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Abstract

We construct a metric continuum X such that the hyperspace of sub-
continua, C(X), of X is not a continuous image of X. This answers a
question by I. Krzemińska and J. R. Prajs.
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INTRODUCTION

A continuum is a nonempty, nondegenerate compact connected metric space.
Given a continuum X, we consider the following hyperspaces of X.

2X = fA � X : A is closed and nonemptyg,
C(X) = fA 2 2X : A is connectedg.

Both are endowed with the Hausdor¤ metric H.

The problem of determining conditions for the existence of onto mappings
between X, C(X) and 2X has been considered in [1], [2] and [3]. In [2, 3.6] it was
proved that there is always a mapping from 2X onto C(X). In [2, 3.5], was also
proved that there is a mapping from X onto 2X if and only if (a) X is locally
connected or (b) X contains an open set with countably many components. Thus,
ifX satis�es (a) or (b), then C(X) is a continuous image ofX. For a more detailed



discussion on this topic see Chapter IV of [3]. In [1, Question 2], I. Krzemińska and
J. R. Prajs asked if there exists a continuumX with no continuous surjection from
X onto C(X) (this question also was posted on the Open Problems on Continuum
Theory website of J. R. Prajs and W. J. Charatonik). Here, we answered this
question in the negative by constructing a continuum X such that C(X) is not a
continuous image of X. The related questions: Is C(C(X)) a continuous image
of C(X) for each continuum X? ([1, Question 3]) and; if Y is a continuous image
of X, is C(Y ) a continuous image of C(X)? ([1, Question 1]) remain open.

THE EXAMPLE

Let Z be the sin( 1
x
)-continuum de�ned as the closure in the plane of the graph

of the function sin( 1
x
) with the interval (0; 1] as its domain. Then Z is the union

of the limit arc J = f0g� [�1; 1] and the ray T = Z�J . Consider the continuum
Y obtained by identifying the points (0;�1) and (0; 1) in Z and let h : Z ! Y
be the quotient map. Then Y is the union of the simple closed curve C = h(J)
and the ray h(T ). The continuum Y constructed in this way is going to be called
a packman having its limit circle C, its ray h(T ) and its peak point h((0; 1)).

Consider the circle S = f(x; y; 0) 2 E3 : x2 + y2 = 1g in the Euclidean space
E3. Fix a sequence fzng1n=1 in S and a point z0 2 S such that lim zn = z0 and
the points z0; z1; z2; : : : are pairwise di¤erent.

Consider a sequence of packman continua fYng1n=1 in E3 with the following
properties:
(a) S is the limit circle of Yn for each n 2 N,
(b) zn is the peak point of Yn for each n 2 N,
(c) the rays R1 = Y1 � S, R2 = Y2 � S; : : : are pairwise disjoint,
(d) limYn = S.

The continuum X is then de�ned as X = Y1 [ Y2 [ : : : :

We can assume also that X satis�es the following property:
(e) given a path � : [0; 1] ! S and � > 0, there exists � > 0 such that, if

zn =2 �([0; 1]), q 2 Rn and k�(0)� qk < �, then there exists a path � : [0; 1]! Rn
such that �(0) = q and k�(t)� �(t)k < � for each t 2 [0; 1],
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Observe that X satis�es the following properties:
(f) if J is an arc in S, zn 2 J and zn is not an end point of J , then J =2

clC(X)(C(Rn)), where clC(X)(C(Rn)) = fA 2 C(X) : A � Rng,
(g) if J is an arc in S � fzng, then J 2 clC(X)(C(Rn)),
(h) S is a terminal subcontinuum of X, that is, if A 2 C(X) and A \ S 6= ;,

then A � S or S � A.

We are going to prove that there is no a continuous map form X onto C(X),
By way of contradiction, suppose that there exists a continuous onto map f :
X ! C(X).

Given n 2 N and a continuum J � S � fzng, by Property (g), there exists a
sequence of continua fJmg1m=1 such that Jm � Rn for eachm 2 N and lim Jm = J .
Since f is onto, for each m 2 N, there exists pm 2 X such that f(pm) = Jm. Since
X is compact, we can assume that lim pm = p0, for some p0 2 X. By continuity
of f , f(p0) = J . We need to prove the following.

Claim 1. If fBkg1k=1 is a sequence in C(X) such that p0 2 Bk for each k 2 N
and limBk = fp0g, then there exists k 2 N such that Bk \ fp1; p2; : : :g = ;.

In order to prove Claim 1, for each k 2 N, let Ck =
S
ff(p) : p 2 Bkg. It is

easy to show that (see [3, Lemmas 1.43 and 1.48]) J � Ck 2 C(X) for each k 2 N
and limCk = J . Since zn =2 J , there exists k 2 N such that zn =2 Ck. By Property
(h), Ck � S. Thus Ck \ Rn = ; and Ck does not contain any set Jm. Hence,
Bk \ fp1; p2; : : :g = ;.

As a consequence of Claim 1, we obtain that X is not locally connected at p0.
Thus p0 2 S. Another consequence of Claim 1 is that S cannot contain in�nitely
many elements of the sequence fpmg1m=1.

In particular, we have that for each arc J � S�fz1g, there exists a point p0 2 S
such that f(p0) = S. Taking a sequence of arcs in S � fz1g converging to S, we
obtain that there exists a point p 2 S such that f(p) = S. Let K = f�1(fSg).
Hence, K \ S 6= ;.

Since the set F = ff(zn) 2 C(X) : n 2 f0; 1; 2; : : :gg is countable, we can
choose a point q0 2 S such that fq0g =2 F .

For each n 2 N, �x a sequence of points fq(n)m g1m=1 in Rn such that lim q
(n)
m = q0.

Since f is onto, for each m 2 N , there exists a point p(n)m 2 X such that f(p(n)m ) =

3



fq(n)m g. Since X is compact, we may assume that the sequence fp(n)m g1m=1 converges
to a point wn 2 X. By the considerations we made before, wn 2 S and we may
assume that p(n)m 2 X � S for each m 2 N. If there exists k 2 N such that Rk
contains in�nitely many elements of the sequence fp(n)m g1m=1, we choose one kn
with such a property and, taking a subsequence if necessary, we assume that the
complete sequence fp(n)m g1m=1 is contained in Rkn. On the other hand, if each Rk
contains �nitely many elements of the sequence fp(n)m g1m=1, we make kn = 0.

Let w0 2 S be a limit point of the sequence fwng1n=1. By continuity of f , for
each n 2 N, f(wn) = fq0g. Thus f(w0) = fq0g. In particular, f(w0) 6= S. Thus
w0 2 S �K. Let G be the component of S �K which contains the point w0.

Let ' : [0; 1] ! S be a continuous map such that 'j(0; 1) : (0; 1) ! G is
a homeomorphism and '(0); '(1) 2 K. By the choice of w0, we can choose
three di¤erente numbers n; r and s in N such that wn, wr and ws belong to G.
One of the two components of G � fwng (or both) does not contain the point
zkn. So one of the two intervals (0; '

�1(wn)) or ('�1(wn); 1) (or both) does not
intersect the set '�1(zkn). The same happens with each one of the numbers r and
s. Since we have three numbers and only two choices for the intervals, we may
assume that the interval (0; '�1(wn)) does not intersect the set '�1(zkn) and the
interval (0; '�1(wr)) does not intersect the set '�1(zkr). Let b = '�1(wn) and
c = '�1(wr)g.

Let � = kzn � zrk > 0. Since '(0) 2 K, f('(0)) = S. Thus there exists
a 2 (0;minfb; cg) such that H(f('(a)); S) < �

3
.

Claim 2. f('(a)) � S and f('(a)) 2 clC(X)(C(Rn)) \ clC(X)(C(Rr)).

Notice that there exists a retraction � : X ! S. Since K = f�1(fSg) and G
is a component of S �K, for each t 2 [a; b], f('(t)) 6= S. Since S is a terminal
subcontinuum of X, by the proof of Theorem 11.5 of [3], it follows that C(S) �
fSg is an arcwise component of C(X) � fSg. Since f('([a; b])) � C(X) � fSg
and f('(b)) = f(wn) = fq0g 2 C(S) � fSg, we conclude that f('([a; b])) �
C(S)� fSg. In particular, f('(a)) 2 C(S)Thus, for each t 2 [a; b], �(f('(t))) =
f('(t)) 2 C(S)� fSg. Let "0 = minfH(�(f('(t))); S) : t 2 [a; b]g > 0.

We only prove that f('(a)) 2 clC(X)(C(Rn)), the proof that f('(a)) 2 clC(X)(C(Rr))
is similar. Let " > 0.
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By the continuity of � and f , there exists � > 0 such that, if x; y 2 X and
kx� yk < �, then H(�(f(x)); �(f(y))) < "0 and H(f(x); f(y)) < ".

Apply Property (e) to the number � and the path 'j[a; b] : [a; b] ! S, to
obtain a number � > 0 with the mentioned properties.

By the choice of n, zkn =2 '([a; b]). So '([a; b]) � S � fzkng. In the case that
kn = 0, there exists N 2 N such that, for each k � N , zk =2 '([a; b]). In this case
R1 [ : : : [ RN contains �nitely many elements of the sequence fp(n)m g1m=1. Thus,
we can choose m 2 N such that p(n)m =2 R1 [ : : :[RN and kwn� p(n)m k < �. Hence,
p
(n)
m 2 RN0 for some N0 > N , so zN0 =2 '([a; b]). In the case that kn 6= 0, let
N0 = kn and choose m 2 N such that kwn � p(n)m k < � and p(n)m 2 Rkn = RN0. In
any case, numbers N0 and m can be chosen in such a way that kwn � p(n)m k < �,
p
(n)
m 2 RN0 and zN0 =2 '([a; b]).

By the choice of �, there exists a path � : [a; b] ! RN0 such that �(b) = p
(n)
m

and k'(t) � �(t)k < � for each t 2 [a; b]. By the choice of �, given t 2 [a; b],
H(�(f('(t))); �(f(�(t)))) < "0 andH(f('(t)); f(�(t))) < ". Thus,H(f('(a)); f(�(a))) <
" and, by the choice of "0, �(f(�(t))) 6= S for each t 2 [a; b].

By de�nition, f(�(b)) = f(p
(n)
m ) = fq(n)m g � Rn. We need to prove that

f(�(a)) � Rn. In order to prove this inclusion, we prove that f(�(t)) � Rn for
each t 2 [a; b]. Suppose to the contrary that there exists t 2 [a; b] such that
f(�(t)) \ (X � Rn) 6= ;. Since Rn is open in X, there exists t0 2 [a; b] such that
f(�(t0)) \ (X �Rn) 6= ; and f(�(t)) � Rn for each t 2 [t0; b]. Notice that t0 < b.
Since S[Rn is compact, by continuity, f(�(t0)) � S[Rn. Thus f(�(t0))\S 6= ;.
Given t 2 [t0; b], consider the set Et =

S
ff(�(u)) : u 2 [t0; t]g. Then Et 2 C(X)

(see [3, Lemmas 1.43 and 1.48]) and limt!t0 Et = Et0 = f(�(t0)). Notice that,
if t > t0, then f(�(t)) � Et, so Et \ Rn 6= ;. Moreover, f(�(t0)) � Et, so
Et \ S 6= ;. By Property (h), S � Et. Taking the limit as t ! t0, we obtain
that S � Et0 = f(�(t0)). Thus S = �(f(�(t0))), which is a contradiction with the
conclusion in the previous paragraph. Therefore, f(�(a)) � Rn.

Hence, f(�(a)) � Rn and H(f('(a)); f(�(a))) < ". We have shown that
f('(a)) 2 clC(X)(C(Rn)). This ends the proof of Claim 2.

We are ready to obtain the �nal contradiction. By the �rst part of Claim 2,
f('(a)) is a subarc of S. By Claim 2 and Property (f) zn =2 f('(a)) or zn is an
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end point of f('(a)) and the same happens for zr. Thus f('(a)) is contained in
one of the two subarcs in which S is divided by the two points zn and zr. But this
is impossible since H(f('(a)); S) < �

3
. This completes the proof that there is no

a continuous map from X onto C(X).
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