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Abstract

Let X be a metric continuum. A mean on X is a continuous function
� : X � X ! X such that for each x; y 2 X, �(x; y) = �(y; x) and
�(x; x) = x. In this paper we prove that if X is chainable and admits a
mean, then X is an arc. This answers a question stated by Philip Bacon
in 1970.

Introduction

Troughout this paper the letter X will denote a metric continuum. A mean
on X is a continuous function � : X � X ! X such that for each x; y 2 X,
�(x; y) = �(y; x) and �(x; x) = x. A chain in X is a sequence U = fU1; : : : ; Ung
of open subsets of X such that X = U1 [ : : : [ Un and Ui \ Uj 6= ; if and only
if ji� jj � 1. Given a positive number ", the chain U = fU1; : : : ; Ung is said to
be an "-chain provided that diameter(Ui) < " for each i 2 f1; : : : ; ng. We say
that X is chainable provided that, for each " > 0 there exists an "-chain in X.

The problem of determining which continuaX admit means has been studied
by a number of authors. In [2] P. Bacon proved that if a continuum X admits
a mean then X is unicoherent, he also showed ([1]), answering a question by A.
D. Wallace ([15]), that the sin( 1x )-continuum admits no means. This was the
�rst example of an acyclic continuum admitting no means. More information
about means can be found in [6], [9, Section 76] and [10].

In [1] P. Bacon posed the following questions: (1) Is the arc the only chainable
continuum that admits a mean? (2) Is the arc the only continuum containing
an open dense half-line that admits a mean?

Question (2) has been recently answered, in the positive, by the �rst named
author ([7]). With respect to question (1), answering a question by J. J. Chara-
tonik, the �rst named author, showed that the simplest indecomposable con-
tinuum (also called the buckethandle continuum or the Brouwer-Janiszewski-
Knaster continuum) does not admit means ([8]). Recently, D. P. Bellamy ([4])
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has shown that each Knaster-type continuum (i.e., the inverse limit of arcs with
open bonding mappings) di¤erent from the arc admits no mean. Some partial
answers to question (1) can be obtained by using the results contained in the
papers [3], [5] and [11]. In this paper we give the �nal answer to question (1)
by showing the following.

Theorem 1. If X is chainable and X admits a mean, then X is an arc.

This paper is devoted to prove Theorem 1.

A property in the plane

We denote by R2 the Euclidean plane. Given points p; q 2 R2, where p 6= q,
let pq be the convex segment in R2 joining p and q.

Theorem 2. Let p = (0; 0), q = (1; 0) and r = ( 12 ; 1) in R
2. Let � be the

convex triangle in R2 with vertices p; q and r: Suppose that H and K are closed
disjoint subsets of � such that pr [ rq � H and K \ pq 6= ;. Then there exists
an arc � in �, with end points p and q such that � \K = ; and � \H � pq.

Proof. Let V = � �H. Then V is an open subset of � and K � V . Let
K0 = K \ pq. Since the components of V are open in � and they cover the
nonempty compact set K0, there exist n 2 N and components V1; : : : ; Vn of V
such that K0 � V1 [ : : : [ Vn and K0 intersects each Vi.

For each i 2 f1; : : : ; ng, let Ki = K \ Vi. Notice that Ki is compact. Let
mi = minfx 2 [0; 1] : (x; 0) 2 Kig and Mi = maxfx 2 [0; 1] : (x; 0) 2 Kig.
Since ; 6= K0 \ Vi � K \ pq \ Vi, mi and Mi are well de�ned. Since Vi is
arcwise connected, there exists a continuous function 
i : [0; 1] ! Vi such that

i(0) = (mi; 0) and 
i(1) = (Mi; 0).

Since r =2 Vi, we can apply Theorem 2 of [12, §57, III, p. 438], to the closed
sets��Vi andKi[Im 
i and the points r 2 ��Vi and (mi; 0) 2 Ki[Im 
i, then
there exists a locally connected subcontinuum Ci of � such that Ci � Vi�(Ki[
Im 
i) and Ci separates r and (mi; 0) in �. Thus Ci intersects the connected set
rp[ p(mi; 0). Since rp\Vi = ;, there exists a point pi = (ui; 0) 2 p(mi; 0)\Ci.
Similarly, there exists a point qi = (vi; 0) 2 (mi; 0)q \Ci. Since p, (mi; 0) and q
do not belong to Ci, we have that 0 < ui < mi < vi < 1. Let �i : [0; 1]! Ci be
a continuous one-to-one function such that �i(0) = (ui; 0) and �i(1) = (vi; 0),
we may assume that Im�i\p(mi; 0) = f(ui; 0)g and Im�i\(mi; 0)q = f(vi; 0)g.
Thus Im�i intersects the boundary of � only at the points (ui; 0) and (vi; 0)
and we can apply the lemma of the �-curve ([12, § 61, II, Theorem 2, p. 511])
and conclude that �� Im�i has exactly two components Di and Ei, where Di

and Ei are the respective component of �� Im�i which contain the connected
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sets Fi = piqi � fpi; qig and Gi = pip [ pr [ rq [ qqi � fpi; qig. Since Fi [ Im 
i
is a connected subset of �� Im�i, Fi[ Im 
i � Di, So (Mi; 0) 2 Di\pq � piqi.
This implies thatMi < vi. Notice that Im�i � Vi�Ki = Vi�(K\Vi) � Vi�K,
so Im�i \ (K [H) = ;.

Let i; j 2 f1; : : : ; ng such that i 6= j. If uj 2 [ui; vi], then Fi [ Im�j is a
connected subset of �� Im�i, so qj 2 (Fi [ Im�j)\ pq � Di \ pq � piqi. Thus
vj 2 [ui; vi]. Similarly, it can be shown that if vj 2 [ui; vi], then uj 2 [ui; vi]. We
have shown that [ui; vi] and [uj ; vj ] are disjoint or one is contained in the other.
Therefore, taking the maximal intervals of the form [ui; vi], there exist m 2 N
and i1; : : : ; im 2 f1; : : : ; ng such that 0 < ui1 < vi1 < ui2 < vi2 < : : : < uim <
vim < 1 and [ui1 ; vi1 ][[ui2 ; vi2 ][: : :[[uim ; vim ] = [u1; v1][[u2; v2][: : :[[um; vm].

Given a point w = (u; 0) 2 K\pq = K0, there exists i 2 f1; : : : ; ng such that
w 2 Ki. Thus u 2 [mi;Mi] � (ui; vi) � (ui1 ; vi1) [ (ui2 ; vi2) [ : : : [ (uim ; vim).
This proves that K \ pq � ((ui1 ; vi1) [ (ui2 ; vi2) [ : : : [ (uim ; vim))� f0g.

Let � : [0; 1]! � be the continuous, one-to-one function such that �(0) = p,
�(1) = q and �([0; 1

2m+1 ]) = ppi1 , �([
1

2m+1 ;
2

2m+1 ]) = Im�i1 , �([
2

2m+1 ;
3

2m+1 ]) =

qi1pi2 , �([
3

2m+1 ;
4

2m+1 ]) = Im�i2 , �([
4

2m+1 ;
5

2m+1 ]) = qi2pi3 ,...,�([
2m�1
2m+1 ;

2m
2m+1 ]) =

Im�im , �([
2m
2m+1 ; 1]) = qimq.

Finally, let � = Im�. It is easy to check that � has the required properties.
�

PL mappings

A continuous function f : [0; 1] �! [0; 1] is called a PL mapping (piecewise
linear mapping), provided that there exists a partition P : 0 = t0 < t1 <
: : : < tn = 1 of [0; 1] such that, for each i 2 f1; : : : ; ng and each t 2 [ti�1; ti],
f(t) = t�ti�1

ti�ti�1 f(ti) +
ti�t

ti�ti�1 f(ti�1) in this case we say that f is supported by
P . It is easy to see that the class of PL mappings is closed under compositions.
A PL mapping f is said to be a jump mapping provided that f(0) = 0 and
f(1) = 1.

The following theorem can be proved with the techniques of the paper [14].
We include its proof here for completeness.

Theorem 3. If f and g are jump mappings, then there exist jump mappings
� and � such that f � � = g � �.

Proof. Let A = f(x; y) 2 [0; 1]2 : f(x) = g(y)g. The set A is a compact
subset of [0; 1]2 such that (0; 0); (1; 1) 2 A. Let L be the component of A such
that (0; 0) 2 L.
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We are going to prove that (1; 1) 2 L. Suppose to the contrary that (1; 1) =2
L. Then (see [13, Theorem 5.2, p. 72]) there exist compact disjoint subsets H
andK of [0; 1]2 such that A = H[K, (0; 0) 2 H and (1; 1) 2 K. By [12, §57, III,
Theorem 2, p. 438], there exists a separator C between (0; 0) and (1; 1) which is
a locally connected continuum disjoint from A. Thus there exist points (x0; y0) 2
C\ ((f0g� [0; 1])[ ([0; 1]�f1g)) and (u0; v0) 2 C\ (([0; 1]�f0g)[ (f1g� [0; 1])).
Notice that f(x0) � g(y0) and f(u0) � g(v0). Since C is connected, there exists
a point (t; s) 2 C such that f(t) = g(s). This implies that (t; s) 2 C \ A, a
contradiction. Hence (1; 1) 2 L.

Since f and g are PL mappings, there exists a partition 0 = t0 < t1 <
: : : < tn = 1 such that, for each i 2 f1; : : : ; ng and each t 2 [ti�1; ti], f(t) =
t�ti�1
ti�ti�1 f(ti) +

ti�t
ti�ti�1 f(ti�1) and g(t) =

t�ti�1
ti�ti�1 g(ti) +

ti�t
ti�ti�1 g(ti�1).

It is easy to prove that, if i; j 2 f1; : : : ; ng, x; u 2 [ti�1; ti], y; v 2 [tj�1; tj ],
f(x) = g(y) and f(u) = g(v), then the segment (x; y)(u; v) is contained in A.

Let p = (x; y) 2 A, now we prove that there exists "p > 0 such that if (u; v)
belongs to the set D("p; p) = A \ ((x � "p; x + "p) � (y � "p; y + "p)), then
the segment (x; y)(u; v) is contained in A. In order to prove this claim, by the
paragraph above, it is enough to take "p > 0 such that if u 2 [x�"p; x+"p]\[0; 1]
and v 2 [y � "p; y + "p] \ [0; 1], then both points x and u belong to a set of the
form [ti�1; ti] and both points v and y belong to a set of the form [tj�1; tj ].

By the connectedness of the segments of the form (x; y) and (u; v) the claim
proved in the paragraph above implies that, if p = (x; y) 2 L, and "p > 0 is as
before, then for each (u; v) 2 D("p; p), the segment (x; y)(u; v) is contained in L.
Since the family fD("p; p) : p 2 Lg is an open cover of L and L is connected, it
follows that L is connected by polygonals. In particular, there exist m 2 N and
points p0 = (u0; v0), p1 = (u1; v1); : : : ; pm = (um; vm) in L such that p0 = (0; 0),
pm = (1; 1) and p0p1 [ p1p2 [ : : : [ pm�1pm � L.

De�ne �; � : [0; 1] ! [0; 1] by �(t) = (mt � i + 1)ui + (i � mt)ui�1 and
�(t) = (mt� i+ 1)vi + (i�mt)vi�1, if t 2 [ i�1m ; im ]. Clearly, � and � have the
required properties. �

Theorem 4. If f is a PL mapping such that f(1) = 1 and g is a jump
mapping, then there exist a jump mapping � and a PL mapping � such that
�(1) = 1 and f � � = g � �.

Proof. In the case that f(0) = 0, both mappings f and g are jump map-
pings, so the existence of � and � follows from Theorem 3. Thus, suppose that
f(0) > 0.

Let h; k : [0; 1]! [0; 1] be the mappings given by

4



h(t) =

�
2tf(0); if t 2 [0; 12 ];
f(2t� 1); if t 2 [ 12 ; 1];

and

k(t) =

�
0; if t 2 [0; 12 ];

g(2t� 1); if t 2 [ 12 ; 1]:

Clearly, h and k are jump mappings. By Theorem 3, there exist jump
mappings 
 and � such that h�
 = k ��. Let s0 = max 
�1( 12 ). Since 
(1) = 1,
0 < s0 < 1.

De�ne �; � : [0; 1] ! [0; 1] by �(t) = 2
(t + (1 � t)s0) � 1 and �(t) =
maxf2�(t + (1 � t)s0) � 1; 0g. For each t 2 [0; 1], since s0 � t + (1 � t)s0 � 1
and 
(1) = 1, by the de�nition of s0, 
(t+ (1� t)s0) 2 [ 12 ; 1]. Thus � is a well
de�ned jump mapping, � is a PL mapping and �(1) = 1.

In order to check that f � � = g � �, let t 2 [0; 1]. If �(t + (1 � t)s0) � 1
2 ,

then 2�(t + (1 � t)s0) � 1 � 0, so g(�(t)) = g(2�(t + (1 � t)s0) � 1) = k(�(t +
(1 � t)s0)) = h(
(t + (1 � t)s0)) = f(2(
(t + (1 � t)s0) � 1) = f(�(t)). Thus
g(�(t)) = f(�(t)). And in the case that �(t+(1� t)s0) � 1

2 , g(�(t)) = g(0) = 0.
Notice that h(
(t+(1�t)s0)) = k(�(t+(1�t)s0)) = 0. On the other hand, since

(t+(1�t)s0) 2 [ 12 ; 1], 0 = h(
(t+(1�t)s0) = f(2
(t+(1�t)s0)�1) = f(�(t)).
Hence g(�(t)) = 0 = f(�(t)). In both cases g(�(t)) = f(�(t)). Therefore,
f � � = g � �. �

Theorem 5. If f is a PL mapping such that f(0) = 0 and g is a jump
mapping, then there exist a jump mapping � and a PL mapping � such that
�(0) = 0 and f � � = g � �.

Proof. Let f1; g1 : [0; 1] ! [0; 1] be given by f1(t) = 1 � f(1 � t) and
g1(t) = 1 � g(1 � t). Then f1 is a PL mapping such that f1(1) = 1 and g1
is a jump mapping. By Theorem 4, there exist a jump mapping �1 and a PL
mapping �1 such that �1(1) = 1 and f1 � �1 = g1 � �1.

De�ne �; � : [0; 1]! [0; 1] by �(t) = 1� �1(1� t) and �(t) = 1� �1(1� t).
Then � is a jump mapping and � is a PL mapping such that �(0) = 0. Moreover,
for each t 2 [0; 1], f(�(t)) = f(1��1(1� t)) = 1�f1(�1(1� t)) = 1�g1(�1(1�
t)) = g(1� �1(1� t)) = g(�(t)). Therefore, f � � = g � �. �

Theorem 6. Let P : 0 = t0 < t1 < : : : < tn = 1 and Q : 0 = s0 < s1 <
: : : < sm = 1 be partitions of [0; 1]. Let f; g : [0; 1] ! [0; 1] be PL mappings
such that f is supported by P and g is supported by Q. Suppose that there
exists a function � : f0; 1; : : : ;mg ! f0; 1; : : : ; ng such that �(0) = 0, �(m) = n,
f(t�(i)) = g(si) for each i 2 f0; 1; : : : ;mg and j�(i)� �(i� 1)j � 1 for each
i 2 f1; : : : ;mg. Then there exists a jump mapping � such that f � � = g.
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Proof. Let � : [0; 1] ! [0; 1] be the PL mapping de�ned by the con-
ditions �(si) = t�(i) for each i 2 f0; 1; : : : ;mg. Note that �(0) = t0 =
0 and �(1) = t�(m) = 1. Thus � is a jump mapping. In order to check
that f � � = g, let i 2 f1; : : : ;mg and let s 2 [si�1; si]. Then �(s) =
s�si�1
si�si�1�(si) +

si�s
si�si�1�(si�1) =

s�si�1
si�si�1 t�(i) +

si�s
si�si�1 t�(i�1). Thus �(s) is

a convex combination of the numbers t�(i) and t�(i�1), so one of the follow-
ing two expresions is a convex combination for �(s) (depending on which in-

equality: t�(i�1) � t�(i) or t�(i) � t�(i�1) holds) �(s) =
�(s)�t�(i�1)
t�(i)�t�(i�1) t�(i) +

t�(i)��(s)
t�(i)�t�(i�1) t�(i�1), �(s) =

�(s)�t�(i)
t�(i�1)�t�(i) t�(i�1) +

t�(i�1)��(s)
t�(i�1)�t�(i) t�(i). By hypoth-

esis, j�(i)� �(i� 1)j � 1. If �(i) > �(i � 1), since f is supported by P ,

f(�(s)) =
�(s)�t�(i�1)
t�(i)�t�(i�1) f(t�(i)) +

t�(i)��(s)
t�(i)�t�(i�1) f(t�(i)�1) =

�(s)�t�(i�1)
t�(i)�t�(i�1) f(t�(i)) +

t�(i)��(s)
t�(i)�t�(i�1) f(t�(i�1)) =

�(s)�t�(i�1)
t�(i)�t�(i�1) g(si) +

t�(i)��(s)
t�(i)�t�(i�1) g(si�1). The equality

s�si�1
si�si�1 t�(i)+

si�s
si�si�1 t�(i�1) =

�(s)�t�(i�1)
t�(i)�t�(i�1) t�(i)+

t�(i)��(s)
t�(i)�t�(i�1) t�(i�1) implies that

s�si�1
si�si�1 =

�(s)�t�(i�1)
t�(i)�t�(i�1) and

si�s
si�si�1 =

t�(i)��(s)
t�(i)�t�(i�1) . Thus f(�(s)) =

s�si�1
si�si�1 g(si)+

si�s
si�si�1 g(si�1) = g(s). Hence f(�(s)) = g(s). The case �(i) < �(i � 1)
is similar. Finally, if �(i) = �(i � 1), then �(s) = t�(i) = t�(i�1). Hence,
f(�(s)) = f(t�(i)) = f(t�(i�1)) = g(si) = g(si�1). Since g is supported by Q,
g(s) = g(si). Therefore f(�(s)) = g(s). The proof of the theorem is complete.
�

Chains

For a chainable continuum X, with metric d, and a positive number ", we
say that a chain U = fU1; : : : ; Ung is a separated chain in X provided that U1
is not contained in clX(U2), Un is not contained in clX(Un�1) and clX(Ui)\
clX(Uj) 6= ; if and only if ji� jj � 1. If, in addition, diameter(Ui) < " for each
i 2 f1; : : : ; ng, then U is said to be a separated "-chain. It is easy to see that
if V = fV1; : : : ; Vmg is a �-chain in X, then the sequence fV1 [ V2; V3 [ V4; : : :g
(the last element in this sequence is Vm, if m is od and, it is Vm�1 [ Vm, if m is
even) is a separated 2�-chain in X. Thus for each " > 0 there exists a separated
"-chain in X.

Given a chain U = fU1; : : : ; Ung, there is a natural order in U (given by
the order of the subindices) which will be denoted with the usual symbols <,
>, � and �. So, if U; V 2 U , we de�ne UV =

S
fW 2 U : U � W � V g, if

U � V and UV =
S
fW 2 U : V � W � Ug, if V � U . We also say that an

element W 2 U is between U; V 2 U provided that U � W � V , if U � V , and
V �W � U , if V � U .

Given a separated chain U = fU1; : : : ; Ung in X, with n � 3, the tightness
t(U) of U is de�ned as
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t(U) = minfd(
S
fclX(U) : U < Uig;

S
fclX(U) : Ui < Ug) : i 2 f2; : : : ; n� 1gg

Given two separated chains V and U = fU1; : : : ; Ung in X, with n � 3, we
say that V ultrare�nes U provided that: (a) V is a t(U)

3 -chain, (b) there exist
V;W 2 V such that V \ (U2 [ : : : [ Un) = ;, W \ (U1 [ : : : [ Un�1) = ; and,
(c) for each V 2 V, there exists U 2 U such that V � U . Clearly, for each
separated chain U in X and for each " > 0, there exists a separated "-chain V
in X such that V ultrare�nes U .

Given two separated chains V and U in X such that V ultrare�nes U and
given U; V 2 U , with U 6= V , we say that V folds from V to U provided that
there exist P;Q;R 2 V such that P < Q < R or R < Q < P , RP � UV ,
P [ R � V and Q � U . We also say that V makes a zigzag between U and V
with elements P;Q;R; S 2 V if P < Q < R < S, SP � UV , P [ R � U and
Q [ S � V .

Given " > 0, metric spaces Y and Z, and an onto mapping f : Y ! Z, f is
said to be an "-mapping provided that diameter(f�1(z)) < " for each z 2 Z.

The following lemma is easy to prove.

Lemma 7. Let X be a chainable continuum and let U and V be separated
chains in X such that V ultrare�nes U . Then:
(a) If U; V 2 U , where U < V and P; Q 2 V satisfy P \U 6= ; and Q\V 6= ;,

then for each W 2 U such that U < W < V , there exists R 2 V such that R is
between P and Q, R \W 6= ; and the only element of U which intersects R is
W .
(b) If U; V 2 U , where U 6= V , then there exist P; Q 2 V such that P � U ,

Q � V , PQ � UV and PQ intersects W for each W 2 U which is between U
and V .
(c) If A is a subcontinuum of X, U (resp., V ) is the �rst (resp., last) element

of U intersecting A, then A � UV and A intersects each element W 2 U which
is between U and V .
(d) If U; V 2 U and U < V , then there exists a subcontinuum A of X such

that A � clX(UV ), A\ clX(U) 6= ; and A\ clX(V ) 6= ;.
(e) If U is an "-chain, U; V 2 U and clX(U)\ clX(V ) = ;, then there exists

an onto "-mapping ' : clX(UV ) �! [0; 1] such that clX(U) = '�1(0) and
clX(V ) = '�1(1).

Two basic results

Throughout this paper the letter X will denote a continuum, with metric d,
we de�ne the metricD onX�X byD((u; v); (x; y)) = 1

2 (d(u; x)+d(v; y)). Given
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two nonempty subsets K and L of X we de�ne d(K;L) = inffd(x; y) : x 2 K
and y 2 Lg. For subsets K;L � X � X, the symbol D(K;L) is de�ned in a
similar way.

Given a chainable continuum X, a mean � : X �X ! X, a separated chain
U and elements U and V of U , we de�ne D(clX(U)) = f(u; u) 2 X �X : u 2
clX(U)g and

D(U; V ) =
S
fE : E is a component of (clX(UV )� clX(UV )) \ ��1(clX(U))

and E \D(clX(U)) 6= ;g:

Theorem 8. Let X be a chainable continuum, � : X �X ! X a mean, U
a separated chain in X and U; V 2 U . Suppose that clX(U)\ clX(V ) = ; and
D(U; V ) \ ((clX(UV )� clX(V )) [ (clX(V )� clX(UV )) = ;. Then there exists
� > 0 such that, if V is a separated �-chain in X, then V ultrare�nes U and V
does not fold from V to U .

Proof. Let L = clX(UV )� clX(UV ), J = D(clX(U)) andM = (clX(UV )�
clX(V )) [ (clX(V )� clX(UV )). Let N = (L \ ��1(clX(U))) [ M . Then N
is a compact subset of L. Given a component E of N , we claim that either
E \ J = ; or E \ M = ;. Suppose to the contrary that E \ J 6= ; and
E \M 6= ;. Fix a point p 2 E \ J . Since clX(U)\ clX(V ) = ;, M \ J = ;, so
p =2M . Let C be the component of E�M containing p. Since E�M is a proper
nonempty subset of the continuum E, by [13, Theorem 5.6, p. 74], ; 6= clE(C)\
bdE(E �M) � clE(C) \M . On the other hand, since C � L \ ��1(clX(U)),
there exists a component F of L \ ��1(clX(U)) such that C � F . Then ; 6=
clE(C) \M � F \M . Since p 2 F \ J , F � D(U; V ). Thus D(U; V ) \M 6= ;,
contrary to our assumption on D(U; V ). We have proved that E \ J = ; or
E \M = ;. Therefore, no component of N intersects both sets N \ J and M .
By [13, Theorem 5.2, p. 72], there exist disjoint compact sets K and G such
that N = K [G, N \J � K andM � G. For each point u 2 U , (u; u) 2 N \J .
Thus N \ J 6= ;.

Fix 0 < � < D(K; L) such that, if V is a separated �-chain in X, then V
has at least three elements and V ultrare�nes U .

Let V be a separated �-chain in X. We are going to prove that V does not
fold from V to U .

Suppose to the contrary that that V folds from V to U . Then there exist
P;Q;R 2 V such that P < Q < R or R < Q < P , PR � UV , P [ R � V
and Q � U . Let � > 0 be such that � < � and, if D((u; v); (x; y)) < �, then
d(�(u; v); �(x; y)) < t(V).

Let W be a separated �-chain such that W ultrare�nes V. By Lemma 7 (b),
there exist S; T 2 W such that S � P , T � R, ST � PR and ST intersects W
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for each W 2 V which is between P and R. By Lemma 7 (d), there exists an
onto �-mapping ' : clX(ST ) �! [0; 1] such that clX(S) = '�1(0) and clX(T ) =
'�1(1). Let  : clX(ST )� clX(ST )! [0; 1]2 be given by  (x; y) = ('(x); '(y)).
Then  is an onto �-mapping.

Suppose that there exist points (u; v); (x; y) 2 clX(ST )� clX(ST ) such that
(u; v) 2 K, (x; y) 2 G and  (u; v) =  (x; y). Then D((u; x); (v; y)) < � <
D(K; G), a contradiction. We have shown that  ((clX(ST )� clX(ST ))\K)\
 ((clX(ST )� clX(ST )) \G) = ;.

We show that the boundary B of [0; 1]2 in R2 is contained in  ((clX(ST )�
clX(ST )) \G). Given a point (0; s) 2 B, since ' is onto, there exist points x 2
S � P � V and y 2 clX(ST ) such that  (x; y) = (0; s). Thus (x; y) 2 M � G.
Hence f0g � [0; 1] �  ((clX(ST )� clX(ST )) \G). The rest of points of B can
be treated in a similar way. Thus B �  ((clX(ST )� clX(ST )) \G).

Let � denote the triangle contained in [0; 1]2 with vertices (0; 0); (0; 1) and
(1; 1) and let � denote the diagonal of [0; 1]2. By the choice of S and T , there
exists a point x0 2 ST \Q � U . Then (x0; x0) 2 N \ J � K. Thus  (x0; x0) 2
� \  ((clX(ST )� clX(ST )) \K).

Hence we can apply Theorem 2 to the triangle �, the closed disjoint subsets
H0 =  ((clX(ST )� clX(ST ))\G)\� and K0 =  ((clX(ST )� clX(ST ))\K)\
�, since (f0g � [0; 1]) [ ([0; 1]� f1g) � H0 and  (x0; x0) 2 K0 \�. Thus there
exists a one-to-one continuous function � : [0; 1] ! � such that �(0) = (0; 0),
�(1) = (1; 1), Im� \K0 = ; and Im� \H0 � �.

Since  is a �-mapping, there exists " > 0 such that if A � [0; 1]2 and
diameter(A) < ", then diameter( �1(A)) < �. Since � is uniformly continuous,
there exists � > 0 such that, if jt� sj < �, then k�(t)� �(s)k < ".

Let 0 = t0 < t1 < t2 < : : : < tm = 1 be a partition of the interval [0; 1]
such that ti � ti�1 < � for each i 2 f1; 2; : : : ;mg. For each i 2 f0; 1; 2; : : : ;mg,
choose an element (xi; yi) 2 clX(ST )� clX(ST ) such that  (xi; yi) = �(ti), in
the case that �(ti) 2 �, �(ti) = (t; t) for some t 2 [0; 1], since ' is onto, we can
choose xi 2 clX(ST ) such that '(xi) = t, then  (xi; xi) = �(ti), so in the case
that �(ti) 2 �, we can assume that xi = yi. In particular, since �(0) = (0; 0)
and �(1) = (1; 1), x0 2 clX(S) and xm 2 clX(T ).

For each i 2 f0; 1; 2; : : : ;mg, let pi = �(xi; yi). Then p0 = x0 = �(x0; x0) 2
clX(S) � clX(P ) and pm = xm = �(xm; xm) 2 clX(T ) � clX(R): Given
i 2 f1; 2; : : : ;mg, since ti � ti�1 < �, k�(ti)� �(ti�1)k < ". Since (xi; yi),
(xi�1; yi�1) 2  �1(f�(ti); �(ti�1)g), by the choice of ",D((xi; yi); (xi�1; yi�1)) <
�. By the choice of �, d(pi; pi�1) < t(V).

Since p0 2 clX(P ), pm 2 clX(R), P < Q < R and d(pi; pi�1) < t(V) for each
i 2 f1; 2; : : : ;mg, there exists j 2 f1; 2; : : : ;mg such that pj 2 Q. Thus pj 2
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clX(U) and (xj ; yj) 2 ��1(clX(U))\(clX(ST )� clX(ST )) � ��1(clX(U))\L �
N = K [ G. Hence (xj ; yj) 2 K [ G. We know that  (xj ; yj) 2 Im� � �
and Im� \ K0 = ;, this implies that (xj ; yj) =2 K. Thus (xj ; yj) 2 G. This
implies that  (xj ; yj) 2 H0 \ Im� � �. By the choice of (xj ; yj), xj = yj .
Then xj = �(xj ; yj) = pj 2 clX(U). Thus (xj ; xj) 2 N \ J � K. Hence
(xj ; yj) 2 G \K, a contradiction.

We have shown that V does not fold from V to U . This completes the proof
of the theorem. �

Theorem 9. Let X be a chainable continuum and � : X�X ! X a mean.
Then for each " > 0, there exists � > 0 such that, if U is a separated �-chain in
X and U; V 2 U are such that d(clX(U);clX(V )) � ", then there exists � > 0
such that for each separated �-chain V, V ultrare�nes U , and V does not fold
from V to U or V does not fold from U to V .

Proof. Let " > 0: Since � is uniformly continuous, there exists � > 0 such
that, if D((x; y); (u; v)) < �, then d(�(x; y); �(u; v)) < ". Let U be a separated
�-chain and let U; V 2 U be such d(clX(U);clX(V )) � ".

Claim. D(U; V ) \ ((clX(UV )� clX(V )) [ (clX(V )� clX(UV )) = ; or
D(V;U) \ ((clX(UV )� clX(U)) [ (clX(U)� clX(UV )) = ;.

In order to prove this claim, suppose that it is not true. By Lemma 7 (e),
there exists an onto �-mapping ' : clX(UV ) �! [0; 1] such that clX(U) =
'�1(0) and clX(V ) = '�1(1). De�ne  : clX(UV )� clX(UV ) ! [0; 1]2 by
 (x; y) = ('(x); '(y)). Then  is an onto �-mapping.

Given a component E of (clX(UV )� clX(UV )) \ ��1(clX(U)) such that
E \ D(clX(U)) 6= ;, there exists x0 2 clX(U) such that (x0; x0) 2 E, so
(0; 0) 2  (E). Since � is symmetric, E is a symmetric subset of clX(UV )�
clX(UV ). This implies that  (D(U; V )) is a symmetric subcontinuum of [0; 1]2

containing (0; 0), and by our assumption on D(U; V ),  (D(U; V )) intersects the
set [0; 1]�f1g. Similarly,  (D(V;U)) is a symmetric subcontinuum of [0; 1]2 con-
taining (1; 1) and intersecting the set f0g�[0; 1]. This implies that  (D(U; V ))\
 (D(V;U)) 6= ;. Take points (x; y) 2 D(U; V ) � ��1(clX(U)) and (u; v) 2
D(V;U) � ��1(clX(V )) such that  (x; y) =  (u; v). Then D((x; y); (u; v)) < �
and d(�(x; y); �(u; v)) < ". This contradicts the choice of U and V and com-
pletes the proof of the claim.

Suppose, without loss of generality, that D(U; V ) \ ((clX(UV )� clX(V )) [
(clX(V )� clX(UV )) = ;.

Let � > 0 be as in Theorem 8. Hence, if V is a separated �-chain in X, then
V ultrare�nes U and V does not fold from V to U . �
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The hereditarily decomposable case

A nondegenerate continuum X is decomposable provided that there exist
two proper subcontinua A and B of X such that X = A [ B. The continuum
X is said to be hereditarily decomposable if each nondegenerate subcontinuum
of X is decomposable. Given two points p; q 2 X, we say that X is irreducible
between p and q, provided that there is no proper subcontinuum of X containing
both points p and q.

Given a subcontinuum A of a chainable continuum X and a chain U in X,
we say that two elements U and V of U bound A provided that A � UV , U � V
and fW 2 U : U � W � V g is a minimal subchain of U containing A. Note
that W \A 6= ; for each W 2 U such that U �W � V . Note also that, if A is
not contained in the intersection of two elements of U then U and V are unique.

Theorem 10. If X is a hereditarily decomposable chainable continuum
and X admits a mean, then X is an arc.

Proof. Let � : X �X ! X be a mean. Suppose to the contrary that X is
not an arc. By [13, Theorem 12.5, p. 233] there exist two points p and q of X
such that X is irreducible between p and q. By [12, Theorem 3, p. 216], there
exists a monotone mapping ' : X �! [0; 1] such that '(p) = 0, '(q) = 1 and
intX('�1(t)) = ; for each t 2 [0; 1]:

Since X is not an arc, ' is not one-to-one. Thus, there exists t0 2 I
such that W = '�1(t0) is nondegenerate. Note that W � clX('�1([0; t0)))[
clX('�1((t0; 1])): So, W = (clX('�1([0; t0)) \ W ) [ (clX('�1((t0; 1])) \ W ).
Without loss of generality we can assume that Y = clX('�1((t0; 1])) \ W is
nondegenerate.

Since X is monotone, each set of the form '�1([t; 1]) is a subcontinuum of X,
this implies that '�1((t0; 1]) is connected. SinceX is chainable, X is hereditarily
unicoherent ([13, Theorem 12.2, p. 230]). Thus Y is a subcontinuum ofX. Since
Y itself is chainable, there exist points p0; q0 2 Y such that Y is irreducible
between p0 and q0. Hence there exists a monotone mapping � : Y �! [0; 1]
such that �(p0) = 0, �(q0) = 1 and intY (��1(t)) = ; for each t 2 [0; 1]:

Let " = 1
4d(�

�1([0; 13 ]); �
�1([ 23 ; 1])). By Theorem 9, there exists � > 0 such

that, if U is a separated �-chain and U; V 2 U are such that d(clX(U);clX(V )) �
", then there exists � > 0 such that for each separated �-chain V, V ultrare�nes
U , and V does not fold from V to U or V does not fold from U to V .

Let � > 0 be such that

4� < minf�; d(��1([0; 2
3 ]); �

�1(1)); d(��1(0); ��1([ 13 ; 1])); "g.
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Let U be a separated �-chain in X. Let Up0 ; Uq0 2 U be such that p0 2 Up0
and q0 2 Uq0 . At this point we have two possible orders for U . So, we choose the
order that satis�es Up0 < Uq0 . Given elements W1;W2 2 U such that p0 2 W1

and q0 2 W2, we have that diameter(Up0 [W1), diameter(Uq0 [W2) <
"
2 . If

(Up0 [W1) \ (Uq0 [W2) 6= ;, then d(p0; q0) < ", contradicting the choice of ".
Therefore, (Up0 [W1) \ (Uq0 [W2) = ;. Since Up0 < Uq0 , we conclude that
W1 < W2. Let U; V 2 U be such that U and V bound Y .

Claim. d(clX(U);clX(V )) � ".
In order to prove the claim, let U1; U2; U3; U4; U5; U6; U7; U8 2 U be such U1

and U2 bound ��1(0); U3 and U4 bound ��1([0; 23 ]); U5 and U6 bound �
�1([ 13 ; 1])

and U7 and U8 bound ��1(1): Note that we may assume that U � U3 � U1 �
U2 � U4 � V and U � U5 � U7 � U8 � U6 � V:

We show that U1U2 \ U5U6 = ; and U3U4 \ U7U8 = ;: Suppose that there
exists a point x 2 U1U2 \U5U6. Then there exist P;Q 2 U such that x 2 P \Q
and U1 � P � U2; U5 � Q � U6: We can take points y 2 P \ ��1(0) and z 2
Q\��1([ 13 ; 1]): Then d(y; z) � d(y; x)+d(x; z) � diameter(P )+ diameter(Q) <
2� < d(��1(0); ��1([ 13 ; 1])) � d(y; z), a contradiction. We have shown that
U1U2 \ U5U6 = ;. Similarly, U3U4 \ U7U8 = ;.

Since p0 2 U1U2 and q0 2 U5U6, there exist W1;W2 2 U such that p0 2
W1, q0 2 W2, U1 � W1 � U2 and U5 � W2 � U6. Then W1 < W2. Since
U1U2 \ U5U6 = ;, we conclude that U2 < U5. Similarly, U4 < U7.

If U \ ��1([ 13 ; 1]) 6= ;, then U \ U5U6 6= ;. This is impossible since
U � U2 < U5 � U6. Hence U \ ��1([ 13 ; 1]) = ;. On the other hand,
U \ Y 6= ;, so U \ ��1([0; 13 ]) 6= ;. Similarly, V \ ��1([ 23 ; 1]) 6= ;. If
d(clX(U);clX(V )) < ", then there exist points x 2 clX(U) and y 2 clX(V )
such that d(x; y) < ". Since diameter(clX(U)) and diameter(clX(V )) < ", we
conclude that d(��1([0; 13 ]); �

�1([ 23 ; 1])) < 3", contradicting the de�nition of ".
Therefore, d(clX(U);clX(V )) � " and the claim is proved.

Since U is a separated �-chain, there exists � > 0 such that for each separated
�-chain V, V ultrare�nes U , and V does not fold from V to U or V does not fold
from U to V .

Since
T
fclX('�1((t0; t0 + 1

n ])) : n 2 Ng is contained in Y , there exists
n 2 N such that '�1((t0; t0 + 1

n ]) � UV . Fix points u1 2 Y \ U and v1 2
Y \ V . Since u1 2 '�1(t0)\ clX('�1((t0; 1])), we can choose a point u2 2
(U � ('�1([t0 + 1

n ; 1])) \ '
�1((t0; 1], so u2 2 U \ '�1((t0; t0 + 1

n )). Similarly,
we can choose a point v2 2 V \ '�1((t0; t0 + 1

n )). Let A2 = '�1('(u2)'(v2)),
where '(u2)'(v2) is the subinterval of the real line joining the points '(u2)
and '(v2). Since ' is monotone, A2 is a subcontinuum of X such that A2 �
'�1((t0; t0 +

1
n ]) � UV , A2 \ U 6= ; and A2 \ V 6= ;. Let m > n be such that

'�1((t0; t0 +
1
m ]) \ A2 = ;. Proceeding as before, there exists a subcontinuum
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A3 of X such that A3 � '�1((t0; t0 +
1
m ]) � UV , A3 \ U 6= ; and A3 \ V 6= ;.

Thus A3 \ A2 = ;. Similarly, there exists a subcontinuum A4 of X such that
A4 � '�1((t0; t0 +

1
n ])� (A2 [ A3) such that A4 \ U 6= ; and A4 \ V 6= ;. For

each i 2 f2; 3; 4g, �x points ri 2 Ai \ U and si 2 Ai \ V .

Let K be the convex hull of the set '(A2) [ '(A3) [ '(A4) � (t0; t0 +
1
n ].

Then '�1(K) is a subcontinuum of UV .

Let � > 0 be such that 2� < minf�; d(fr2; r3; r4g; X �U); d(fs2; s3; s4g; X �
V ); d('�1(K); X � UV )g and 2� < d(Ai; Aj), if i 6= j.

Take a separated �-chain V (and then V is a separated �-chain). We will
obtain a contradiction by proving that V folds from V to U and V folds from U
to V .

Let V1;W1; V2; V3;V4;W2;W3;W4 2 V be such that: V1 and W1 bound
'�1(K), V2 and W2 bound A2, V3 and W3 bound A3 and V4 and W4 bound
A4. By the choice of � the sets V2W2, V3W3 and V4W4 are pairwise disjoint.
We may assume that V1 � V2 � W2 < V3 � W3 < V4 � W4 � W1. Let
R2; R3; R4; S2; S3; S4 2 V be such that, for each i 2 f2; 3; 4g, ri 2 Ri, si 2 Si
and Vi � Ri; Si �Wi. By the choice of �, R2 [R3 [R4 � U , S2 [ S3 [ S4 � V
and V1W1 � UV .

Since R2 < S3 < R4 and S2 < R3 < S4, we obtain that V folds from V
to U and V folds from U to V . This contradiction completes the proof of the
theorem. �

The other case

Proof of Theorem 1. As usual, let D be the metric in X � X given
by D((u; v); (x; y)) = 1

2 (d(u; x) + d(v; y)), where d is a metric for X. Suppose
that � : X � X ! X is a mean. By Theorem 10, we may assume that there
exists a nondegenerate subcontinuum Y of X such that Y is not the union of
two of its proper subcontinua (Y is indecomposable). We are going to �nd a
contradiction by constructing a function h : f1; 2; : : : ; 4Ng ! X (where N is
a positive integer) with the property that diameter(Imh) � 3

4diameter(Y ) and
diameter(Imh) � 1

2diameter(Y ).

Claim 1. If U is a separated ( 13diameter(Y ))-chain inX and U and V are the
elements of U which bound Y , then there exists �1 > 0 such that each separated
�1-chain V satis�es that V ultrare�nes U and V makes a zigzag between U and
V with elements P;Q;R; S 2 V such that U0 � P < Q < R < S � V0, where
U0 and V0 are the elements in V which bound Y .
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In order to prove Claim 1, let U be a separated ( 13diameter(Y ))-chain in X
and let U and V be the elements of U which bounds Y . Fix points p 2 Y \ U
and q 2 Y \ V . Let K1;K2;K3 and K4 be four pairwise di¤erent composants
of Y ([13, Theorem 11.15, p. 203]). Since each Ki is dense in Y ([13, 5.20 (a),
p. 83]), we can choose points pi 2 Ki \ U and qi 2 Ki \ V . Then there exist
proper subcontinua A1 � K1, A2 � K2, A3 � K3 and A4 � K4 of Y such
that pi; qi 2 Ai for each i 2 f1; 2; 3; 4g. Thus A1; A2; A3 and A4 are pairwise
disjoint. Let �1 > 0 be such that �1 < min(fd(Ai; Aj) : i; j 2 f1; 2; 3; 4g and
i 6= jg[fd(Y;X�UV ); d(fp1; p2; p3; p4g; X�U); d(fq1; q2; q3; q4g; X�V )g and
each separated �1-chain ultrare�nes U .

Let V be a separated �1-chain. Then V ultrare�nes U . We show that V makes
a zigzag between V and U . Let U0; U1; U2; U3; U4; V0; V1; V2; V3; V4 2 V be such
that U0 and V0 bounds Y and Ui and Vi bounds Ai for each i 2 f1; 2; 3; 4g.
By the choice of �1, it follows that U1V1 [ U2V2 [ U3V3 [ U4V4 � U0V0 � UV
and U1V1; U2V2; U3V3 and U4V4 are pairwise disjoint. Thus we may assume
that U0 � U1 � V1 < U2 � V2 < U3 � V3 < U4 � V4 � V0. For each
i 2 f1; 2; 3; 4g, let Si; Ti 2 V be such that pi 2 Si, qi 2 Ti, Ui � Si; Ti � Vi.
By the choice of �1, S1 [ S2 [ S3 [ S4 � U and T1 [ T2 [ T3 [ T4 � V . Since
U0 � S1 < T2 < S3 < T4 � V0, we have that V makes a zigzag between U and
V . This completes the proof of Claim 1.

Let � > 0 be such that � < 1
16 (diameter(Y )) and,

if D((u; v); (x; y)) < 4�, then d(�(u; v); �(x; y)) < 1
16 (diameter(Y )).

Fix a separated �-chain U .
Let U; V 2 U be such that U and V bound Y .

If clX(U)\ clX(V ) 6= ;, then U \ V 6= ; (U is a separated chain). Thus
diameter(UV ) < 2�. This is a contradiction since Y � UV . This proves that
clX(U)\ clX(V ) = ;.

By Lemma 7 (a), there exists an onto �-mapping f : clX(UV )! [0; 1] such
that clX(U) = f�1(0) and clX(V ) = f�1(1).

Let � > 0 be such that, if x; y 2 clX(UV ) and jf(x)� f(y)j < 2�, then
d(x; y) < �.

Let �1 > 0 be as in Claim 1 applied to U , U and V . We may assume that
�1 < d(Y;X � UV ), �1 < � and �1 has the property that,

if x; y 2 clX(UV ) and d(x; y) < 2�1, then jf(x)� f(y)j < �.
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Fix a separated �1-chain V.

By the choice of �1, V ultrare�nes U and V makes a zigzag between U and
V with elements P;Q;R; S 2 V such that U0 � P < Q < R < S � V0, where U0
and V0 are the elements in V which bound Y . Then PS � UV , P [R � U and
Q [ S � V . Since each element T 2 V such that U0 � T � V0 intersects Y , by
the choice of �1, we conclude that T � UV . Thus U0V0 � UV . We can assume
that P is the �rst element in the set fT 2 V : U0 � T � V0g such that P � U ;
we also assume that Q is the �rst element in the set fT 2 V : P � T � V0g
such that Q � V ; R is the �rst element in the set fT 2 V : Q � T � V0g such
that R � U and S is the �rst element in the set fT 2 V : R � T � V0g such
that S � U .

If U0 \ V0 6= ;, then diameter(Y ) � diameter(U0V0) < 2�1 < 1
2diameter(Y ),

a contradiction. Hence U0 \V0 = ;. Thus V has at least three elements, so t(V)
is well de�ned. Since V is separated, clX(U0)\ clX(V0) = ;.

Claim 2. D(U0; V0) \ ((clX(U0V0)� clX(V0)) [ (clX(V0)� clX(U0V0)) 6= ;.

To prove Claim 2, suppose, to the contrary that D(U0; V0) \ ((clX(U0V0)�
clX(V0)) [ (clX(V0)� clX(U0V0)) = ;. By Theorem 8, there exists �1 > 0 such
that if V0 is a separated �1-chain in X, then V0 ultrare�nes V and V0 does not
fold from V0 to U0. Let �2 > 0 be as in Claim 1 applied to V, U0 and V0, we
may also ask that �2 < �1. Let V0 be a separated �2-chain in X. By the choice
of �1, V0 ultrare�nes V and V0 does not fold from V0 to U0. On the other hand,
by the choice of �2, V0 makes a zigzag between U0 and V0 and then V0 folds
from V0 to U0, a contradiction.
This completes the proof of Claim 2.

By Claim 2, there is a component E of (clX(U0V0)� clX(U0V0))\��1(clX(U0))
such that E \ D(clX(U0)) 6= ; and E \ ((clX(U0V0)� clX(V0)) [ (clX(V0)�
clX(U0V0)) 6= ;.

We only consider the case E \ (clX(V0)� clX(U0V0)) 6= ;, the other one is
analogous.

Let �1; �2 : X�X ! X be the respective projections on the �rst and second
coordinates. Let C0 = �1(E) [ �2(E).

Fix an element (u0; u0) 2 E \ D(clX(U0)). Then u0 2 �1(E) \ �2(E), so
C0 is a subcontinuum of X such that C0 \ clX(U0) 6= ;, C0 \ clX(V0) 6= ; and
C0 � clX(U0V0). Fix an element (v0; z0) 2 E \ (clX(V0)� clX(U0V0)). Then
u0 2 C0 \ clX(U0) and v0 2 C0 \ clX(V0).

Let �3 > 0 be such that �3 < minf�1; t(V)g and �3 has the property that,
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if D((u; v); (x; y)) < �3, then d(�(u; v); �(x; y)) < t(V).

Fix a separated �3-chain W such that W ultrare�nes V.

Let U1; V1 2 W be such that U1 and V1 bound C0. For each W 2 W,
�x a point pW 2 W � (

S
fclX(S) : S 2 W � fWgg). Given a point (x; y) 2

E, x; y 2 C0, so there exist S; T 2 W such that (x; y) 2 S � T and U1 �
S; T � V1. We have shown that the family F = fS � T : S; T 2 W and
U1 � S; T � V1g is an open cover of E. Since E is connected, there exists n 2 N
and S1; : : : ; Sn; T1; : : : ; Tn 2 W such that U1 � S1; : : : ; Sn; T1; : : : ; Tn � V1,
(u0; u0) 2 (S1 � T1)\E, (v0; z0) 2 (Sn � Tn)\E and, for each i 2 1; : : : ; n� 1,
((Si � Ti) \ E) \ ((Si+1 � Ti+1) \ E) 6= ;.

For each i 2 f1; : : : ; n�1g, �x a pair (�(i); �(i)) 2 (Si�Ti)\(Si+1�Ti+1)\E.
Hence �(�(i); �(i)) 2 clX(U0). Put �(0) = u0 = �(0) 2 S1 \ T1.

Claim 3. There exists j 2 f0; 1; : : : ; n � 1g and there exists an element
x 2 f�(j); �(j)g such that x 2 R and R is the only element of V containing x
in its closure.

We prove Claim 3. Since S1 \ T1 6= ;, Si \ Si+1 6= ; and Ti \ Ti+1 6= ;
for each i 2 f1; : : : ; n� 1g, the set fS1; : : : ; Sn; T1; : : : ; Tng can be reordered as
a subchain W0 of W. Since u0 2 S1\ clX(U0), S1 \ U0 6= ;. Since v0 2 Sn\
clX(V0), Sn \ V0 6= ;. By Lemma 7 (a), since U0 < R < V0, there exists an
element R0 2 W0 such that R0 \ R 6= ;, and the only element of V which
intersects R0 is R, so the only element of V whose closure interesects R0 is R.
Thus R0 � R. Since R0 contains either one element of the form �(j) or one
element of the form �(j), we conclude that there exists j 2 f0; 1; : : : ; n � 1g
and there exists an element x 2 f�(j); �(j)g such that x 2 R and R is the only
element of V containing x in its closure. This ends the proof of Claim 3.

Let jR = minfj 2 f0; 1; : : : ; n� 1g : there exists an element x 2 f�(j); �(j)g
such that x 2 R and R is the only element of V containing xg. By symmetry,
we may assume that �(jR) 2 R and R is the only element of V containing �(jR)
in its closure. Since �(0) = u0 2 clX(U0) and U0 < R , 0 < jR.

LetW1 = fW 2 V : U0 �W � Rg. SinceW1 is a subchain of V, we can put
W1 = fW0; : : : ;Wmg, where U0 = W0 < : : : < Wm = R. Note that P;Q 2 W1.
So, Q =Wi0 for some i0 2 f0; 1; : : : ;mg. Since U0 � P < Q < R and P \Q = ;
(P � U and Q � V ), 1 < i0 < m.

Applying Lemma 7 (a), considering that the family fT1; : : : ; TjRg can be put
as a subchain ofW, it can be shown that for each i 2 f1; : : : ;m�1g, there exists
ji 2 f1; : : : ; jRg such that:

�(ji) 2Wi and Wi is the only element of V containing �(ji) in its closure.
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We may assume that ji is the last element in f1; : : : ; jRg with the described
properties. De�ne jm = jR.

Since E � clX(U0V0)� clX(U0V0), C0 � clX(U0V0).

Claim 4. �(i) 2 clX(U0) [W1 [ : : : [Wm for each i 2 f0; 1; : : : ; jRg.

In order to prove Claim 4, suppose to the contrary that there exists i 2
f0; 1; : : : ; jRg such that �(i) =2 clX(U0) [W1 [ : : : [Wm. Since �(0) = u0 �
clX(U0), 0 < i. Let W 2 V, be such that �(i) 2 W . If Wm < W , since the
family fS1; : : : ; Sig can be put as a subchain ofW, applying Lemma 7 (a), there
exists k 2 f1; : : : ; i� 1g such that �(k) 2Wm = R and R is the only element of
V containing �(k). This contradicts the choice of jR and proves that W �Wm,
thus W < W0 = U0. Since �(i) 2 C0 � clX(U0V0) =

S
fclX(T ) : U0 � T � V0g.

Since V is a separated chain, the only element in the family fclX(T ) : U0 �
T � V0g that can be intersected by W is clX(U0). Thus �(i) 2 clX(U0), a
contradiction. This completes the proof of Claim 4.

In a similar way it can be proved the following claim.

Claim 5. �(i) 2 clX(U0) [W1 [ : : : [Wm for each i 2 f0; 1; : : : ; jRg.

De�ne � : f0; 1; : : : ; 2jR � ji0g ! f0; 1; : : : ; 2m� i0g by

�(i) =8<: 0; if 0 � i � jR and �(i) 2 clX(U0),
minfk 2 f1; : : : ;mg : �(i) 2Wkg, if 0 � i � jR and �(i) =2 clX(U0),
2m� �(2jR � i), if jR < i � 2jR � ji0 .

Since �(0) = u0 2 clX(U0), �(0) = 0. Given i 2 f1; : : : ;mg, ji 2 f0; 1; : : : ; jRg,
�(ji) 2 Wi and Wi is the only element of V containing �(ji) in its closure, in
particular, �(ji) =2 clX(U0). Thus �(ji) = i. In particular, �(ji0) = i0. Hence
�(2jR � ji0) = 2m� �(ji0) = 2m� i0.

Let i 2 fji0 ; : : : ; jRg, we are going to show that i0 � �(i) � m. Since
�(ji0) = i0, we may assume that ji0 < i. Suppose to the contrary that �(i) < i0.
Note that �(i) 2 clX(U0) or �(i) 2 W�(i). In the �rst case, let W 2 V be such
that �(i) 2 W . Since W \ U0 6= ; and 1 < i0, W < Wi0 = Q. Thus, in both
cases, there existsW 2 V such that �(i) 2W andW < Wi0 = Q < R. Consider
the family fTi; : : : ; TjRg � W. Since Ti \W 6= ; and �(jR) 2 TjR \Wm and
fTi; : : : ; TjRg can be rearrenged as a subchain of W, by Lemma 7 (a), there
exists l 2 fi; : : : ; jRg such that Q is the only element of V containing �(l) in
its closure. This contradicts the maximality of ji0 and completes the proof that
i0 � �(i) � m.

Given i 2 fjR; : : : ; 2jR � ji0g, ji0 � 2jR � i � jR. Since we have shown that
i0 � �(2jR � i) � m, we conclude that m � 2m � �(jR � i) � 2m � i0. This
proves that �(i) 2 f0; 1; : : : ; 2m� i0g for each i 2 f0; 1; : : : ; 2jR � ji0g.
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Claim 6. For each i 2 f1; 2; : : : ; 2jR � ji0g, j�(i)� �(i� 1)j � 1.

To prove Claim 6, let i; j 2 f0; 1; : : : ; 2jR � ji0g be such that ji� jj = 1. By
the choice of �(i) and �(j), there exists T 2 W such that �(i); �(j) 2 T . By the
choice of �3 andW, d(�(i); �(j)) < t(V). SinceWk1 ;Wk2 2 V, if �(i) 2 clX(Wk1)
and �(j) 2 clX(Wk2) for some k1; k2 2 f0; 1; : : : ;mg, then jk1 � k2j � 1.

We consider three cases.

Case 1. 0 � i; j � jR.
If �(i) 2 clX(U0), then �(j) 2 clX(U0) or �(j) 2 W1� clX(U0), in both

cases, j�(i)� �(j)j � 1.
If �(j) 2 clX(U0), similarly, j�(i)� �(j)j � 1.
If �(i) =2 clX(U0) and �(j) =2 clX(U0), then �(i) 2 W�(i) and �(j) 2 W�(j).

Thus j�(i)� �(j)j � 1.

Case 2. jR < i; j � 2jR � ji0 :
In this case, 1 � ji0 � 2jR � i; 2jR � j < jR and j2jR � i� (2jR � j)j = 1.

Applying the �rst case, j�(2jR � i)� �(2jR � j)j � 1. Hence j�(i)� �(j)j � 1.

Case 3. i = jR and j = jR + 1.
In this case, �(i) = m and �(j) = 2m � �(jR � 1). By the �rst case,

j�(jR)� �(jR � 1)j � 1. Thus j�(i)� �(j)j � 1.
Therefore, Claim 6 is proved.

Since �(ji0) 2 clX(U0) [W1 [ : : : [Wm, we can de�ne m0 2 f0; : : : ;mg as:
m0 = 0, if �(ji0) 2 clX(U0), and m0 = minfj 2 f1; : : : ;mg : �(ji0) 2 Wjg, if
�(ji0) =2 clX(U0).

Let m1 = 2jR � ji0 + 1 + 2m� i0 �m0.

De�ne � : f0; 1; : : : ;m1g ! f0; 1; : : : ; 2m� i0g by:

�(i) =8>><>>:
0, if 0 � i � jR and �(i) 2 clX(U0),
minfk 2 f1; : : : ;mg : �(i) 2Wkg, if 0 � i � jR and �(i) =2 clX(U0),
�(2jR � i), if jR < i � 2jR � ji0 ,
m0 + i� (2jR � ji0 + 1), if 2jR � ji0 < i � m1.

Since �(0) = u0 2 clX(U0), �(0) = 0. Note that �(m1) = 2m � i0 and
�(i) � m for each i � 2jR � ji0 .

Claim 7. For each i 2 f1; : : :m1g, j�(i)� �(i� 1)j � 1.

To prove Claim 7, let i; j 2 f0; 1; : : : ;m1g be such that ji� jj = 1. We
consider �ve cases.
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Case 1. 2jR � ji0 < i; j � m1.
In this case, j�(i)� �(j)j = ji� jj = 1.

Case 2. i = 2jR � ji0 and j = 2jR � ji0 + 1.
In this case, �(i) = �(2jR � ji0) = �(ji0) = m0 = �(j).

Case 3. 0 � i; j � jR.
By the choice of �(i) and �(j), there exists T 2 W such that �(i); �(j) 2 T .

By the choice of �3 and W, d(�(i); �(j)) < t(V). Thus, if �(i) 2 clX(Wk1) and
�(j) 2 clX(Wk2) for some k1; k2 2 f0; 1; : : : ;mg, then jk1 � k2j � 1. Thus:

If �(i) 2 clX(U0), then �(j) 2 clX(U0) or �(j) 2 W1� clX(U0), in both
cases, j�(i)� �(j)j � 1.
If �(j) 2 clX(U0), similarly, j�(i)� �(j)j � 1.
If �(i) =2 clX(U0) and �(j) =2 clX(U0), then �(i) 2 W�(i) and �(j) 2 W�(j).

Thus j�(i)� �(j)j � 1.

Case 4. jR < i; j � 2jR � ji0 :
In this case, 1 � ji0 � 2jR � i; 2jR � j < jR. Applying Case 3, we obtain

that j�(2jR � i)� �(2jR � j)j � 1. Hence j�(i)� �(j)j � 1.

Case 5. i = jR and j = jR + 1.
In this case, �(j) = �(jR � 1). By Case 3.1, j�(i)� �(j)j � 1.
Therefore, Claim 7 is proved.

Notice that clX(U0) [W1 [ : : : [Wm � clX(U0V0) � clX(UV ). Let J =
f�(i) : i 2 f0; 1; : : : ; jRgg [ f�(i) : i 2 f0; 1; : : : ; jRgg.

De�ne g : J ! [0; 1] by

g(�(i)) =

�
f(u0), if �(i) 2 clX(U0);
f(�(j�(i))), if �(i) =2 clX(U0),

and

g(�(i)) =

�
f(u0), if �(i) 2 clX(U0);
f(�(j�(i))), if �(i) =2 clX(U0):

Note that, if i 2 f0; 1; : : : ; jRg and �(i) =2 clX(U0), then �(i) 2 f1; : : : ;mg,
so j�(i) 2 f0; 1; : : : ; jRg, then �(j�(i)) 2 clX(U0V0). Thus f(�(j�(i))) and g(�(i))
are well de�ned. Similarly, g(�(i)) is well de�ned for each i 2 f0; 1; : : : ; jRg.

Given i 2 f1; : : : ;mg, �(ji) 2Wi�(clX(U0)[ : : :[Wi�1), so �(ji) = i. Thus
g(�(ji)) = f(�(ji)).

Let � : [0; 1]! [0; 1] be the PL mapping de�ned by the following conditions:
�(0) = g(�(0)), �( 1

2m�i0 ) = g(�(j1)), : : : , �( m
2m�i0 ) = g(�(jm)), �( m+1

2m�i0 ) =

g(�(jm�1)), �( m+2
2m�i0 ) = g(�(jm�2)), : : : , �(

m+(m�i0)
2m�i0 ) = g(�(ji0))
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Let � : [0; 1] ! [0; 1] be the PL mapping de�ned by the following con-
ditions: �(0) = g(�(0)), �( 1

2jR�ji0
) = g(�(1)), : : :, �( jR

2jR�ji0
) = g(�(jR)),

�( jR+1
2jR�ji0

) = g(�(jR � 1)), �( jR+2
2jR�ji0

) = g(�(jR � 2)), : : :, �(
jR+(jR�ji0 )
2jR�ji0

) =

g(�(ji0)).

Let 	 : [0; 1] ! [0; 1] be the PL mapping de�ned by the following con-
ditions: 	(0) = g(�(0)), 	( 1

2jR�ji0
) = g(�(1)), : : :, 	( jR

2jR�ji0
) = g(�(jR)),

	( jR+1
2jR�ji0

) = g(�(jR � 1)), 	( jR+2
2jR�ji0

) = g(�(jR � 2)), : : :, 	(
jR+(jR�ji0 )
2jR�ji0

) =

g(�(ji0)).

Let � : [0; 1]! [0; 1] be the PL mapping de�ned by the following conditions:
�(0) = g(�(jR)), �( 1

jR�ji0
) = g(�(jR � 1)), : : :, �(

jR�ji0
jR�ji0

) = g(�(ji0)).

Since i0 > 0 and �(ji0) 2 Q � V , so g(�(ji0)) = f(�(ji0)) = 1. Since
�(jR) 2 R � U , g(�(jR)) = g(�(jm)) = f(�(jm)) = f(�(jR)) = 0. Therefore,
�(1) = 1, �(1) = 1, �(0) = 0 and �(1) = 1. Hence � is a jump mapping.

We want to apply Theorem 6 to the mappings � and �.

Claim 8. �( �(i)
2m�i0 ) = �(

i
2jR�i0 ) for each i 2 f0; 1; : : : ; 2jR � ji0g.

To prove Claim 8, we consider three cases.

Case 1. 0 � i � jR and �(i) 2 clX(U0).
In this case �(i) = 0, �( �(i)

2m�i0 ) = g(�(0)) = f(u0), �( i
2jR�i0 ) = g(�(i)) =

f(u0). Hence, �(
�(i)
2m�i0 ) = �(

i
2jR�i0 ).

Case 2. 0 � i � jR and �(i) =2 clX(U0).
By de�nition of �(i), �(i) 2 f1; : : : ;mg. By de�nition of g(�(i)), g(�(i)) =

f(�(j�(i))). Thus �(
i

2jR�i0 ) = f(�(j�(i))). Since f(�(jk)) = g(�(jk)) for each

k 2 f1; : : : ;mg and �(i) 2 f1; : : : ;mg, we obtain that �( �(i)
2m�i0 ) = g(�(j�(i))) =

f(�(j�(i))). Hence, �(
�(i)
2m�i0 ) = �(

i
2jR�i0 ).

Case 3. jR < i � 2jR � ji0 .
In this case, 1 � ji0 � 2jR � i < jR. As we proved after the de�nition of �

this inequalities imply that 1 < i0 � �(2jR � i) � m. Thus g(�(j�(2jR�1))) =
f(�(j�(2jR�1))) and �(i) = 2m��(2jR�i) 2 fm; : : : ; 2m�i0g. By the de�nition
of �, �(�(i)) = g(�(j2m��(i))) = g(�(j�(2jR�i))) = f(�(j�(2jR�i))). On the
other hand, �( i

2jR�i0 ) = g(�(2jR � i)). Since 1 < �(2jR � i), �(2jR � i) =2
clX(U0), so �( i

2jR�i0 ) = g(�(2jR � i)) = f(�(j�(2jR�i))) = �(�(i)).

This completes the proof of Claim 8.
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Let 	0 : [0; 1]! [0; 1] be the PL mapping which is the common extension of
the following two mappings: 	(2t), if t 2 [0; 12 ], and �((

m0

2m�i0 )(4�4t)+4t�3),
if 34 � t � 1.

Since i0 < m , 0 < 2m � i0 � m0. Notice that 	0 is supported by the
partition 0 < 1

2(2jR�ji0 )
< : : : <

2jR�ji0
2(2jR�ji0 )

= 1
2 <

3
4 <

3
4 +

1
4 (

1
2m�i0�m0

) < : : : <
3
4 +

1
4 (
2m�i0�m0

2m�i0�m0
) = 1, which divides the interval [0; 1] into m1 = 2jR � ji0 +

1 + 2m� i0 �m0 subintervals.

Claim 9. 	0( i
2(2jR�ji0 )

) = �( �(i)
2m�i0 ) for each i 2 f0; : : : ; 2jR � ji0g.

To prove Claim 9, we consider three cases.

Case 1. 0 � i � jR and �(i) 2 clX(U0).
In this case, �(i) = 0 and �( �(i)

2m�i0) ) = g(�(0)) = f(u0). On the other hand,

0 � i
2(2jR�ji0 )

� 1
2 , so 	0(

i
2(2jR�ji0 )

) = 	( i
2jR�ji0

) = g(�(i)) = f(u0). Hence,

	0(
i

2(2jR�ji0 )
) = �( �(i)

2m�i0 ).

Case 2. 0 � i � jR and �(i) =2 clX(U0),
By de�nition of �(i), �(i) 2 W�(i) � (clX(U0) [ W1 [ : : : [ W�(i)�1). By

de�nition of g(�(i)), g(�(i)) = f(�(j�(i))). Thus 	0(
i

2(2jR�i0) ) = 	(
i

2jR�ji0
) =

g(�(i)) = f(�(j�(i))). Since f(�(jk)) = g(�(jk)) for each k 2 f1; : : : ;mg and
�(i) 2 f1; : : : ;mg, we obtain that �( �(i)

2m�i0 ) = g(�(j�(i))) = f(�(j�(i))). Hence,

	0(
i

2(2jR�i0) ) = �(
�(i)

2m�i0 ).

Case 3. jR < i � 2jR � ji0 .
In this case, ji0 � 2jR� i < jR, so 	0( i

2(2jR�ji0 )
) = 	( i

2jR�ji0
) = g(�(2jR�

i)) = 	( 2jR�i
2jR�ji0

) = 	0(
2jR�i

2(2jR�ji0 )
) = (by the �rst two cases) �(�(2jR�i)2m�i0 ) =

�( �(i)
2m�i0 ). This ends Case 3 and completes the proof of Claim 9.

It is easy to check that, if 2jR�ji0 < i � m1, then	0( 34+
1
4 (
i�(2jR�ji0+1)
2m�i0�m0

)) =

�(
m0+i�(2jR�ji0+1)

2m�i0 ).

Therefore, we can apply Theorem 6 to obtain a jump mapping 
0 such that
	0 = � � 
0.

Let 
 : [0; 1] ! [0; 1] be the PL mapping given by 
(t) = 
0(
t
2 ). Then

	 = � � 
 and 
(0) = 0.

We also can apply Theorem 6 to �, � and � and obtain a jump mapping �
such that � = � � �.
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By Theorem 4, there exist a jump mapping � and a PL mapping � such
that �(1) = 1 and � �� = � � �.

By Theorem 3, there exist jump mappings � and � such that ��� = ���.

By Theorem 5, there exist a PL mapping z and a jump mapping � such
that z(0) = 0 and 
 �� = � �z.

By Theorem 3, there exist jump mappings �, � such that � � � = � � �.

Observe that � � � � � = � � � � � � � = � � � � � � � = � � � � � � � and
	 �� � � = � � 
 �� � � = � �� �z � � = � � � �z � �.

Hence � � � � � = � � � �� � � and 	 �� � � = � � � �z � �.

Notice also that �(0) = (� � � � �)(0) = (� � � � � � �)(0) = (� � �)(0),
�(1) = (�����)(1) = (�������)(1) = (���)(1) and 	(0) = (	����)(0) =
(� � � �z � �)(0) = (� � �)(0).

Let 0 = r1 < r2 < : : : < rN = 1 be a partition of [0; 1] such that, for
each i 2 f2; : : : ; Ng and each � 2 f� � �;� � � � �;� � �;� � z � �g, we have
j�(ri)� �(ri�1)j < 1

2(2jR�ji0 )
.

Given a nonempty closed set B � R and a point x 2 R, choose the lowest
(in the order of the real line) point �(x;B) 2 B such that jx� �(x;B)j =
minfjx� yj : y 2 Bg.

Let 
 : f1; 2; : : : ; 2Ng ! [0; 1] be given by


(i) =(
�(�(�(ri)); f 0

2jR�ji0
; 1
2jR�ji0

; : : : ;
2jR�ji0
2jR�ji0

g), if i 2 f1; 2; : : : ; Ng,
�(�(�(�(r2N�i+1))); f 0

jR�ji0
; 1
jR�ji0

; : : : ;
jR�ji0
jR�ji0

g), if i 2 fN + 1; : : : ; 2Ng.

Let � : f1; 2; : : : ; Ng [ f2N + 1; : : : ; 3Ng ! [0; 1] be given by

�(i) =(
�(�(�(ri)); f 0

2jR�ji0
; 1
2jR�ji0

; : : : ;
2jR�ji0
2jR�ji0

g), if i 2 f1; 2; : : : ; Ng,
�(�(z(�(ri�2N ))); f 0

jR�ji0
; 1
jR�ji0

; : : : ;
jR�ji0
jR�ji0

g), if i 2 f2N + 1; : : : ; 3Ng.

Let L = f1; : : : ; 4Ng and let F;G : L! X be the functions de�ned by:

F (i) =8>>><>>>:
�(k), if 
(i) = k

2jR�ji0
, k 2 f0; 1; : : : ; jRg, i 2 f1; : : : ; Ng,

�(2jR � k), if 
(i) = k
2jR�ji0

, k 2 fjR + 1; : : : ; 2jR � ji0g, i 2 f1; : : : ; Ng,
�(jR � k), if 
(i) = k

jR�ji0
, k 2 f0; : : : ; jR � ji0g, i 2 fN + 1; : : : ; 2Ng,

F (i� 2N), if i 2 f2N + 1; : : : ; 4Ng,
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and

G(i) =8>>>>><>>>>>:

�(k), if �(i) = k
2jR�ji0

, k 2 f0; 1; : : : ; jRg, i 2 f1; : : : ; Ng,
�(2jR � k), if �(i) = k

2jR�ji0
, k 2 fjR + 1; : : : ; 2jR � ji0g, i 2 f1; : : : ; Ng,

G(2N � i+ 1), if i 2 fN + 1; : : : ; 2Ng,
�(jR � k), if �(i) = k

jR�ji0
, k 2 f0; : : : ; jR � ji0g, i 2 f2N + 1; : : : ; 3Ng,

G(6N � i+ 1), if i 2 f3N + 1; : : : ; 4Ng.

In the following claim we resume some easy to check equalities.

Claim 10. F (1) = u0 = G(1); F (N) = �(ji0); G(N) = �(ji0); F (N + 1) =
�(ji0); G(N + 1) = �(ji0); F (2N) = �(jR � k0), where 
(2N) = k0

jR�ji0
=

�(�(0); f 0
jR�ji0

; : : : ;
jR�ji0
jR�ji0

g); G(2N) = u0; F (2N + 1) = u0, G(2N + 1) =

�(jR � k0); F (3N) = �(ji0); G(3N) = �(jR � k1), where k1
jR�ji0

= �(3N) =

�(�(z(�(1))); f 0
jR�ji0

; : : : ;
jR�ji0
jR�ji0

g); F (3N + 1) = �(ji0); G(3N + 1) = G(3N);

F (4N) = �(jR � k0) and G(4N) = �(jR � k0).

Let h : L! X be given by

h(i) = �(F (i); G(i)).

From Claim 10, the following claim is immediate.

Claim 11. h(1) = u0; h(N) = h(N + 1); h(2N) = h(2N + 1); h(3N) =
h(3N + 1) and h(4N) = �(jR � k0), for some k0 2 f0; 1; : : : ; jR � ji0g.

Claim 12. d(F (i); F (i+ 1)) < �3 for each i 2 L� fN; 2N; 3N; 4Ng.

To prove Claim 12, �rst we consider the case that i 2 f1; : : : ; N � 1g.
Let 
(i) = l1

2jR�ji0
and 
(i + 1) = l2

2jR�ji0
. By the choice of ri and ri+1,

j�(�(ri)� �(�(ri+1)j < 1
2(2jR�ji0 )

. This implies that jl1 � l2j � 1. Analizing

the possibilities for l1 and l2 (l1; l2 � jR, l1 � jR < l2, l2 � jR < l1 and
jR � l1,l2) it can be seen that F (i) = �(i1) and F (i + 1) = �(i2) for some
i1; i2 2 f1; : : : ; jRg such that ji1 � i2j � 1. By the choice of �(i1) and �(i2),
there exists T 2 W such that �(i1); �(i2) 2 T . Therefore, d(F (i); F (i+1)) < �3.

The case i 2 fN +1; : : : ; 2N �1g is similar. The case i 2 f2N +1; : : : ; 3N �
1g [ f3N + 1; : : : ; 4N � 1g follows from the previous ones and the de�nition of
F .

This completes the proof of Claim 12.

23



Similar arguments can be used to show the following claim.

Claim 13. d(G(i); G(i+ 1)) < �3 for each i 2 L� fN; 2N; 3N; 4Ng.

From the choice of �3 and Claims 11, 12 and 13, we obtain the following.

Claim 14. d(h(i); h(i+ 1)) < t(V) for each i 2 f1; : : : ; 4N � 1g.

Claim 15. Let P0 2 V be such that P < P0 � Q. Then h(L) \ P0 6= ;.

We prove Claim 15. First we show that h(L) \Q 6= ;.

By Claim 11, h(1) = u0 2 h(L)\ clX(U0) and h(4N) = �(jR � k0) for some
k0 2 f0; 1; : : : ; jR � ji0g. Note that ji0 � jR � k0 � jR. If jR � k0 = ji0 , then
h(4N) = �(jR � k0) = �(ji0) 2Wi0 \ h(L) = Q\ h(L) and we �nish. Thus, we
may assume that ji0 < jR � k0.

Since �(jR � k0) 2 TjR�k0 , from Claim 5 we have that TjR�k0 \ U0 6= ; or
there exists i1 2 f1; : : : ;mg such that �(jR�k0) 2Wi1 . We consider two cases.

Case 1. TjR�k0 \ U0 6= ; or �(jR � k0) 2Wi1 for some i1 < i0.
Consider the subchain W2 of W which can be constructed by ordering the

elements TjR�k0 ; : : : ; TjR 2 W. Since U0 < Q < R and �(jR) 2 TjR \WR, by
Lemma 7 (a), there exists one element Ti (where jR � k0 � i � jR) of W2 such
that Ti \Q 6= ; and Q is the only element of V which intersects Ti. Thus Q is
the only element of V whose closure intersects Ti. Hence �(i) 2 Ti � Q and Q
is the only element of V which contains �(i) in its closure. Recall that ji0 was
the last index with this property, we have obtained a contradiction since ji0 < i.
We have shown that this case is impossible.

Case 2. �(jR � k0) 2Wi1 for some i0 � i1.
If i0 = i1, then h(4N) = �(jR � k0) 2 h(L) \ Q and we �nish, so we

may assume that i0 < i1. Let A =
S
fclX(T ) : T 2 V and T < Qg and

B =
S
fclX(T ) : T 2 V and Q < Tg. Notice that X = A [B [Q, clX(U0) � A

and clX(Wi1) � B. Thus h(1) 2 A and h(4N) 2 B. Since t(V) < d(A;B),
Claim 14 implies that there exists i 2 f1; : : : ; 4Ng such that h(i) =2 A[B. Thus
h(i) 2 h(L) \Q.

This completes the proof that h(L) \Q 6= ;.

To �nish the proof of Claim 15, let P0 2 V be such that P < P0 < Q. Since
U0 � P , h(L)\ clX(U0) 6= ; and h(L) \Q 6= ;, a similar argument as in Case 2
shows that h(L) \ P0 6= ;. This completes the proof of Claim 15.

Claim 16. 3
4diameter(Y ) � diameter(h(L)).
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We prove Claim 16. Let x; y 2 Y be such that d(x; y) = diameter(Y ). Since
Y � UV , there exist Ux; Uy 2 U such that x 2 Ux, y 2 Uy and U � Ux; Uy � V .
We may assume that Ux � Uy.

Given T 2 U with U < T < V , since P � U and Q � V , by Lemma
7 (a), there exists W 2 V such that the only element of U which intersects
W is T and P � W � Q. Note that W 6= P and W 6= Q. By Claim 15,
; 6= h(L) \W � h(L) \ T . Since ; 6= h(L) \Q � h(L) \ V , we conclude that,
for each T 2 U with U < T � V; h(L) \ T 6= ;.

If U = Ux, let T be the element in U such that U < T < V and U\T 6= ; (the
next element in the chain U after U). Thus there exists ix 2 f1; : : : ; 4Ng such
that h(ix) 2 T . Hence d(x; h(ix)) � diameter(Ux [ T ) < 2� < 1

8 (diameter(Y )).
In the case U < Ux, h(L) \ Ux 6= ;. Thus there exists ix 2 f1; : : : ; 4Ng such
that h(ix) 2 Ux. Hence d(x; h(ix)) � diameter(Ux) < � < 1

8 (diameter(Y )). In
any case, there exists ix 2 f1; : : : ; 4Ng such that d(x; h(ix)) � 1

8 (diameter(Y )).

Similarly, there exists iy 2 f1; : : : ; 4Ng such that d(y; h(iy)) � 1
8 (diameter(Y )).

Thus diameter(Y ) = d(x; y) � 1
4 (diameter(Y )) + d(h(ix); h(iy)). Therefore,

3
4 (diameter(Y )) � diameter(h(L)). We have shown Claim 16.

We have de�ned, for each i 2 f1; : : : ;mg, ji 2 f1; : : : ; jRg with the property
that �(ji) 2 Wi. To extend this de�nition, we consider the formal symbol
j0 and we put �(j0) = u0. With this convention, f(�(j0)) = f(u0). Since
�(0) = 0 = �(0), g(�(i)) = f(�(j�(i))) and g(�(i)) = f(�(j�(i))) for each
i 2 f0; 1; : : : ; jRg.

Claim 17. Let r 2 [0; 1], k 2 f0; 1; : : : ; jR � ji0g and l 2 f0; 1; : : : ; 2jR �
ji0g have the properties that �(�(�(�(r))); f 0

jR�ji0
; : : : ;

jR�ji0
jR�ji0

g) = k
jR�ji0

and

�(�(�(r)); f 0
2jR�ji0

; : : : ;
2jR�ji0
2jR�ji0

g) = l
2jR�ji0

. If l � jR, then d(�(jR�k); �(l)) <
3�. If jR < l, then d(�(jR � k); �(2jR � l)) < 3�.

In order to prove Claim 17, �rst we show
��f(�(j�(jR�k)))��(�(�(�(r))))�� <

�.

Consider �rst the case that k
jR�ji0

< �(�(�(r)). By the de�nition of � ,

k
jR�ji0

< �(�(�(r)) < k+1
jR�ji0

. By the de�nition of�,
����( k+1

jR�ji0
)��( k

jR�ji0
)
��� �����(�(�(�(r)))��( k

jR�ji0
)
���, �( k

jR�ji0
) = g(�(jR � k)) = f(�(j�(jR�k))) and

�( k+1
jR�ji0

) = g(�(jR � (k + 1))) = f(�(j�(jR�(k+1)))). Claim 6 implies that

j�(jR � k)� �(jR � (k + 1))j � 1. Thus W�(jR�k) \W�(jR�(k+1)) 6= ; this im-
plies that diameter(clX(W�(jR�k)[W�(jR�(k+1)))) < 2�1. Note that �(j�(jR�k)),
�(j�(jR�(k+1))) 2 clX(W�(jR�k)[W�(jR�(k+1))) (even in the case that �(jR�k)
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or �(jR�(k+1)) is equal to 0), so d(�(j�(jR�k)); �(j�(jR�(k+1)))) < 2�1. By the
choice of �1, we obtain that

��f(�(j�(jR�k)))� f(�(j�(jR�(k+1))))�� < �. There-

fore
��f(�(j�(jR�k)))��(�(�(�(r)))�� = ����(�(�(�(r)))��( k

jR�ji0
)
��� < �.

In the case that �(�(�(r)) < k
jR�ji0

, k�1
jR�ji0

< �(�(�(r)) < k
jR�ji0

. So a
similar argument as in the paragraph above can be made, by changing k + 1
by k � 1, to obtain the desired inequality. Finally, if �(�(�(r)) = k

jR�ji0
, then

�(�(�(�(r))) = �( k
jR�ji0

) = f(�(j�(jR�k))) and the inequality is immediate.

Now, we analize the possible cases for l. First, suppose that l � jR.

Next, we prove that
��f(�(j�(l)))� �(�(�(r)))�� < �.

Consider �rst the case that l
2jR�ji0

< �(�(r)). By the de�nition of � ,

l
2jR�ji0

< �(�(r)) < l+1
2jR�ji0

. By the de�nition of �,
����( l

2jR�ji0
)� �(�(�(r)))

��� �����( l+1
2jR�ji0

)� �( l
2jR�ji0

)
��� and �( l

2jR�ji0
) = g(�(l)) = f(�(j�(l))). In the case

that l + 1 � jR, �( l+1
2jR�ji0

) = g(�(l + 1)) = f(�(j�(l+1))). By Claim 6,

j�(l)� �(l + 1)j � 1. Thus W�(l) \ W�(l+1) 6= ; and diameter(clX(W�(l) [
W�(l+1))) < 2�1. Since �(j�(l)); �(j�(l+1)) 2 clX(W�(l) [W�(l+1)), we obtain
d(�(j�(l)); �(j�(l+1))) < 2�1. By the choice of �1,

��f(�(j�(l)))� f(�(j�(l+1)))�� <
�. Hence

��f(�(j�(l)))� �(�(�(r)))�� = ����(�(�(r)))� �( l
2jR�ji0

)
��� < �. In the

case that jR < l+1, we have that l = jR, l+1 = jR+1, �( l
2jR�ji0

) = g(�(l)) =

f(�(j�(l))) and �(
l+1

2jR�ji0
) = g(�(l� 1)) = f(�(j�(l�1))). Hence a similar argu-

ment as before leads to the proof that
��f(�(j�(l)))� �(�(�(r)))�� < �.

The case �(�(r)) < l
2jR�ji0

is similar and the case �(�(r)) = l
2jR�ji0

is
immediate.

Therefore, if l � jR, then
��f(�(j�(l)))� �(�(�(r)))�� < �.

Since �(�(�(�(r))) = �(�(�(r))), assuming that l � jR, we obtain that��f(�(j�(jR�k)))� f(�(j�(l)))�� < 2�. By the choice of �, d(�(j�(jR�k)); �(j�(l)) <
�. Since �(jR�k); �(j�(jR�k)) 2 clX(W�(jR�k)) and �(l); �(j�(l)) 2 clX(W�(l)),
d(�(jR � k); �(j�(jR�k))); d(�(l); �(j�(l))) < �1 < �. Hence d(�(jR � k); �(l)) <
3�.

In the case that jR < l, similar arguments can be used to show that d(�(jR�
k); �(2jR � l)) < 3�. We have �nished the proof of Claim 17.

Mimicking the proof of Claim 17, the following claim can be proved.

26



Claim 18. Let r 2 [0; 1], k 2 f0; 1; : : : ; jR � ji0g and l 2 f0; 1; : : : ; 2jR �
ji0g have the property that �(�(z(�(r))); f 0

jR�ji0
; : : : ;

jR�ji0
jR�ji0

g) = k
jR�ji0

and

�(�(�(r)); f 0
2jR�ji0

; : : : ;
2jR�ji0
2jR�ji0

g) = l
2jR�ji0

. If l � jR, then d(�(jR�k); �(l)) <
3�. If jR < l, then d(�(jR � k); �(2jR � l)) < 3�.

Claim 19. For each i 2 f1; : : : ; 4Ng, d(h(i);clX(U0)) < 1
16 (diameter(Y )).

We consider four cases.

Case 1. i 2 f1; : : : ; Ng.
Since �(�(ri)) = �(�(ri)), if k

2jR�ji0
= �(�(�(ri)); f 0

2jR�ji0
; : : : ;

2jR�ji0
2jR�ji0

g),
then k

2jR�ji0
= �(�(�(ri)); f 0

2jR�ji0
; : : : ;

2jR�ji0
2jR�ji0

g). Thus 
(i) = k
2jR�ji0

=

�(i). If k � jR, F (i) = �(k) and G(i) = �(k). By the choice of (�(k); �(k)),
�((�(k); �(k))) 2 clX(U0). Therefore, h(i) 2 clX(U0). If jR < k, F (i) =
�(2jR � k) and G(i) = �(2jR � k). Thus h(i) = �(�(2jR � k); �(2jR � k)) 2
clX(U0). Therefore, if i 2 f1; : : : ; Ng, h(i) 2 clX(U0).

Case 2. i 2 fN + 1; : : : ; 2Ng.
Let k

jR�ji0
= �(�(�(�(r2N�i+1))); f 0

jR�ji0
; : : : ;

jR�ji0
jR�ji0

g) = 
(i), l
2jR�ji0

=

�(�(�(r2N�i+1)); f 0
2jR�ji0

; : : : ;
2jR�ji0
2jR�ji0

g) = �(2N�i+1). So, F (i) = �(jR�k).

If l � jR, then G(i) = �(l). Thus h(i) = �(�(jR � k); �(l)). Since � �
� = � � �, we can apply Claim 17 and obtain that d(�(jR � k); �(l)) < 3�.
Then D((�(jR � k); �(l)); (�(l); �(l))) < 3

2�. By the choice of �, d(�(�(jR �
k); �(l)); �(�(l); �(l))) < 1

16 (diameter(Y )). By the choice of (�(l); �(l)), we
obtain �(�(l); �(l)) 2 clX(U0). Therefore, d(h(i);clX(U0)) < 1

16 (diameter(Y )).

If jR < l, then G(i) = �(2jR � l). Thus h(i) = �(�(jR � k); �(2jR � l)).
Applying Claim 17, we obtain d(�(jR � k); �(2jR � l)) < 3�. By the choice of
� and (�(2jR � l); �(2jR � l)), d(h(i);clX(U0)) < 1

16 (diameter(Y )).

Case 3. i 2 f2N + 1; : : : ; 3Ng.
Let l

jR�ji0
= �(�(z(�(ri�2N ))); f 0

jR�ji0
; : : : ;

jR�ji0
jR�ji0

g) = �(i) and k
2jR�ji0

=

�(�(�(ri�2N )); f 0
2jR�ji0

; : : : ;
2jR�ji0
2jR�ji0

g) = 
(i� 2N). Then G(i) = �(jR � l).

If k � jR, then F (i) = �(k). Thus h(i) = �(�(k); �(jR � l)). Since � �
� = � � �, we can apply Claim 18 and obtain that d(�(jR � l); �(k)) < 3�.
Then D((�(jR � l); �(k)); (�(k); �(k))) < 3

2�. By the choice of �, d(�(�(jR �
l); �(k)); �(�(k); �(k))) < 1

16 (diameter(Y )). By the choice of (�(k); �(k)), we
have �(�(k); �(k)) 2 clX(U0). Therefore, d(h(i);clX(U0)) < 1

16 (diameter(Y )).
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If jR < k, then F (i) = �(2jR � k). Thus h(i) = �(�(2jR � k); �(jR � l)).
Applying Claim 18, we obtain d(�(jR � l); �(2jR � k)) < 3�. By the choice of
� and (�(2jR � k); �(2jR � k)), d(h(i);clX(U0)) < 1

16 (diameter(Y )).

Case 4. i 2 f3N + 1; : : : ; 4Ng.
Let k

jR�ji0
= �(�(�(�(r4N�i+1))); f 0

jR�ji0
; 1
jR�ji0

; : : : ;
jR�ji0
jR�ji0

g) = 
(i�2N)
and k0

jR�ji0
= �(�(z(�(r4N�i+1))); f 0

jR�ji0
; 1
jR�ji0

; : : : ;
jR�ji0
jR�ji0

g) = �(6N�i+1).
Then F (i) = �(jR � k) and G(i) = �(jR � k0).

Let l be such that l
2jR�ji0

= �(�(�(r4N�i+1)); f 0
2jR�ji0

; : : : ;
2jR�ji0
2jR�ji0

g) =
�(�(�(r4N�i+1)); f 0

2jR�ji0
; : : : ;

2jR�ji0
2jR�ji0

g). If l � jR, by Claim 17, d(�(jR �
k); �(l)) < 3�, and by Claim 18, d(�(jR � k0); �(l)) < 3�. Thus D((�(jR �
k); �(jR � k0)); (�(l); �(l))) < 3�. By the choice of �, d(�(�(jR � k); �(jR �
k0)); �(�(l); �(l))) < 1

16 (diameter(Y )). Hence, d(h(i);clX(U0)) <
1
16 (diameter(Y )).

If jR < l, by Claim 17, d(�(jR�k); �(2jR� l)) < 3�, and by Claim 18, d(�(jR�
k0); �(2jR � l)) < 3�. This implies that d(h(i);clX(U0)) < 1

16 (diameter(Y )).

We have proved Claim 19.

Claim 20. diameter(h(L)) < 1
2 (diameter(Y )).

Claim 20 follows from the fact that diameter(clX(U0)) < �1 <
1
16 (diameter(Y ))

and Claim 19.

Since Claims 16 and 20 are contradictory, we have �nished the proof of
Theorem 1. �
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