] — [0,1] be the PL mapping defined by the con-
ditions a(s;) = t,(;) for each i € {0,1,...,m}. Note that a(0) = to =
0 and 1) = tymm) = 1. Thus « is a jump mapping. In order to check
that foa = g, let ¢+ € {1,...,m} and let s € [s;-1,8;]. Then a(s) =
;__‘Z’_lloz(si) + S alsion) = Tty s te(i-1). Thus a(s) is
a convex combination of the numbers ¢,;) and t,(;_1), so one of the follow-
ing two expresions is a convex combination for «(s) (depending on which in-

. a(s)—tegi—1
equahty: to-(ifl) < to’(z) or to’(i) < ta(ifl) hOldS) ( ) = ﬁtg(z) +

to(iy—a(s) Oé(S) _als)~te@) + to(i—1—als )t

Foo ot 06— 1) = Fouon o 06— toi-n~to() o) By hypoth-

esis, |o(i)—o(i—1)] < 1. If o(i) > o(i — 1), since f is supported by P,
a(s)—ty(i— to(iy—al(s a(s)—ty(i—
flads)) = PO f(to(w) + e f (b 1) = Tt flto) +

9 to(i)—to(i—1) (ot to(i)—to(i—1) ) s) to(i)—to(i—1)
How-a) f(t a(i—l)) = wg(si) 4 @B g(s;_4). The equality

to(i)—to(i—1) to(i)—to Ei;l) to(i)—to(i—1) -
S—S8;_1 a(s)—ls(i—1) to (i) —ou(s . .

t 715 ; i implies that
Si—Si— ‘7( ) ;’_)S —S; U('L 1) U(i)fta(ifl) 0'((1))+ to-(i)fto-(i—l) O'(Z 1) p
s—Si—1 __ « to(i—1) si—s _  to)y—als 3 _ 8—Si—1
8i—8i—1  to(i)—to(i—1) and 8i—8i—1  to(i)—to(i—1) " Thus f(a(s)) = 8i—8; 9(81)4—

s 9(si-1) = g(s). Hence f(a(s)) = g(s). The case o(i) < a(z - 1)
is similar. Finally, if o(i) = o(i — 1), then a(s) = t,4) = te(i—1). Hence,
fla(s)) = f(tow) = f(toi-1)) = g(si) = g(si—1). Since g is supported by @,
9(s) = g(s;). Therefore f(a(s)) = g(s). The proof of the theorem is complete.
|

Chains

For a chainable continuum X, with metric d, and a positive number ¢, we
say that a chain Y = {Uy,...,U,} is a separated chain in X provided that Uy
is not contained in clx (Usz), U, is not contained in cly(U,—1) and clx(U;)N
clx (U;) # 0 if and only if |¢ — j| < 1. If, in addition, diameter(U;) < ¢ for each
i € {1,...,n}, then U is said to be a separated e-chain. It is easy to see that
if V={V1,...,Vi,} is a d-chain in X, then the sequence {V; U V5, V3UV,,...}
(the last element in this sequence is V,, if m is od and, it is V,,—1 UV,,, if m is
even) is a separated 26-chain in X. Thus for each € > 0 there exists a separated
e-chain in X.

Given a chain Y = {Uy,...,U,}, there is a natural order in U (given by
the order of the subindices) which will be denoted with the usual symbols <,
>, <and >. So, f U,V € U, we define UV = | J{W e U : U <W <V}, if
U<VandUV =UWel:V<W<U}ifV<U. We also say that an
element W € U is between U,V € U provided that U < W <V if U <V, and
V<SW<U, itV <U.

Given a separated chain U = {Uy,...,U,} in X, with n > 3, the tightness
t(U) of U is defined as



#U) = min{d(U{clx (U) : U < U}, U{clx(U) : U; < UY) i € {2,...,n—1}}

Given two separated chains V and U = {Uy,...,U,} in X, with n > 3, we
say that V wultrarefines U provided that: (a) V is a @—chain, (b) there exist
V,W € V such that VN (U U...UU,) =0, WN (U, U...UU,_1) =0 and,
(c) for each V' € V, there exists U € U such that V C U. Clearly, for each
separated chain ¢/ in X and for each € > 0, there exists a separated e-chain V

in X such that V ultrarefines U.

Given two separated chains V and U in X such that V ultrarefines & and
given U,V € U, with U # V, we say that V folds from V to U provided that
there exist P,@Q,R € V such that P < Q@ < Ror R< Q < P, RP C UV,
PURCV and Q C U. We also say that V makes a zigzag between U and V
with elements P,Q,R,S e Vit P<Q <R< S, SPCUV, PURCU and
QUSCV.

Given € > 0, metric spaces Y and Z, and an onto mapping f:Y — Z, f is
said to be an e-mapping provided that diameter(f~1(z)) < ¢ for each z € Z.

The following lemma is easy to prove.

Lemma 7. Let X be a chainable continuum and let ¢/ and V be separated
chains in X such that V ultrarefines «. Then:

(a) If U,V € U, where U < V and P, Q € V satisfy PNU # () and QNV # 0,
then for each W € U such that U < W < V, there exists R € V such that R is
between P and Q, RNW # () and the only element of I/ which intersects R is
w.

(b) If U,V € U, where U # V, then there exist P, @ € V such that P C U,
Q CV, PQ C UV and PQ intersects W for each W € U which is between U
and V.

(¢c) If A is a subcontinuum of X, U (resp., V) is the first (resp., last) element
of U intersecting A, then A C UV and A intersects each element W € U which
is between U and V.

(d) ¥ U,V € U and U < V, then there exists a subcontinuum A of X such
that A C clx (UV), AN clx(U) # @ and AN clx (V) # 0.

(e) If U is an e-chain, U,V € U and clx(U)N clx (V) = 0, then there exists
an onto e-mapping ¢ : clx(UV) — [0,1] such that clx(U) = ¢~1(0) and
Ax (V) = (1),

Two basic results

Throughout this paper the letter X will denote a continuum, with metric d,
we define the metric D on X x X by D((u,v), (z,y)) = 1(d(u,z)+d(v,y)). Given



two nonempty subsets K and L of X we define d(K,L) = inf{d(z,y) : € K
and y € L}. For subsets K, L C X x X, the symbol D(K, L) is defined in a
similar way.

Given a chainable continuum X, a mean p: X x X — X, a separated chain
U and elements U and V of U, we define D(clx(U)) = {(u,u) € X x X : u €
clx(U)} and

D(U,V) =J{E : E is a component of (clx(UV)x clx(UV)) N pu~t(clx(U))
and END(clx(U)) # 0}.

Theorem 8. Let X be a chainable continuum, p: X x X — X a mean, U
a separated chain in X and U,V € U. Suppose that clx (U)N clx(V) = 0 and
DU, V)N ((clx (UV)x clx (V) U (clx (V) x clx(UV)) = . Then there exists
n > 0 such that, if V is a separated n-chain in X, then V ultrarefines & and V
does not fold from V to U.

Proof. Let L = clx(UV)x clx(UV), J = D(clx(U)) and M = (clx(UV)x
clx (V) U (clx (V) x clx(UV)). Let N = (LN p~Y(clx(U))) U M. Then N
is a compact subset of L. Given a component F of N, we claim that either
ENnJ =0o ENM = (. Suppose to the contrary that £ N J # 0 and
ENM #0. Fix a point p € ENJ. Since clx(U)N clx (V) =0, MNJ =10, so
p ¢ M. Let C be the component of E— M containing p. Since F— M is a proper
nonempty subset of the continuum F, by [13, Theorem 5.6, p. 74], @ # clg(C)N
bdg(E — M) C clg(C) N M. On the other hand, since C C LN pu~(clx(V)),
there exists a component F of L N pu~!(clx(U)) such that C C F. Then ) #
cg(C)NM Cc FNM. Sincepe FnJ, F cDWU,V). Thus D(U, V)N M # 0,
contrary to our assumption on D(U,V). We have proved that ENJ = 0 or
EN M = (. Therefore, no component of N intersects both sets N N.J and M.
By [13, Theorem 5.2, p. 72], there exist disjoint compact sets K and G such
that N = KUG, NNJ C K and M C G. For each point u € U, (u,u) € NNJ.
Thus NN J # 0.

Fix 0 < 9 < D(K, L) such that, if V is a separated n-chain in X, then V
has at least three elements and V ultrarefines U.

Let V be a separated n-chain in X. We are going to prove that V' does not
fold from V to U.

Suppose to the contrary that that V folds from V to U. Then there exist
PQReVYsuchtht P< Q< RorR<@Q< P, PRCUV,PURCYV
and Q C U. Let § > 0 be such that § < n and, if D((u,v), (z,y)) < §, then

d(p(u, v), w(x, y)) < (V).

Let W be a separated d-chain such that W ultrarefines V. By Lemma 7 (b),
there exist S,T € W such that S C P, T C R, ST C PR and ST intersects W



for each W € V which is between P and R. By Lemma 7 (d), there exists an
onto §-mapping ¢ : clx (ST) — [0, 1] such that clx (S) = ¢ =1(0) and clx(T) =
0 (1), Let ¥ : clx (ST)x clx(ST) — [0,1]? be given by ¥(x,y) = (¢(z), ¢(y))-
Then 9 is an onto J-mapping.

Suppose that there exist points (u,v), (z,y) € clx(ST)x clx(ST) such that
(u,v) € K, (z,y) € G and ¢(u,v) = Y(x,y). Then D((u,z),(v,y)) < 6 <
D(K, G), a contradiction. We have shown that ¥ ((clx (ST)x clx(ST))NK)N
P((clx (ST)x clx(ST))NG) = 0.

We show that the boundary B of [0,1]? in R? is contained in v((clx (ST)x
clx (ST)) N G). Given a point (0,s) € B, since ¢ is onto, there exist points = €
S CPCVandy € clx(ST) such that ¢(z,y) = (0,s). Thus (z,y) € M C G.
Hence {0} x [0,1] C ¢((clx (ST)x clx(ST)) N G). The rest of points of B can
be treated in a similar way. Thus B C ¢((clx (ST)x clx(ST)) N G).

Let A denote the triangle contained in [0, 1]? with vertices (0,0), (0,1) and
(1,1) and let A denote the diagonal of [0,1]%. By the choice of S and T, there
exists a point ¢y € ST NQ C U. Then (z,z9) € NNJ C K. Thus ¢(xg,x0) €
ANy((clx (ST)x clx(ST)) N K).

Hence we can apply Theorem 2 to the triangle A, the closed disjoint subsets
Hy = ’(/J((Clx(ST)X Clx(ST))ﬂG)ﬁA and Ko = ¢((Clx(ST)X Clx(ST))ﬁK)ﬂ
A, since ({0} x [0,1]) U ([0,1] x {1}) C Hp and ¢ (zg, zo) € Ko N A. Thus there
exists a one-to-one continuous function 5 : [0,1] — A such that 5(0) = (0,0),
B(1)=(1,1),ImBN Ky =0 and Im3 N Hy C A.

Since 1 is a J-mapping, there exists ¢ > 0 such that if A C [0,1]? and
diameter(A) < e, then diameter(y)~'(A)) < d. Since § is uniformly continuous,
there exists A > 0 such that, if [t — s| < A, then [|5(t) — B(s)|| < e.

Let 0 = tp < t1 < ta < ... <ty = 1 be a partition of the interval [0, 1]
such that t; —t;_1 < A for each 7 € {1,2,...,m}. For each ¢ € {0,1,2,...,m},
choose an element (z;,y;) € clx(ST)x clx(ST) such that ¥(z;,y;) = B(L;), in
the case that 8(t;) € A, B(t;) = (t,t) for some ¢ € [0, 1], since ¢ is onto, we can
choose z; € clx(ST) such that ¢(x;) = t, then ¥ (z;,x;) = B(;), so in the case
that B(t;) € A, we can assume that z; = y;. In particular, since 8(0) = (0,0)
and 8(1) = (1,1), zg € clx(S) and z,, € clx(T).

For each ¢ € {0,1,2,...,m}, let p; = p(x;,y;). Then py = zg = p(zo,x0) €
clx(S) C cx(P) and pp, = zym = p(Tm,zm) € cx(T) C clx(R). Given
i €{1,2,...,m}, since t; — t;—1 < A, ||B(t;) — B(ti—1)|| < e. Since (z;,v:),
(zi-1,9i-1) € ¥~ ({B(t:), B(ti—1)}), by the choice of &, D((wi,4i), (zi-1,9i-1)) <
§. By the choice of §, d(p;, pi—1) < t(V).

Since pg € clx(P), pm € clx(R), P < Q < R and d(p;,p;—1) < t(V) for each
i€ {1,2,...,m}, there exists j € {1,2,...,m} such that p; € Q. Thus p; €



cx(U) and (zj,y;) € p~ (clx (U))N(clx (ST)x clx (ST)) C p~*(clx(U))NL C
N = KUG. Hence (zj,y;) € K UG. We know that ¢(z;,y;) € Imf C A
and Im 3 N Ky = 0, this implies that (x;,y;) ¢ K. Thus (z;,y;) € G. This
implies that ¢(z;,y;) € HoNImpB C A. By the choice of (z;,y,), z; = y,.
Then z; = p(z;,y;) = p; € clx(U). Thus (z;,z;) € NNJ C K. Hence
(zj,y5) € GN K, a contradiction.

We have shown that V does not fold from V' to U. This completes the proof
of the theorem. W

Theorem 9. Let X be a chainable continuum and g : X x X — X a mean.
Then for each € > 0, there exists A > 0 such that, if U is a separated A-chain in
X and U,V € U are such that d(clx (U),clx(V)) > ¢, then there exists n > 0
such that for each separated n-chain V, V ultrarefines U, and V does not fold
from V to U or V does not fold from U to V.

Proof. Let € > 0. Since p is uniformly continuous, there exists A > 0 such
that, if D((z,y), (u,v)) < A, then d(u(x, y), p(u, v)) < e. Let U be a separated
A-chain and let U,V € U be such d(clx (U),clx(V)) > e.

Claim. D(U,V) N ((clx(UV)x clx(V)) U (clx(V)x clx(UV)) = 0 or
D(V, U) n ((Clx(UV)X Clx(U)) @] (Clx(U)X Clx(UV)) = .

In order to prove this claim, suppose that it is not true. By Lemma 7 (e),
there exists an onto A-mapping ¢ : clx(UV) — [0,1] such that clx(U) =
¢ 10) and clx (V) = ¢~ 1(1). Define ¥ : clx(UV)x clx(UV) — [0,1] by
Y(z,y) = (p(x), (y)). Then v is an onto A-mapping.

Given a component E of (clx(UV)x clx(UV)) N u~t(clx(U)) such that
E N D(clx(U)) # 0, there exists xg € clx(U) such that (zg,z9) € F, so
(0,0) € ¥(FE). Since p is symmetric, E is a symmetric subset of clx(UV)x
clx (UV). This implies that (D(U,V)) is a symmetric subcontinuum of [0, 1]2
containing (0,0), and by our assumption on D(U, V), ¢(D(U, V)) intersects the
set [0,1]x{1}. Similarly, 1(D(V,U)) is a symmetric subcontinuum of [0, 1]? con-
taining (1, 1) and intersecting the set {0} x [0, 1]. This implies that ¥/ (D(U, V))N
Y(D(V,U)) # 0. Take points (z,y) € D(U,V) C p~(clx(U)) and (u,v) €
D(V,U) C p~(clx(V)) such that ¢ (z,y) = ¥(u,v). Then D((z,y), (u,v)) < A
and d(p(z,y), p(u,v)) < e. This contradicts the choice of U and V and com-
pletes the proof of the claim.

Suppose, without loss of generality, that D(U, V) N ((clx (UV)x clx(V)) U
(Clx(V)X CIX(UV)) = @

Let 7 > 0 be as in Theorem 8. Hence, if V is a separated 7-chain in X, then
V ultrarefines Y and V does not fold from V to U. B
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The hereditarily decomposable case

A nondegenerate continuum X is decomposable provided that there exist
two proper subcontinua A and B of X such that X = AU B. The continuum
X is said to be hereditarily decomposable if each nondegenerate subcontinuum
of X is decomposable. Given two points p,q € X, we say that X is irreducible
between p and q, provided that there is no proper subcontinuum of X containing
both points p and q.

Given a subcontinuum A of a chainable continuum X and a chain U in X,
we say that two elements U and V of U bound A provided that AC UV, U <V
and {W e U : U < W < V} is a minimal subchain of & containing A. Note
that W N A # () for each W € U such that U < W < V. Note also that, if A is
not contained in the intersection of two elements of ¢/ then U and V are unique.

Theorem 10. If X is a hereditarily decomposable chainable continuum
and X admits a mean, then X is an arc.

Proof. Let p: X x X — X be a mean. Suppose to the contrary that X is
not an arc. By [13, Theorem 12.5, p. 233] there exist two points p and g of X
such that X is irreducible between p and ¢. By [12, Theorem 3, p. 216], there
exists a monotone mapping ¢ : X — [0,1] such that ¢(p) = 0, ¢(q) = 1 and
intx (p~1(t)) = 0 for each t € [0,1].

Since X is not an arc, ¢ is not one-to-one. Thus, there exists tg € I
such that W = ¢~1(tg) is nondegenerate. Note that W C clx (¢~ 1([0,)))U
(91 ((to, 11)). So, W = (clx (™ 1([0,40)) N W) U (elx (=1 ((to,1])) N W),
Without loss of generality we can assume that Y = clx (o1 ((to,1])) N W is
nondegenerate.

Since X is monotone, each set of the form ¢~!([t, 1]) is a subcontinuum of X,
this implies that ¢ ~1((¢o, 1]) is connected. Since X is chainable, X is hereditarily
unicoherent ([13, Theorem 12.2, p. 230]). Thus Y is a subcontinuum of X. Since
Y itself is chainable, there exist points pg,qo € Y such that Y is irreducible
between py and qg. Hence there exists a monotone mapping 7 : ¥ — [0, 1]
such that 7(pg) = 0, 7(go) = 1 and inty (7=1(¢)) = 0 for each ¢ € [0,1].

Let e = 1d(7=1([0, 3]), 7= 1([2,1])). By Theorem 9, there exists A > 0 such
that, if I/ is a separated A-chain and U,V € U are such that d(clx (U),clx (V)) >
€, then there exists > 0 such that for each separated n-chain V', V ultrarefines
U, and V does not fold from V to U or V does not fold from U to V.

Let > 0 be such that

46 < min{\, d(7=1([0, 2]), 7~ (1)), d(7~1(0), 7~ ([3, 1])),e}.
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Let U be a separated d-chain in X. Let U,,, Uy, € U be such that py € Up,
and qo € Uy,. At this point we have two possible orders for U. So, we choose the
order that satisfies U,, < Ug,. Given elements Wy, Wy € U such that py € W;
and qo € W, we have that diameter(U,, U W), diameter(Uy, U W3) < 5. If
(Upy UW1) N (Ugy UW2) # 0, then d(po, qo) < €, contradicting the choice of €.
Therefore, (Up, UW1) N (Uy, UWa) = 0. Since U, < Uy, we conclude that

Wi < Ws. Let U,V € U be such that U and V bound Y.

Claim. d(clx (U),clx(V)) > e.

In order to prove the claim, let Uy, Us, Us, Uy, Us, Ug, U7, Ug € U be such Uy
and Uz bound 771(0); Us and Uy bound 7~1([0, 2]); Us and Us bound 7~ ([3,1])
and U; and Ug bound 7T_1(1). Note that we may assume that U < Us < U; <
Up<Us <Vand U <Us <U; <SUs <Ug < V.

We show that U;Us N UsUg = 0 and UsU, N U7;Ug = 0. Suppose that there
exists a point € UyUs NUsUg. Then there exist P, Q) € U such that x € PNQ
and Uy < P < U, Us < @Q < Ug. We can take points y € PN 77_1(0) and z €
QNa~1([3,1]). Then d(y, 2) < d(y,x)+d(x, z) < diameter(P)+ diameter(Q) <
26 < d(7=(0),77*([3,1])) < d(y,z), a contradiction. We have shown that
U1U2 N U5U6 = @ Similarly, U3U4 n U7U8 = @

Since pg € U1Us and qo € UsUg, there exist Wy, Ws € U such that py €
Wi, qo € Wo, Uy < Wy < Uy and Us < Wy < Ug. Then Wy < Wha. Since
U U; N UsUg = 0, we conclude that Us < Us. Similarly, Uy < Us.

If Una '([3,1]) # 0, then UNUsUs # 0. This is impossible since
U < Uy < Us < Ug. Hence Uﬁw’l([%,l}) = (. On the other hand,
UNY # 0, so UNa ([0,5]) # 0. Similarly, V na ([2,1]) # 0. If
d(clx (U),clx(V)) < e, then there exist points = € clx(U) and y € clx (V)
such that d(z,y) < e. Since diameter(cly (U)) and diameter(clx(V)) < e, we
conclude that d(7~*([0, 3]),7*([2, 1])) < 3¢, contradicting the definition of &.
Therefore, d(clx (U),clx(V)) = € and the claim is proved.

Since U is a separated \-chain, there exists > 0 such that for each separated
n-chain V, V ultrarefines U/, and V does not fold from V to U or V does not fold
from U to V.

Since (N{clx (¢~ ((to,to + 1])) : n € N} is contained in Y, there exists
n € N such that ¢~ *((to,to + 2]) C UV. Fix points u; € Y NU and vy €
Y NV. Since uy € ¢ 1(to)N clx (¢~ 1((to,1])), we can choose a point uy €
(U — (@71([t0 + %, 1])) N (pil((to, 1], sous € UN @71((t0,t0 + %)) Similarly,
we can choose a point v2 € V N ((to, to + 2)). Let Ay = o~ (p(u2)p(v2)),
where (ug)p(ve) is the subinterval of the real line joining the points o(us2)
and ¢(vy). Since ¢ is monotone, Ay is a subcontinuum of X such that As C
0 Y(to,to +2]) CUV, AoNU # B and A, NV # (). Let m > n be such that

© M ((to, to + =5]) N Az = . Proceeding as before, there exists a subcontinuum
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Asz of X such that A3 C o~ ((to,to + =]) CUV, A3NU # 0 and A3 NV # 0.
Thus Az N Ay = (). Similarly, there exists a subcontinuum A4 of X such that
Ag C o H((to, to + £]) — (A2 U A3) such that Ay NU # 0 and A, NV # 0. For
each i € {2,3,4}, fix points r; € A;,NU and s; € A;,NV.

Let K be the convex hull of the set p(Az) U @(As) U(Ag) C (to,to + 1].
Then ¢~ !(K) is a subcontinuum of UV.

Let ¢ > 0 be such that 2¢ < min{n, d({re,r3,74}, X —U),d({s2, s3,84}, X —
V),d(e7 1 (K),X —UV)} and 2¢ < d(A;, A;), if i # j.

Take a separated (-chain V (and then V is a separated 7n-chain). We will
obtain a contradiction by proving that V folds from V to U and V folds from U
to V.

Let Vi, Wy, Vo, Vs Vi, Wo, W3, Wy € V be such that: V; and W; bound
@ 1K), Vo and Wy bound As, V3 and W3 bound Az and V; and W bound
Ay. By the choice of ¢ the sets VoWs, V3W3 and VW, are pairwise disjoint.
We may assume that V7, < Vo < Wy < V3 < W3 < Vy < Wy < Wy, Let
Rs, R3, Ry, S, 53,54 € V be such that, for each i € {2,3,4}, r; € R;, s; € S;
and V; < R;, S; < W;. By the choice of {, ReUWR3URy C U, SoUS3USs CV
and VW, c UV.

Since Ry < S3 < R4 and Sy < Rz < S4, we obtain that V folds from V'
to U and V folds from U to V. This contradiction completes the proof of the
theorem. W

The other case

Proof of Theorem 1. As usual, let D be the metric in X x X given
by D((u,v), (z,y)) = 2(d(u,z) + d(v,y)), where d is a metric for X. Suppose
that g : X x X — X is a mean. By Theorem 10, we may assume that there
exists a nondegenerate subcontinuum Y of X such that Y is not the union of
two of its proper subcontinua (Y is indecomposable). We are going to find a
contradiction by constructing a function A : {1,2,...,4N} — X (where N is
a positive integer) with the property that diameter(Imh) > 3diameter(Y) and
diameter(Im k) < 1diameter(Y).

Claim 1. If{/ is a separated (§diameter(Y"))-chain in X and U and V are the
elements of & which bound Y, then there exists §; > 0 such that each separated
01-chain V satisfies that V ultrarefines U and V makes a zigzag between U and
V with elements P,Q, R, S € V such that Uy < P < @ < R < § < Vy, where
Uy and Vj are the elements in V which bound Y.
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In order to prove Claim 1, let U be a separated (idiameter(Y))-chain in X
and let U and V be the elements of &/ which bounds Y. Fix points p € Y NU
and ¢ € Y NV. Let Ky, Ky, K3 and K4 be four pairwise different composants
of Y ([13, Theorem 11.15, p. 203]). Since each K is dense in Y ([13, 5.20 (a),
p. 83]), we can choose points p; € K; NU and ¢; € K; N V. Then there exist
proper subcontinua A; C K, Ay C Ky, A3 C K3 and Ay C K4 of Y such
that p;,q; € A; for each i € {1,2,3,4}. Thus Ay, A3, A3 and A, are pairwise
disjoint. Let §1 > 0 be such that d; < min({d(A4;,4;) : 4,5 € {1,2,3,4} and
i 7é .7} U {d(}/v X - UV)5 d({p17p27p37p4}7 X - U)7 d({(h? 92,43, Q4}a X - V)} and
each separated d;-chain ultrarefines U.

Let V be a separated d;-chain. Then V ultrarefines /. We show that V makes
a zigzag between V and U. Let Uy, Uy, Us, Uz, Uy, Vi, V1, Vo, V3, V4 € V be such
that Uy and Vj bounds Y and U; and V; bounds A; for each i € {1,2,3,4}.
By the choice of 41, it follows that U; V3 U UaVo U UsV3 U UV, C UgVy C UV
and U;Vp,UsV,,UsVs and U,V are pairwise disjoint. Thus we may assume
that Uy < U; < Vi1 < U < Vo < U3 < Vg < Uy <Vy <Vy. For each
i €{1,2,3,4}, let S;,T; € V be such that p; € S;, ¢; € T;, U; < S;,T; < V.
By the choice of 61, S1US;US3USy C U and Ty UTo UT3UTy C V. Since
Up <51 < Ty < 83 < Ty <Vp, we have that V makes a zigzag between U and
V. This completes the proof of Claim 1.

Let 6 > 0 be such that § < 1 (diameter(Y)) and,
if D((u,v), (z,y)) < 46, then d(u(u,v), p(z,y)) < 15 (diameter(Y')).

Fix a separated d-chain U.
Let U,V € U be such that U and V bound Y.

If clx(U)N clx (V) # 0, then UNV # 0 (U is a separated chain). Thus
diameter(UV) < 2§. This is a contradiction since Y C UV. This proves that
Clx(U)ﬁ Clx(V) = 0.

By Lemma 7 (a), there exists an onto J-mapping f : clx(UV) — [0, 1] such
that clx (U) = f~1(0) and clx (V) = f~1(1).

Let n > 0 be such that, if z,y € clx(UV) and |f(z) — f(y)| < 27, then
d(z,y) < 9.

Let §; > 0 be as in Claim 1 applied to U, U and V. We may assume that
01 <d(Y,X —UV), 61 < 6 and d; has the property that,

if x,y € clx(UV) and d(z,y) < 201, then |f(z) — f(y)| < n.
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Fix a separated d;-chain V.

By the choice of §1, V ultrarefines i/ and V makes a zigzag between U and
V with elements P,Q, R, S € V such that Uy < P < Q < R < S < Vj, where Uy
and Vj are the elements in V which bound Y. Then PS C UV, PUR C U and
QUS C V. Since each element T' € V such that Uy < T <V} intersects Y, by
the choice of 41, we conclude that T'C UV. Thus UyVy C UV. We can assume
that P is the first element in the set {T'€ V: Uy < T < Vy} such that P C U ;
we also assume that @ is the first element in the set {T' € V: P < T < Vj}
such that @ C V; R is the first element in the set {T' € V : Q < T <V} such
that R C U and S is the first element in the set {T € V: R < T < Vj} such
that S C U.

If Uy NVy # 0, then diameter(Y) < diameter(UpVp) < 261 < idiameter(Y),
a contradiction. Hence Uy NVy = 0. Thus V has at least three elements, so (V)
is well defined. Since V is separated, clx (Up)N clx (Vo) = 0.

Claim 2. D(Uo, Vo) N ((Clx(U()Vo)X Clx(Vo)) U (Clx(Vo)X Clx(Uo‘/o)) 75 @

To prove Claim 2, suppose, to the contrary that D(Uy, Vo) N ((clx (UgVp) X
clx (Vo)) U (clx (Vo) x clx (UpVp)) = 0. By Theorem 8, there exists n; > 0 such
that if Vy is a separated 7;-chain in X, then Vy ultrarefines V and V, does not
fold from V; to Uy. Let d2 > 0 be as in Claim 1 applied to V, Uy and Vp, we
may also ask that do < ;. Let Vy be a separated do-chain in X. By the choice
of ny, Vo ultrarefines V and Vy does not fold from Vj to Uy. On the other hand,
by the choice of d5, Vy makes a zigzag between Uy and Vy and then )V, folds
from Vj to Up, a contradiction.

This completes the proof of Claim 2.

By Claim 2, there is a component E of (clx (UpVp) x clx (UgVp))Nu™ L (clx (Uy))
such that £ N D(clx(Uy)) # 0 and E N ((clx(UgVp)x clx(Vp)) U (clx (Vo) x
Clx(Uo‘/b)) 7é (Z)

We only consider the case £ N (clx(Vp)x clx(UpVp)) # 0, the other one is
analogous.

Let w1, m2 : X Xx X — X be the respective projections on the first and second
coordinates. Let Cp = m1(E) Uma(E).

Fix an element (ug,ug) € END(clx(Up)). Then ug € 71 (E) N 7w2(E), so
Cy is a subcontinuum of X such that Cy N clx (Uy) # 0, Co N clx (V) # 0 and
Co C clx(UgVp). Fix an element (vg,20) € E N (clx(Vh)Xx clx(UpVp)). Then
ug € Cop N Clx(Uo) and vg € Cy N Clx(‘/o)

Let §3 > 0 be such that d3 < min{d1,¢(V)} and 03 has the property that,
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if D((u,v), (z,y)) < d3, then d(p(u, v), u(z,y)) < t(V).

Fix a separated ds-chain W such that W ultrarefines V.

Let Uy, Vi € W be such that U; and V; bound Cy. For each W € W,
fix a point py € W — (| H{clx(S) : S € W—{W}}). Given a point (z,y) €
E, z,y € Cy, so there exist S,T € W such that (z,y) € S x T and U; <
S, T < V4. We have shown that the family F = {S x T : 5,7 € W and
Uy <S5, T <Vp}is an open cover of E. Since E is connected, there exists n € N
and Sl,...,Sn,Tl,...,Tn € W such that U; < Sl,...,Sn,Tl,...,Tn < Vi,
(ug,uo) € (S1xT1)NE, (vo,20) € (Sp, xT,)NE and, foreachi € 1,...,n—1,
((Si x Ti) NE) N ((Sig1 x Tiy1) N E) # 0.

Foreachi € {1,...,n—1}, fix apair (a(3), 5(7)) € (S;xT;)N(Sit+1xTi41)NE.
Hence p(a(i), 5(4)) € clx(Uy). Put a(0) = ug = 5(0) € S1 N T1.

Claim 3. There exists j € {0,1,...,n — 1} and there exists an element
x € {a(j),B(j)} such that € R and R is the only element of V containing x
in its closure.

We prove Claim 3. Since S1NTy # 0, S;NS;u1 # 0 and T; N Ty # 0
for each i € {1,...,n — 1}, the set {S1,...,5,,T1,...,T,} can be reordered as
a subchain Wy of W. Since ug € S1N clx(Uy), S1 N Uy # 0. Since vy € SN
clx(Vo), S NV # 0. By Lemma 7 (a), since Uy < R < Vp, there exists an
element Ry € Wy such that Ry N R # 0, and the only element of ¥V which
intersects Ry is R, so the only element of V whose closure interesects Ry is R.
Thus Ry C R. Since Ry contains either one element of the form a(j) or one
element of the form 3(j), we conclude that there exists j € {0,1,...,n — 1}
and there exists an element = € {«(j), 5(j)} such that € R and R is the only
element of V containing z in its closure. This ends the proof of Claim 3.

Let jr = min{j € {0,1,...,n— 1} : there exists an element x € {a(j), 5(j)}
such that € R and R is the only element of V containing z}. By symmetry,
we may assume that 5(jr) € R and R is the only element of V containing 5(jr)
in its closure. Since 5(0) = ug € clx(Up) and Uy < R, 0 < jg.

Let Wy ={W €V : Uy < W < R}. Since W is a subchain of V, we can put
Wi = {Wo,...,Wn}, where Uy = Wy < ... < W,, = R. Note that P,Q € W,.
So, @ = W, for some ig € {0,1,...,m}. Since Uy < P<Q < Rand PNQ =10
(PcUand QCV), 1<ipg<m.

Applying Lemma 7 (a), considering that the family {T},...,Tj,} can be put
as a subchain of W, it can be shown that for each i € {1,..., m—1}, there exists

Jji €{1,...,jr} such that:

B(j;) € W; and W; is the only element of V containing £(j;) in its closure.
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We may assume that j; is the last element in {1,...,jr} with the described
properties. Define j,, = jgr-

Since E C clx (UgVh) X clx (UoVp), Co C clx (UgVp).
Claim 4. «a(i) € clx(Up) UW1 U...UW,, for each i € {0,1,...,Jr}.

In order to prove Claim 4, suppose to the contrary that there exists i €
{0,1,...,74r} such that a(i) ¢ clx(Up) UWi U...UW,,. Since a(0) = ug C
clx(Uy), 0 < i. Let W € V, be such that a(i) € W. If W,,, < W, since the
family {S1,...,S;} can be put as a subchain of W, applying Lemma 7 (a), there
exists k € {1,...,7— 1} such that a(k) € W,, = R and R is the only element of
V containing (k). This contradicts the choice of jr and proves that W < W,,,
thus W < Wy = Uy. Since Oé(Z) € Cy C Clx(U()VO) = U{Clx(T) U <T < VO}
Since V is a separated chain, the only element in the family {clx(T) : Uy <
T < Vp} that can be intersected by W is clx (Up). Thus «(i) € clx(Up), a
contradiction. This completes the proof of Claim 4.

In a similar way it can be proved the following claim.
Claim 5. 3(:) € clx(Up) UWi U...UW,, for each i € {0,1,...,jgr}.

Define o : {0,1,...,2jr — jis } — {0,1,...,2m —ip} by

o(i) =
0, if 0 <i < jgrand B(i) € clx (o),
min{k € {1,...,m}: B(i) € Wy}, if0<4i<jrand (i) ¢ clx(Uo),
9m — o(2jp — 1), if jr < i < 2R — Jio-

Since B(0) = ug € clx (Up), o(0) = 0. Giveni € {1,...,m}, 5; € {0,1,...,7r},
B(j;) € W; and W; is the only element of V containing 3(j;) in its closure, in
particular, 5(j;) ¢ clx(Up). Thus o(j;) = 4. In particular, o(j;,) = io. Hence
O'(QjR _jio) =2m — U(jio) =2m — io.

Let ¢ € {jiy,.-.,JRr}, we are going to show that ig < o(i) < m. Since
o(jis) = 0, we may assume that j;, < 4. Suppose to the contrary that o (i) < 4.
Note that 3(i) € clx(Up) or B(i) € Wy(;). In the first case, let W € V be such
that 8(¢) € W. Since WNUy # 0 and 1 < 49, W < W;; = Q. Thus, in both
cases, there exists W € V such that (i) € W and W < W;, = @ < R. Consider
the family {7;,...,7},} C W. Since T; "W # 0 and B(jr) € Tj, N Wy, and
{T;,...,Tj,} can be rearrenged as a subchain of W, by Lemma 7 (a), there
exists | € {i,...,jr} such that @ is the only element of V containing 5(I) in
its closure. This contradicts the maximality of j;, and completes the proof that

Given i € {jr,..-,29r — Jio }s Jio < 2jr — 1 < jg. Since we have shown that

io < 0(2jr — i) < m, we conclude that m < 2m — o(jr — ) < 2m — ig. This
proves that o (i) € {0,1,...,2m —ig} for each i € {0,1,...,2jr — Ji, }-
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Claim 6. For each i € {1,2,...,2jr — jio }, l0(3) —a(i — 1)] < 1.

To prove Claim 6, let 4,5 € {0,1,...,2jr — ji, } be such that |¢ — j| = 1. By
the choice of 8(7) and [(j), there exists T' € W such that 3(i), 5(j) € T. By the
choice of 03 and W, d(8(7), 8(4)) < t(V). Since Wy, , Wy, € V,if 8(7) € clx (Wy,)
and ((j) € clx(Wi,) for some k1,k2 € {0,1,...,m}, then |k — k2| < 1.

‘We consider three cases.

Case 1. 0< 4,5 < jgr.

If 5(i) € clx(Uy), then B(j) € clx(Uy) or 8(j) € Wi— clx(Up), in both
cases, |o(i) —o(j)| < 1.

If B(j) € clx(Uy), similarly, |o(i) — o(j)] < 1.

If 3(i) ¢ clx (Uo) and B(j)  clx (Up), then B(i) € Wiy and B(j) € Wa).
Thus |o(i) —o(j)| < 1.

Case 2. jr < 1,J < 2jr — Jio-
In this case, 1 < j;, < 2jr —i,2jr —j < jr and |2jr — i — (2jr — j)| =
Applying the first case, |0(2jr — z) —0(2jr — )| < 1. Hence |o(i) — o(j)| S

Case 3. i =jgp and j = jp + 1.

In this case, o(i) = m and o(j) = -
lo(jr) —o(jr —1)| < 1. Thus |o(i) —o(j )| <1

Therefore, Claim 6 is proved.

o(jr — 1). By the first case,

Since a(ji,) € clx(Ug) UW7 U...UW,,, we can define mgy € {0,...,m} as:
mo = 0, if a(j;,) € clx(Up), and mg = min{j € {1,...,m} : a(j;,) € W;}, if
a(jiy) & clx (Uo)-

Let m1 = 2jr — Ji, + 1+ 2m — 39 — my.

Define p: {0,1,...,m1} — {0,1,...,2m —io} by:

pli) =
0, if 0 <i < jgr and (i) € clx(Up),
min{k € {1,...,m} : a(i) € Wi}, it 0<i<jp and a(i) ¢ clx(Uy),
p(2jr — 1), if jr <1 < 2jR — Jio
mo + i — (2jr — jiy + 1), if 2jr — Ji, <@ < my.

Since «(0) = ug € clx(Up), p(0) = 0. Note that p(m1) = 2m — iy and
p(i) < m for each i < 2jr — i, -

Claim 7. For each i € {1,...m1}, |p(3) —p(i —1)| < L

To prove Claim 7, let 4,5 € {0,1,...,m1} be such that |i —j] = 1. We
consider five cases.
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Case 1. 2jp — jJi, < 1,5 < my.
In this case, |p(i) — p(j)| =i —j| = 1.

Case 2. i = 2jr — Ji, and j = 2jr — Ji, + 1.
In this case, p(i) = p(2jr = jiy) = PJis) = mo = (7).

Case 3. 0< 14,5 < jgr.

By the choice of «(7) and «(j), there exists T € W such that a(i), a(j) € T.
By the choice of d3 and W, d(a(i), a(j)) < t(V). Thus, if a(i) € clx(Wy,) and
a(j) € clx(Wy,) for some ki, ks € {0,1,...,m}, then \kl — k| < 1. Thus:

If a(i) € clx(Up), then a(j) € clx(Up) or a(j) € Wi— clx(Uyp), in both
cases, |p(i) — p(4)| < 1.

If a(j) € clx(Uy), similarly, |p(i) — p(j)| < 1.

If a(i) ¢ clx (Up) and a(j) ¢ clx(Up), then a(i) € W,y and a(j) € W(;.
Thus |p(i) — p(j)] < 1.

Case 4. jr < 4,5 <2ir — Jiy-
In this case, 1 < j;, < 2jr —¢,2jr —j < jr. Applying Case 3, we obtain
that [p(2jr — 1) — p(2j — )| < 1. Henee |p(3) — p(j)| < 1.

Case 5. i = jp and j = jp + 1.

In this case, p(j) = p(jr — 1). By Case 3.1, |p(i) — p(j)] < 1.
Therefore, Claim 7 is proved.

Notice that clx(Up) UW1 U...UW,, C clx(UsVy) C clx(UV). Let J =
{a):i€{0,1,....jr}U{BG) 1 i € {0, 1,..., jr}}.

Define g : J — [0, 1] by

), if «(4)

_ f( Ug (S ClX(UO)7
o) = { 100, it ot ¢ el ) )a“d

f(uo), if (@) € clx (U

9(B(®) = { F(Bwo)), i 50) )

S
¢ clx(Uo).
(

Note that, if i € {0,1,...,jr} and a(i) ¢ clx(Up), then p(i) € {1,...,m},
50 Jpi) € 10,1,..., 4R}, then B(j,)) € clx(UoVo). Thus f(B(j,e))) and g(a(i))
are well defined. Similarly, g(3(7)) is well defined for each i € {0,1,...,jr}.

Giveni € {1,...,m}, 8(j;) € W; — (clx (Up)U...UW;_1), so o(j;) = i. Thus
9(B(:) = F(B(:)-

etI':[0,1] — [0, 1} be the PL mapping defined by the following conditions:
L(0) = g(B(0)), D(g=5) = 9(BG1); -+ T(gs;) = 9(B(im)), T(gnss) =

)
9(BGim-1)), T(ZEL) = g(B(im-2)), - - » T(ZF0)) = g(B(js, )
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Let ® : [0,1] — [0,1] be the PL mapping defined by the following con-
ditions: (0) = g(8(0)), (z-im) = g(BL), .., Dzim) — g(Alin).

() = g(B(jr — 1), D) = g(B(jr — 2)), ..., DL 0)) =

2jr—Jig

9(B(i))-
Let ¥ : [0,1] — [0,1] be the PL mapping defined by the following con-
ditions: ¥(0) = g(3(0)). W(z=im) = g(a(1)), ..., ¥(z2—) = glaljn)).

V(AL ) = glain — 1)), BHEL) = glal - 2), .. () =

2jrR—Jig 2JR—Jig 2JrR—Jig

g(a(]lo))

Let A : [0,1] — [0, 1] be the PL mapping defined by the following conditions:
A©) = 980N, A=) = g(Blin — ), -+ A=) = 6(3(ji).

Since ig > 0 and 5(j;,) € Q@ C V, so g(B(Ji,)) = f(B(i,)) = 1. Since

Blr) € R C U, g(B(jr)) = 9(B(im)) = f(B(im)) = [(B(jr)) = 0. Therefore,
I'l)=1,®(1) =1, A(0) =0 and A(1) = 1. Hence A is a jump mapping.

We want to apply Theorem 6 to the mappings I and ®.

Claim 8. I'(5= o (i) ) =&

2m—ig

) for each i € {0,1,...,2jr — Jiy }-

2]R Z

To prove Claim 8, we consider three cases.

Case 1. 0 < i < jg and 8(i) € clx(Up).
In this case o(i) = 0, T(325-) = g(B(0) = f(uo), ®(5 =) = g(B(i)) =
F(uo). Hence, T'(520 ) = ¢(——).

2m—io 2jr—%0

Case 2. 0 < i < jrand 8(i) ¢ clx(Up).

By definition of o (i), o(i) € {1,...,m}. By definition of ¢(8(7)), g(5(3)) =
F(BUo)). Thus @(5725) = f(Boei))- Since f(B(jk)) = g(B(ji)) for each
ke{l,...,m}and o(i) € {1,...,m}, we obtain that I'(;2%_) = 9(BUsw)) =

2m—1g
f(ﬁ(ja(i)))' Hence, F(Q:;(_)io) = ‘I)(szZ_io).

Case 3. jr <1 < 2jr — Ji,

In this case, 1 < j;, < 2jr —i < jr. As we proved after the definition of ¢
this inequalities imply that 1 < iy < 0(2jr —4) < m. Thus g(B(jr(2j5—1))) =
f(B(Jo2jr—1))) and 0 (i) = 2m—0c(2jr—i) € {m,...,2m—ig}. By the definition
of I', T'(a(4)) = 9(BUj2m-0o())) = 9(BUs2jn-1))) = [(BUs(2jr—n))- On the
other hand, ®(5-—- 710) = g(B(2jr — 4)). Since 1 < 0(2jr — i), B(2jr — 1) ¢
clx (Up), 50 ®(55--) = 9(B(2r — 0)) = f(BUo(2jn—))) = T(0(9)).

This completes the proof of Claim 8.
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Let ¥y : [0,1] — [0, 1] be the PL mapping which is the common extension of
the following two mappings: ¥(2t), if t € [0, 1], and T'((522) (4 — 4t) + 4t — 3),
if 3 <t<1.

2m7,

Since ig < m, 0 < 2m — ig — mg. Notice that ¥y is supported by the
1 2jrR—Jig 1 3 3,1 1
part1t10n0< m <. o< 2(2?]?) =3 < 1 < Z—‘rz(m) < ... <
3+ (3227222) = 1, which divides the interval [0,1] into m; = 2jg — ji, +
1+ 2m — 9 — My sublntervals

=T(52 p(i) ) for each i € {0,...,2jr — Ji, }-

2m—io

Claim 9. ‘Ifo(z(zj;—jm))

To prove Claim 9, we consider three cases.

Case 1. 0 <7 < jgr and (i) € clx(Up).
In this case, ,0( ) =0 and T(29") = ¢(8(0)) = f(up). On the other hand,

2m—ig)

0< Q(QJRi Ji0) § 5 SO \IIO(Q(QjR_jiO)) = \IJ(QjRi_jio) = g(()z(’L)) = f(UO) Hence,
Vo(gmzr—a7) = Do)

Case 2. 0 <i < jg and a(i) ¢ clx(Up),

By definition of p(i), a(i) € W) — (clx(Up) U Wi U ... UW,;—1). By
defnition of g(a(i)), g(a(®)) = £(Bp))- Thus Vo(gmrims) = Wgmi) =
9(a(@)) = f(B(pw))- Since f(B(r)) = g(B(jx)) for each k € {1,...,m} and
p(i) € {1,...,m}, we obtain that I'(52%-) = g(B(ju(s))) = f(B(ip))- Hence,
2 I(z525)

2m—i0 :

@) =

Case 3. jR<i§2jR—ji0. ) )
In this case, j;, < 2jr—1 < jg, 50 \Po(m) = \D(ﬁ) = g(a(2jr—
i) = W(2E=0) = Wo( 2B ) = (by the first two cases) F(%) =

 \2JR—Jig 2(2jr—Jig) m—io
N pG) ). This ends Case 3 and completes the proof of Claim 9.

2m—ig

It is easy to check that, if 2jgp—7j;, < i < m1, then \IIO(%—i—%(M)) =

2m—19—mo
mo+i—(2jr—Jjig+1)
F( 2m—ig )

Therefore, we can apply Theorem 6 to obtain a jump mapping €2y such that
\1/0 =TIo Q().

Let © : [0,1] — [0,1] be the PL mapping given by Q(t) = Q(5). Then
U =T0o0Q and Q(0) =0.

We also can apply Theorem 6 to ®, I' and o and obtain a jump mapping =
such that ® =T o =.
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By Theorem 4, there exist a jump mapping © and a PL mapping A such
that A(1)=1and To© = AoA.

By Theorem 3, there exist jump mappings IT and ¥ such that ©oll = =0 3.

By Theorem 5, there exist a PL mapping F and a jump mapping T such
that F(0) =0and Qo T =00 F.

By Theorem 3, there exist jump mappings ¢, x such that Y o{ =7 o k.

Observe that PoXo(=ToEZo0Xo(=To00Oocllo(=AoAollo( and
YoYok=To0QoTok=To0OofFforxk=AoAoF ok.

Hence PoXo(=AocAollo(and VoY ok =AoAof ok.

Notice also that ®(0) = (PoX0()(0) = (AoAoIlo)(0) = (Ao A)0),
®(1) = (PoXo()(1) = (AoAoIlo()(1) = (AoA)(1) and ¥(0) = (\IJOTOE)( )=
(AoAoF ok)(0)=(AoA)0).

Let 0 = r < ry < ... < ry = 1 be a partition of [0,1] such that, for
each i € {2,...,N} and each £ € {Zo(,Aollo(,Toxk,AoF ok}, we have
1
€(ri) = &(rie1)| < sy
Given a nonempty closed set B C R and a point = € R, choose the lowest
(in the order of the real line) point 7(x,B) € B such that |z —7(z,B)| =
min{|z —y| : y € B}.

Let v:{1,2,...,2N} — [0,1] be given by

V(i) =

2jrR—Ji o
TECD) A gmsg T 25— }) if i € {1,2,..., N},
T(AM(¢(ran—it1))), {].RE% , jR_ljiO T ?m b, ifie{N+1,...,2N}.

Let A:{1,2,...,N}U{2N +1,...,3N} — [0, 1] be given by

i) =
2j i e
T(Y(s(ri) A5t Tmsge > 2= gi D, ifi € {1,2,...,N},
T (R(rimen)) A 575 oo o)), (i€ {2N +1,.... 3N}

Let L={1,...,4N} and let F,G : L — X be the functions defined by:

F(i) =
B(k), if (i) = 5525, k€ {0, 1,... . jr}, i €{1,..., N},
B(2jr — k), (i) =555 k€ {rn+1,..., 2jr —ji}, i €{L,..., N},
Blr—k), i) = 55—, 6{0,...,]R—jio},ie{N—i—l,...,QN},

F(i—2N), ifie{2N+1,...,4N},
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G(i) =
alk), if)\(i):zj% ke{O,l,...,jR},z‘e{l,...,N},
G(2N —i+1), ifie{NJrl 2N},
ﬁ(jR_k)a lf)\(’L)—]R —Jig 6{0 a.]R_jm}7ZE{2N+1773N}7

G(6N —i+1), ifi€{3N+1 . AN}

In the following claim we resume some easy to check equalities.

Claim 10. F(1) = ug = G(1); F(N) = A(js,); G(N) = alji,); F(N +1) =
B(jio); G(N +1) = a(ji,); F(2N) = B(jr — ko), where y(2N) = - ko —

JR—Jig

(J
(AO). {5725 InTJio V) G(2N) = ug; F(2N + 1) = ug, G2N + 1) =
(J
(

3

i~ ot FIBN) = 53 GEN) = flin — k), where 15— = A@BN) =
A (R(0). - 250 PG +1) = A GEN 1 1) = G(aN:

F(4N) = B(jr — ko) and G(4N) = B(jr — ko).

™

Let h: L — X be given by

From Claim 10, the following claim is immediate.

Claim 11. A(1l) = uo; h(N) = (N +1); h(2N) = h(2N + 1); h(3N) =
h(3N + 1) and h(4N) = B(jr — ko), for some ko € {0,1,...,5r — Jiy }-

Claim 12. d(F(i), F(i + 1)) < 03 for each ¢ € L — {N,2N,3N,4N}.

To prove Claim 12, first we consider the case that i € {1,..., N — 1}.

Let v(i) = 2leiji(, and (i +1) = 2leiji0. By the choice of r; and 7,11,
[Z(¢(ry) — Z(¢(rit1)| < m This implies that |l; —l2| < 1. Analizing
0

the possibilities for 1 and ls (I1,ls < jr, I1 < jr < I3, la < jr < Il; and
Jr < l1,lo) it can be seen that F(i) = B(i1) and F(i + 1) = B(i2) for some
i1,72 € {1,...,jr} such that |i; —iz| < 1. By the choice of 8(i1) and B(iz),
there exists T' € W such that 3(i1), 5(i2) € T. Therefore, d(F' (i), F(i+1)) < d3.

The case i € {N+1,...,2N —1} is similar. The case i € {2N+1,...,3N —
1}U{3N +1,...,4N — 1} follows from the previous ones and the definition of
F.

This completes the proof of Claim 12.
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Similar arguments can be used to show the following claim.

Claim 13. d(G(i),G(i + 1)) < 3 for each : € L — {N,2N,3N,4N}.
From the choice of 3 and Claims 11, 12 and 13, we obtain the following.
Claim 14. d(h(i),h(i + 1)) < t(V) for each i € {1,...,4N —1}.

Claim 15. Let Py € V be such that P < Py < Q. Then h(L) N Py # 0.
We prove Claim 15. First we show that A(L) N Q # (.

By Claim 11, h(1) = up € h(L)N clx(Up) and h(4N) = 5(jr — ko) for some
ko € {0,1,...,5r — Jio }- Note that j;, < jr — ko < jg. If jr — ko = Ji,, then
h(4N) = B(jr — ko) = B(ji,) € Wi, Nh(L) = QN h(L) and we finish. Thus, we
may assume that j;, < jr — ko.

Since B(jr — ko) € Tjp—ky, from Claim 5 we have that Tj,_x, N Uy # 0 or
there exists ¢; € {1,...,m} such that 5(jr — ko) € W;,. We consider two cases.

Case 1. Tj,—k, NUy # 0 or B(jr — ko) € W, for some i1 < 1.

Consider the subchain W, of W which can be constructed by ordering the
elements T}, _,,...,Tj, € W. Since Uy < Q < R and S(jr) € Tj, N Wg, by
Lemma 7 (a), there exists one element T; (where jr — ko < i < jr) of Ws such
that T; N Q # 0 and Q is the only element of V which intersects T;. Thus @ is
the only element of V whose closure intersects T;. Hence (i) € T; C @ and Q
is the only element of V which contains 5(3) in its closure. Recall that j;, was
the last index with this property, we have obtained a contradiction since j;, < i.
We have shown that this case is impossible.

Case 2. B(jr — ko) € W;, for some 4o < 7.

If i9 = 41, then h(4N) = B(jr — ko) € h(L) N Q and we finish, so we
may assume that i < 43. Let A = (H{clx(T) : T € V and T < Q} and
B=J{clx(T): T €V and Q < T}. Notice that X = AUBUQ, clx(Up) C A
and clx(W;,) € B. Thus h(1) € A and h(4N) € B. Since t(V) < d(A, B),
Claim 14 implies that there exists ¢ € {1,...,4N} such that k(i) ¢ AUB. Thus
h(i) € h(L) N Q.

This completes the proof that h(L) N Q # 0.

To finish the proof of Claim 15, let Py € V be such that P < Py < @Q. Since
Uy < P, h(L)N clx (Up) # 0 and h(L) N Q # (), a similar argument as in Case 2
shows that h(L) N Py # 0. This completes the proof of Claim 15.

Claim 16. 2diameter(Y") < diameter(h(L)).
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We prove Claim 16. Let 2,y € Y be such that d(x,y) = diameter(Y). Since
Y c UV, there exist U,,U, € U such that x € U, y € Uy and U < U,, U, < V.
We may assume that U, < U,,.

Given T € U with U < T < V, since P C U and Q C V, by Lemma
7 (a), there exists W € V such that the only element of ¢ which intersects
WisT and P < W < Q. Note that W # P and W # . By Claim 15,
0 #h(L)NW C h(L)NT. Since @ # h(L) NQ C h(L) NV, we conclude that,
foreach T e U with U <T <V, h(L)NT # 0.

IfU = U,, let T be the element in U such that U < T' < V and UNT # () (the
next element in the chain U after U). Thus there exists i, € {1,...,4N} such
that h(i;) € T. Hence d(z, h(i)) < diameter(U, UT) < 20 < % (diameter(Y")).
In the case U < U, h(L) N U, # 0. Thus there exists i, € {1,...,4N} such
that h(i,) € Uy. Hence d(x, h(i,)) < diameter(U,) < 6 < %(diameter(Y')). In
any case, there exists i € {1,...,4N} such that d(z, h(i,)) < §(diameter(Y)).

Similarly, there exists i, € {1,...,4N} such that d(y, h(i,)) < & (diameter(Y)).

Thus diameter(Y) = d(z,y) < % (diameter(Y)) + d(h(is), h(iy)). Therefore,
3 (diameter(Y)) < diameter(h(L)). We have shown Claim 16.

We have defined, for each ¢ € {1,...,m}, j; € {1,...,jr} with the property
that G(j;) € W;. To extend this definition, we consider the formal symbol
jo and we put B(jo) = up. With this convention, f(5(jo)) = f(up). Since
2(0) = 0 = p(0), 9(5) = F(Blings)) and gla(i)) = F(BUp)) for cach
i€ {0,1,....5r)

Claim 17. Let r € [0,1], k € {0,1,...,jr — ji,} and I € {0,1,...,2jr —

Jio } have the properties that 7(A(II(¢(r))), {jREjiO ey jg:;z ) = J’Rfﬁo and
2jr—js , .
T(2(¢(r)), {ﬁ, ce 2;§7;2 )= 2lefji0 . Ifl < jg, thend(B(jr—k),B(])) <

36. If jr <[, then d(ﬁ(]R - k),ﬂ(Q]R - l)) < 34.

In order to prove Claim 17, first we show | f(B8(jo(jn—k))) — AATI(C(r))))] <
7.

Consider first the case that —%— < A(II(¢(r)). By the definition of 7,

JR—Jig
k< ATI(¢(r) < j:jjlm . By the definition of A, A(ﬁ) - A(J’Rfjio)

jR*]z‘o

AAIEE)) - AGE| AGE) = 98GR — k) = F(Bling-1) and
A(j,ff;io) = g(B(jr — (k+1))) = f(BUo(jr-(k+1)))). Claim 6 implies that
|0’(jR - k) - O’(jR - (k + 1))| < 1. Thus WJ(jR—k) N Wg(jR_(]H_l)) 7é @ this im-
plies that diameter(clx (Wo (. — k) UWo(jp—(k+1)))) < 201. Note that B(js(j—k)),

BJo(in—k+1))) € lx Wo(jn—i) UWo(jr—(k+1))) (even in the case that o(jr —k)

>
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or o(jr—(k+1)) is equal to 0), 50 d(B(jo(jn—k))s BJo(in—(k+1)))) < 201. By the
choice of §1, we obtain that |f(ﬁ(ja(jR_k))) — f(ﬁ(jg(jR_(k+1))))| < 7. There-

fore | £(Bntjn—)) — A<A<H<<<r>>>\=1A<A<H<c<r>>>—A<.f,,o>\<n.

JR—Ji

In the case that A(II(((r)) < —2£- < A(TI(¢(r) < —£—. So a

JrR—Jig’ JR Jl JR—Ji
similar argument as in the paragraph above can be made, by changinog k+1
by k — 1, to obtain the desired inequality. Finally, if A(TI({(r)) = ijj
AA(II(C(r)) = A(=2—) = f(B(jo(jn—k))) and the inequality is immediate.

IR Jig

Now, we analize the possible cases for [. First, suppose that [ < jg.
Next, we prove that ’f(ﬁ(jg(l))) — @(E(((r)))| <.

Consider first the case that 2le—ji < E(C(r)). By the definition of T,
<) < 5L |2(gt) — 22| <

2]R Jig 2JR
(I)(ijl?tljig) - CI)(QjRijio)‘ and <I>(2]R — ) = g(ﬁ(l)) = f(B(jo@)))- In the case
that 1+ 1 < jn, () = g(8( + 1) = S(BGnas1). By Claim 6,

lo(l) =o(l+1)] < 1. Thus W,q) N Wygq1y # 0 and diameter(clx (Wy() U
Woa41))) < 201. Since B(jr)); B(Jot1)) € ClX(Wa(l) U Wo(i41)), We obtain
d(BJow)), BUsa+1))) < 251 By the choice of 51, |f(BUw)) = FBUsus1))| <

7. Hence |f ]U(l))) - | = (r)) — @(QJRZ T )’ < 7. In the
case that jrp < l+1, we have that l=jg, l—l—l =jr+1, @(m) =g(B(1)) =
F(BUow)) and @(55—) = g(B(1—1)) = f(B(joa-1))). Hence a similar argu-

2jrR—Jig
ment as before leads to the proof that | f(B(jr1))) — ®(S(C(r))] <.

The case $(¢(r)) < 5=t is similar and the case X({(r)) = 5

—
2jrR—Jig 2jrR—Jig S
immediate.

Therefore, if | < jr, then |f (o)) — ‘I)(Z(Q(T))){ <.

Since A(A(TII(¢(r))) = ®(X(¢(r))), assuming that | < jr, we obtain that
| f(BUatin-))) — F(BUaw))| < 2n. By the choice of 1, d(B(jo(jp—k)), BlUaw) <
4. Since B(jr— k), BJo(jrn—r)) € clx Wo(jn—r)) and (1), B(jou)) € clx (Wo()),
d((sﬂ(jR = k), BUo(in—k))),d(B(1), B(jowy)) < 61 < 4. Hence d(B(jr — k), B(1)) <
30.

In the case that jr < [, similar arguments can be used to show that d(8(jr —
k), B(2jr — 1)) < 36. We have finished the proof of Claim 17.

Mimicking the proof of Claim 17, the following claim can be proved.

26



Claim 18. Let r € [0,1], k € {0,1,...,jr — jis } and I € {0,1,...,2jp —

. 0 JR—Ji _ k
Jio } have the property t};it T(A(F(H(’F))), {ijjiO v T b= T and
TR g 2500)) — L 11 < i, then d(B(7n—F). (D)) <

3. If jr < [, then d(B(jr — k), a(2jr — 1)) < 34.
Claim 19. For each i € {1,...,4N}, d(h(i),clx (Up)) < 7 (diameter(Y)).
We consider four cases.

Case 1. i €{l,...,N}. o
Since () = TR, i gt = TS0 gy B2 ),

2JrR—Jig T ? 2jrR—Jig
then 5 = 7(Y(k(r) {55mms - oy }). Thus (i) = 55k5— =
A(i). If k < jg, F(i) = B(k) and G(i) = a(k). By the choice of (a(k),B(k)),
w((a(k), B(k))) € clx(Up). Therefore, h(i) € clx(Uy). If jr < k, F(i) =
B(2jr — k) and G(i) = a(2jr — k). Thus h(i) = u(a(2jr — k), 8(2jr — k))
clx (Up). Therefore, if i € {1,..., N}, h(7) € clx(Uy).

Case2. i€ {N +1,...,2N}. o
Let ijjio = T(A(H(C(TQN—H-I))% {jRi)jiO LR ;i:jzg }) = V(Z)a Qle_j'io =
T(Y(s(ran—it1) Az g - 2R Jio ) — \(2N —i+1). So, F(i) = B(jr—k).

> 2jR—Jig

If | < jg, then G(i) = a(l). Thus h(i) = p(B(jr — k),a(l)). Since X o
¢ = Y ok, we can apply Claim 17 and obtain that d(3(jr — k), 3(1)) < 30.
Then D((8(jn — k), a(0)), (3(1),a(l))) < 36. By the choice of &, d((3(jn —
k), a(l)), n(B(1),a(l))) < 15(diameter(Y)). By the choice of (8(1),a(l)), we
obtain 1(B(1), (1)) € clx (Up). Therefore, d(h(i),clx (Up)) < 1= (diameter(Y)).

If jr < I, then G(i) = a(2jr — ). Thus h(i) = w(B(r — k), a(2jr — 1)).
Applying Claim 17, we obtain d(8(jr — k), 8(2jr — 1)) < 35. By the choice of
§ and (B(2jr — 1), a(2jr — 1)), d(h(i),clx (Up)) < 15(diameter(Y)).

Case 3. i€ {2N +1,...,3N}.
L , 0 JR=Jig \\ _ /s ko
Let JR—dig T(A(F(K’(Tz—2N)))7 {jR_j'iO Yo jR_jiE }) = /\(Z) and 2Ur—dig

T(Z(C(rimam)) A gzl ijlgj;jg }) = (i — 2N). Then G(i) = B(jr — ).

If & < jg, then F(i) = (k). Thus h(i) = u(B(k),B(jr —1)). Since X o
¢ = Y ok, we can apply Claim 18 and obtain that d(8(jr — ), a(k)) < 34.
Then D((B(jr — 1), B(k)), (a(k), B(K))) < 36. By the choice of 8, d(u(B(jr —
1),8(k)), u(a(k),B(k))) < {5 (diameter(Y)). By the choice of (a(k),B(k)), we
have pi(a(k), B(k)) € clx(Up). Therefore, d(h(i),clx(Up)) < 15 (diameter(Y)).
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If jr < k, then F(i) = B(2jr — k). Thus h(:) = u(B(2jr — k), B(r —1)).
Applying Claim 18, we obtain d(8(jr — 1), ®(2jr — k)) < 3. By the choice of
§ and (a(2jr — k), B(2jr — k)), d(h(i),clx (Up)) < 75 (diameter(Y)).

Cased. it € {3N+1,...,4N}.

Let ijjiU = T(A(H(C(T4N7i+1)))’ {jREjiO ’ jR—ljiU R §§:§:2 ) = pY(i o QN)
and jR]ijiO = T(A(F(H(T4N—i+1)))7 {jREjiO 3 jR_ljiO P ;Z:;zg }) = )‘(GN_Z+1)
Then F(i) = B(jr — k) and G(i) = B(jr — K').

2JrR—Ji
Let [ be such that 2le_jiO = T(E(C(T4N_i+1)),{2jRO_jio,...7 2%_;2 ) =
2IR—7Ji . . .
T(T(K(T4N_i+1)),{2jR(1jio,..., 2;?7;5 ). If I < jg, by Claim 17, d(8(jr —
k), (1)) < 36, and by Claim 18, d(8(jr — k'), a(l)) < 36. Thus D((B(jr —

k), B(jr — k'), (B(1), a(l))) < 36. By the choice of &, d(u(B(jr — k), (jr —
k'), n(B(1), a(1))) < {5 (diameter(Y)). Hence, d(h(i),clx (Up)) < 15 (diameter(Y)).
If jr < I, by Claim 17, d(B8(jr — k), 8(2jr —1)) < 34, and by Claim 18, d(5(jr —
k'),a(2jr — 1)) < 38. This implies that d(h(i),clx (Up)) < 15 (diameter(Y")).

We have proved Claim 19.
Claim 20. diameter(h(L)) < %(diameter(Y")).

Claim 20 follows from the fact that diameter(clx (Up)) < 61 < 15 (diameter(Y))
and Claim 19.

Since Claims 16 and 20 are contradictory, we have finished the proof of
Theorem 1. W
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