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Abstract

We show that a continuum is an Ss space in the sense of Micheal if
and only if it is a dendrite.

1 Introduction

Michael [4, p.178] defined an S4 space to be a space X such that there is a
continuous selection f: & — X for every every partition S of X into nonempty
compact sets. The notion of a weak Sy space, defined in [2], is the same as that
for S, space except we assume the members of S have at most two points. The
question of which spaces are Sy spaces is asked in [4, p.155], and some partial
answers are given in [4, pp.178-179]. In particular, it is mentioned that no
simple closed curve is an S; space and that all finite trees are S4 spaces. The
particular question of whether Sy continua are dendrites is due to Gail S. Young
[7]. In [1], it is shown that every S4 continuum is a dendrite. Our purpose here
is to prove that dendrites actually characterize the S; continua.

Theorem 1 The following conditions are equivalent for a continuum X :
(a) X is an Sy space

(b) X is a weak Sy space

(c) X is a dendrite.

The implication (a)—(b) is immediate from the definitions. The implication
(b)—(c) is shown in [1]. This paper will be dedicated to the implication (c)—(a).
The implication will follow from from a general theorem on the existence of
continuous selectors and a structure theorem on partitions of dendrites.
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2 Terminology

By w we denote the non-negative integers.

For a set A C X we write cl(A), int(A), bd(A) for the topological closure,
interior, and boundary of A in X, respectively. If a space X can be write as the
union of two disjoint nonempty closed sets A and B we say that A and B form
a separation of X and write X = A|B. If C C X and X \ C is not connected
we say that C is a separator of X. A maximal connected subset of a space X is
called a component of X. Given a point x € X the quasicomponent of x is the
intersection of all clopen subsets of X containing z. It is well known that every
component of a space is contained a quasicomponent of the space.

By a compactum we mean a nonempty compact metric space. A continuum
connected compactum. A space is a dendrite provided that is a locally connected
continuum containing no simple closed curve. Every connected subset of a
dendrite is arcwise connected [5, 9.10]. Given two points = and y in a dendrite
X we let [z,y]. denote the unique arc in X with endpoints x and y. We say
a space X is regular provided that every point of X has a local base of open
neighborhoods with finite boundary.

Suppose X is a metric space with metric d. The diameter of a nonempty
set A C X is defined by diam(A4) = sup{d(z,y): z,y € A}. Given nonempty
sets A, B C X we define d(A, B) = inf({d(z,y): x € A & y € B}). Given sets
A, B C X we define the Hausdorff distance between A and B to be

H(A, B) = max(sup({d({z}, B): = € A}), sup({d(4, {y}): y € B})).

When H is restricted to the compact subsets of X it is a metric known as the
Hausdorff metric. We denote the space of compacta with the Hausdorff metric
(equivalently the Vietoris topology) by 2X. Recall that a basic open set in the
Vietoris topology has the form

<Uy,...,Up>={Ae2X: AC | JU;and ANU; # 0 for 1 <i < n}.

i=1

Where U; is a nonempty open subset of X for each 1 <¢ < n.

Given a space X and S C 2% we say that h: S — X is a selector provided
that the cardinality of h(S) € S for all S € S. If h is continuous we say h is
continuous selector.

3 Results

We say a family F of disjoint sets in space X is manageable provided that | JF
is closed in X and for every F' € F there is an open set U such that I C U
and U N (J(F\ {F})) = 0. A partition S of a metric space X into compacta
(considered as a subset of 2¥) is said to be admissible provided that:

(C1) S is regular,



(C2) if S € S has a nondegenerate component then {S} is a component of S,
(C3) any two distinct points of S can be separated by a third point in S, and

(C4) for every e > 0 the collection of all components Q of S such that some
component of | J Q has diameter at least € is manageable.

Theorem 2 If X is a separable metric space and S is an admissible partition of
X into compacta, then there is for every p € X a continuous selector h: § — X
such that p € h[S].

Theorem 3 If X is a dendrite, then every partition of X into compacta is
admissible.

The implication (¢)—(a) of Theorem 1 follows immediately from Theorem 2
and Theorem 3.
We note the following corollary of Theorem 2 which may be of interest.

Corollary 4 Let X be a separable metric space and C be a partition of X into
totally disconnected compacta that is homeomorphic to a connected subset of a
dendrite, then there is for every p € X a continuous selector h: C — X such
that p € h[C].

If X and Y are compacta and f: X — Y is an open map, then {f~1(y): y €
f[X]} € 2% is a partition of X which is homeomorphic to f[X]. With this fact
in mind, Corollary 4 can be seen as a generalization of the following result of
Whyburn.

Proposition 5 ([8, Chap. 10, 2.4]) Let X be a compactum Y be a dendrite
and f: X — Y be a continuous light open map. For every p € X there is a
continuum W C X such thatp € W, fIW: W — f[W] is a homeomorphism.

4 Components and Quasicomponents of regular
spaces

We say that X has property P provided that for any € X if @ is the quasi-
component of x and U is an open neighborhood of x, then there is an open set
V such that € V C U and bd(V) C Q.

The spaces satisfying property P is a fairly large class.

Lemma 6 Let X be a topological space. If every x € X has a neighborhood
base consisting of open sets U such that bd(U) is contained the union of finitely
many quasicomponents of X, then X has property P.

PROOF. Let U C X and x € X. Let Q be the quasicomponent of z. By
assumption, there is an open neighborhood V; of x such that bd(V7) is contained
in the union of finitely many quasicomponents of X and V; C U. Let C4,...,C,



be the quasicomponents of X such that C; N (bd(V})\ Q) # 0. For each C; there
is a clopen set E; such that C; C E; and QN E; = 0. Let V.=V, \ U, Ei.
Clearly, V is an open neighborhood of  and V' C U. Notice that X \ V =
(X \ V1) U (UL, Eo). Also, (V) = (Vi \ (Ul B)) = (Vi) \ (UL, Ey)-
Thus, bd(V) = cl(V) N (X \ V) C bd(V1) \ (Ui, Ei) € Q. |

Lemma 7 Suppose X is Lindelof, and has property P. If Q C X is a quasi-
component of X and U C X is open and Q@ C U, then there is a clopen set V
such that Q CV CU.

PROOF. Let @ be a quasicomponent of X. By property P we may find for each
x € @ find an open set U, in X such that x € U,, bd(U,) C Q, and U, C U.
Let = {U,: x € QYU {U: U is clopen and U N Q = @}. Since U is an open
cover of X, there is a countable subcover {U, }ne,, of X. We define a cover
{Vi}new as follows:

v = JUNUi Us if U, N Q=10
"N UNU{Us i <nand U;nQ =0}) if U, NQ #0.

Notice that if Vi NV, # 0, then either n = k or both Vj and V,, have nonempty
intersection with Q.

For n such that U, NQ # @ we have V;, N (X \ Q) clopen in X \ Q. With this
observation it is easy to show that V), is open for every n € w. The observation
also can be used to show that if U, N Q = @, then V,, is clopen in X. Also, if
U,NQ =0, then V, N (U#n Vi) = 0.

Let V = J{Vyh: V., N Q # 0}. Clearly, V is open and Q@ CV C U. We will
be done if we show that V is closed. Suppose y € cl(V). Let k € w be such that
y € Vj. Since y € cl(V), there is an n such that V,, N Q # 0 and V,, NV} # 0.
By the statement immediately following the definition of {V}, },c., we have that
VienN@ # 0. So, Vi €V by definition of V. Thus, y € V showing that V is
closed. [ |

Lemma 8 If X is Lindelof, normal, and has property P, then the quasicompo-
nents and components of X are the same.

PROOF. Let @ be a quasicomponent of X. By way of contradiction, assume that
@ is not connected. Since @ is closed and X is normal, @ = (UNQ)|(V N Q)
where U and V are disjoint open sets in X. By Lemma 7, there is a clopen
set W such that Q C W C UUV. Since UNV = 0, UNW is clopen.
Now UNQ CWNU and VNQE C X\ (WNU) contradicting that @ is a
quasicomponent. [ |

For the proof of Theorem 2 we note the following corollary.

Corollary 9 Let X be a separable metric space and S be an admissible partition
of X into compacta. The quasicomponents and components of any subset of S
are the same. Also, for every component Q of S and open set U containing Q
there is a clopen set V) such that Q CV C V.



PRrROOF. By (C1) any subset 7 of S is a regular separable metric space. The
corollary now follows by Lemma 6, Lemma 8, and Lemma 7. [ ]

5 Proof of Theorem 3

Let X be a space and S be a partition of X into compacta. The membership
function F': X — S is the function defined by « € F'(z). The next lemma shows
that the membership function has a property close to confluence.

Lemma 10 Suppose X is a topological space and S is a partition of X into
compacta with membership function F. If Q C S is connected and C is a
quasicomponent of | J Q, then F(C) = Q.

PROOF. By way of contradiction, assume there is a M € Q such that M ¢
F(C). Since C N M = 0, there is for each m € M a separation U™|V™ of
J Q such that C C U™ and m € V™. Since M is compact, there are finitely
many mi,...,mg € M such that M C Ule Vmi. Let V = Ule V™i and
U =, U™. Notice that [JQ = U|V and C C U and M C V. Notice that
F(C)C< U, X >and M ¢< U, X >. By connectedness, QNbd(< U, X >) # (.
Let F € Qnbd(< U, X >). Notice that ENbd(U) # (), contradicting that U|V
is a separation of | J Q. [ |

Lemma 11 If X is reqular and S is a partition of X into compacta, then S is
reqular.

PROOF. Let S € §. Since X is regular and S is compact there is a local base
for S with open sets of the form U =< Uy,...U, > where each U; has finite
boundary. Notice that any 7" € bd({/) must have nonempty intersection with
Ui, bd(U;). Since |J;_, bd(U;) is finite and S is a partition, bd(l/) is finite.
So, S is regular. [ ]

Lemma 12 Let X be a dendrite and S, T C X be disjoint compacta. Fither
there is a s € S such that T is contained in a component of X \ {s} or there is
at €T such that S is contained in a component of X \ {t}.

PRrROOF. Assume that there is no s € S or ¢t € T with the desired property. Let
to € T and sy € S. Let Ap be the arc [tg, so]. By our assumption about S,
there is a component Cy of X \ {so} such that [tg, so] N Co =0 and CoNT # 0.
Let Ay be the arc [sg,t1] where t; € Cy. Since (s, t1] C Co, Ag U A1 = [to, t1].
By assumption, S is not contained in any component of X \ {¢1}. Let s; be
an element of S that is in a component C; of X \ {¢1} that does not contain
[to,t1). Let As be the arc [t1,s1]. Notice that Ag U A; U Ay = [to, s1] since
C1N(AgU Ay) =0 and (t1,s1] € Cy. Moreover, Ag N Az = 0.

By our assumptions on S and T we may continue this process indefinitely to
get an infinite sequence of mutually disjoint arcs {Asy, }new of the form [t,, s,].



Since X is a dendrite, the diameters of these arcs must tend to zero. So, by
compactness of S and T, we have S NT # () a contradiction. [ |

Lemma 13 Let X be a dendrite and S be a partition of X into disjoint com-
pacta. If S,T € S are distinct points, then there is a R € S that separates S
from T.

PrROOF. By Lemma 12, we may assume that there is a t € T such that S is
contained in a component D of X \ {¢}. Since ¢ is not a cutpoint of D N {t},
t is an endpoint of D U {t} by [5, 10.7]. So, there is a point p € D such that
p separates ¢t from S in D U {t}. By unicoherence, p separates ¢ from S in X.
Let R = F(p). By way of contradiction assume that S and 7" are in the same
component C of S\ {R}. Let E be the component of | JC which contains t. By
Lemma 10, S € F[E]. On the other hand, E is contained in the component
G of X \ {p} which contains ¢. Since GNS = (), S ¢ F[FE], a contradiction.
Since S and T are in different components of S\ {R}, S and T are in different
quasicomponents of S \ {R}, by Corollary 9 and Lemma 11. Thus, R separates
Sand T. [ ]

Lemma 14 Let X be a metric space and S be a partition of X into compacta
with membership function F and C C S be connected. If S € C and there is an
s €S and an open U C X such that s € U and bd(U) C S, then F[U] = S.

PRrROOF. Clearly, S €< U,X >. Suppose R ¢< U,X > and R € C. Since
C is connected, there is a T' € bd(< U, X >)NC. So, T Nbd(U) # . Since
bd(U) C S and S is a partition, 7= S. So, S € bd(< U, X >)and S e< U, X >
a contradiction. [ ]

PROOF OF THEOREM 3 Let X be a dendrite, S be a partition of X into
compacta, and F' be the membership function for the partition.

By Lemma 11 S is regular. So, we have (C1).

Suppose S € S contains a nondegenerate component M. Let C be the
component of S in §. Since X is a dendrite there is point p € M such that
p is a cutpoint of both X and M, and p has a base of open neighborhoods U
such that bd(U) has exactly two points [5, 10.42]. Let x,w € M be separated
by p and U an open neighborhood of p such that bd(U) has exactly two points
and w,z ¢ U. Since X is unicoherent and p separates x and w, we have
[, p] N [p,w] = {p}. It is now easy to see that bd(U) C M C S. By Lemma 14,
F[U] = C. Since we may choose U to be as small we like and the elements of C
are compact, we see that p € (|C. Thus, C = {S}. So, we have (C2).

By Lemma 13, any two points of S are separated by a third point. So, we
have (C3)

Let € > 0 and € be the collection of components C of S such that some
component D¢ of (JC has diameter at least e. Since X is a dendrite and S is
a partition, the collection {D¢: C € 6} is finite [3]. Since S is a partition and
0 is a mutually disjoint collection, € is finite. Since components are closed, 6 is
manageable. So, we have (C4).



Therefore, S is admissible. [ |

6 Proof of Theorem 2

Lemma 15 If a metric space Y is reqular and connected, then Y 1is locally
connected.

PROOF. If Y is just a single point, then Y is obviously locally connected. So,
we assume that Y contains at least two points. Let y € Y and z € Y\ {y}. Let
V be open neighborhood of y. Let U C V' \ {z} be an open neighborhood of y
with finite boundary such that cl(U) C V. Let R be a quasicomponent of cl(U).

Suppose that RNbd(U) = (). Since bd(U) is finite, there would be a separa-
tion Z|W of cl(U) such that bd(U) C Z and R C W. Notice that W is clopen
and nonempty in Y and x ¢ W, contradicting that Y is connected. Thus, if R
is a quasicomponent of cl(U), then RNbd(U) # 0.

Since bd(U) is finite, there are only finitely many quasicomponents R of
cl(U). Thus, each quasicomponent of cl(U) is a component of cl(U). Let T
be the component of y in cl(U). Since y € U and T is open in cl(U), T is a
connected neighborhood of y contained in V. [ |

A compact space W is called a perfect compactification of a space X provided
that X is dense in W and for any closed subset C of X if C separates two subsets
A and B of X, then cly (C) separates A and B in W. A space X is said to
be rim compact provided that every point of X has a base of open sets with
compact boundaries. In particular, regular spaces are rim compact.

Proposition 16 (/6, Thm. 4.2, Cor 4.5]) Let X be a separable metric space.
If X is connected, locally connected, and the components and quasicomponents
of each subspace of X are the same and X is rim compact, then there is a
hereditarily locally connected continuum W which is a perfect compactification
of X and W\ X contains no nondegenerate continuum.

Lemma 17 Let S be an admissible partition of a separable metric space X into
disjoint compacta. If C C S is connected, then C is homeomorphic to a connected
subset of a dendrite.

ProoF. By (C1) and Lemma 15, C is locally connected and rim compact. By
(C1) and Corollary 9, the components and quasicomponents of each subspace
of X are the same. By Proposition 16, there is a hereditarily locally connected
continuum W which is a perfect compactification of C and W \ C contains no
nondegenerate continuum. Suppose W contains a simple closed curve M. Since
W\ C contains no nondegenerate continuum, there exist distinct S,7° € M NC.
By Lemma 13, there is a point R € C such that R separates S and T in C.
Since W is a perfect compactification of C, R also separates S and T in W,
contradicting that S and T lie on M. Since W contains no simple closed curve,
we conclude that W is a dendrite. [ ]



Lemma 18 Let X be a metric space and S be a partition of X into compacta
and F be the membership function. If C C S is a nondegenerate continuum,
then F||JC: UC — C is continuous and open.

PrOOF. Let z € |JC and {z,}new be a sequence on |JC such that limz,, = .
Since C is compact, there is a P € C such that some subsequence of {F () }new
converges to P. Since x,, € F(x,) for every n € w, it follows that x € P. Since
S is a partition, P = F(z). So, some subsequence of {F(zy,)}ne, converges to
F(z). So, F||JC is continuous.

Let z € X and U be an open neighborhood of z. It is immediate from the
definition of F' that F[U] =< U, X > NS which is open. So, F is open. Since
FIUC = F|F~1(C), FIUJC: UC — C is open. [ ]

Lemma 19 Let X be a metric space and S be a partition of X into disjoint
compacta satisfying (C2) with membership function F. Suppose C C S is home-
omorphic to a nondegenerate connected subset of a dendrite. If {Sp}ncw 18
sequence on C and lim S,, = S € C, then

lién sup {diam(D): D is a component of U[S"’ S]} =0.
PROOF. Since C is contained in a dendrite, lim[S,,, S] = {S}. Since F is open,
lim F=1([S,, S]) = F~1({S}) = S. By (C2), S is totally disconnected. Since S
is totally disconnected and F~1([S,, S]) is compact for every n, it follows that
lim,, ¢, sup {diam(D): D is a component of |J[S,,S]} = 0. [ |

Lemma 20 If X is a separable metric space and C is a connected subset of an
admissible partition of X into disjoint compacta, then for every a € | JC there
is a continuous selector h for C such that a € h[C].

PRrROOF. If C is a single point then the lemma is obviously true. So, we as-
sume throughout that C is nondegenerate. In particular, condition (C2) in
the definition of admissablity implies that the restricted membership function
F: |JC — C has totally disconnected point-inverses.

Let 6 be the collection of all nonempty M C (JC such that a« € M, F|M
is one-to-one and for any two points p,q € M there is an arc A, , C M from
p to g such that F'|A, , is continuous. It is easily checked that 6 satisfies the
hypothesis of the Hausdorff Maximal Principle. Let M be a maximal element
of 6.

We claim that F[M] is closed in C. By way of contradiction, assume that
S € cl(F[M]) \ F[M]. Since F[M] is connected, F[M] U {S} is connected. By
Lemma 17, C can be embedded into a dendrite. So, F[M] U {S} is arcwise
connected. Let s € M. The arc [F(sp),S] is contained in F[M]U {S}. Let
{Sn }new be a sequence of points on [F(sg), S] such that So = F(sp), limS,, = 5
and [F(s0),Sn] C [F(s0),Sn+1). Let s, € S, N M for every n. Taking a
subsequence if necessary we may assume that there is an s € S such that

lims, = s. Let n € w. Since M € 0, F|A,, .., is a homeomorphism to the



arc [Sn, Snt1]. So, As, sis © F7H([Sn, Sng1]) € F7([S,,S]). Since F|M
is one-to-one, J, .., As,,s,,, 15 homeomorphic to the halfline [Sp,S). Since
As,snis © F71([Sn,5]), Lemma 19 implies that lim diam(A,, s,.,) = 0. Since
lims, =5, Ass = {8} U(Upew Asn,snga) 18 an arc and F|Ag o2 Agy s — [So, S]
is continuous. So, s UM € 6, a contradiction to maximality. Thus, F[M] is
closed.

We claim F[M] = C. By way of contradiction, assume thereis a S € C\ f[M].
Since C is arcwise connected and F[M] is closed, there is a nondegenerate arc
[T, S] C C such that [T, S]NF[M] = {T}. By Lemma 18 and (C2), F|[T, S] is
continuous, open, and light. As a union of a compact collection of sets, |J[T', S|
is compact. Let ¢ € M NT. By Proposition 5, there is an arc A C |J[T, S] such
that t € A and F|A is a homeomorphism. It is easy to check that MU A € 6, a
contradiction to maximality.

Since (F|M)~t: C — M is a selector and a € M, it remains show that
(F|M)~1 is continuous.

Let [S,T) beanarcinC. Let s € SNM and t € TNM and A C M be an arc
from s to t such that f|A is continuous. Since F|A is continuous and one-to-one
and C contains no simple closed curve, F[A] = [S,T]. Thus, (F|M)~|[S,T] is
continuous. So, (F|M)~! is continuous on arcs.

Let S € C and {S,}new be a sequence of distinct points on C such that
lim S,, = S. Since C is contained in a dendrite, im[S,,, S| = {S}. By Lemma 19,
limdiam(4s, s) = 0. Thus, im(F|M)~1(S,) = lims, = s = (F|M)~1(9)
showing that (F|M)~! is continuous. [ |

For the remainder of this paper we will assume that X is a fixed separable
metric space with a fixed admissible partition S into compacta with membership
function F. We will also fix p € X. Moreover, we will assume (remetrizing if
necessary) that the metric d on X has the property that diam(X) < 1. In
particular, diam(S) < 1.

For each n € w let J,, denote the collection of all components Q of S such
that some component of | J Q has diameter at least 1/2™. Notice that Jy = 0.

Lemma 21 Ewvery nondegenerate component of S is contained in | J
collection , ., Jn is countable.

Jn. The

new

new

PROOF. Suppose @ is a nondegenerate component of S. By Lemma 10 and
Corollary 9, there is an n € w such that Q € J,,. Since S is separable and J, is
manageable, Jy is countable for all k£ € w. Obviously | J,,, Jx is countable. W

Lemma 22 If a component C of S has diameter greater than €, then some
component of | JC has diameter at greater than e.

PROOF. Suppose diam(C) < € for every component C of [ JC. Let S,T € C. Let
s € S. Let C be the component of s in (JC. By Lemma 10 and Corollary 9,
there is a t € T such that ¢ € C. So, d(s,T) < €. A similar argument shows
that d(¢,S) < e for every t € T. So, H(S,T) < €. Thus, diam(C) < e. [ |
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We denote the collection of all finite strings of non-negative integers (in-
cluding the empty string () by w<¢. By w" (w<") we denote the set of all
elements of w<* of length exactly (less or equal) n. If ¢ € w<* we let |o| denote
the length (equivalently, cardinality) of o. Given o,p € w<¥  we say that o
is the predecessor of p (or that p is the successor of o) provided that o C p
and |p| = |o| + 1. Given 0 € w" and i € w we define (o * i) € w™*! so that
(o xi)ln =0 and (o *i)(n) = 1.

We say a nonempty subset T of w<% is a tree provided that @ € T', for every
o € T there is at least one successor of o in T, and every element of T\ {0}
has a predecessor. For n € w we denote T'Nw"™ by T,,. Given a tree T we let
Tt C w* denote the maximal C-chains in 7.

Lemma 23 There is a tree T C w<* and collections {Vy,: o € T} of clopen sets
and {Qy,: 0 € T} of components of S such that for everyn € N and 7,0 € T
we have:

(A0) p € U,

(A1) 7 C o implies V, C Vy,
(A2) Q> C Vs,

(A3) Vo NVy # 0 implies T = o,
(A4) Uger, Ve = S,

(A5) H(V,,Q,) < 172191, and
(A6) J, C{Qy: 0 € Ty}, and
(A7) Qoo = Qo

PROOF. Let Qp be the component of F(p) in S. Let Vy = S. Keeping in mind
that diam(S) < 1 we see that Ty = {0}, Qy, and Vy satisfy (A0)-(A7)

Assume that n > 1 and we have defined T;,, € w™ for every 0 < m <n—1so
that "} Ton, {Vo: 0 € Uy T} and {S,: o € U} o} satisfy conditions
(A0)-(A7). We show how to define T}, C w=" so that (A0)-(A7) will be satisfied
by Un—o Tm-

Fix 7 € T,,_1. Since § is admissible, J, 13 is mangable. Notice that J,,413 U
{Q-} is also mangable. Since S is separable and metric, J, U{Q,} is countable.
Let Let A C w and {P;: j € A} be an enumeration of the elements of J,13
which are contained in V; together with Q.. In the enumeration we will assume
that Py = Q,. Since {P;: j € A} is countable and manageable, we may use
Corollary 9 and induction to construct a family {Uf;};c4 of mutually disjoint
clopen subsets of V, such that P; C U; and H(U;, Q;) < 1/2** for all j. It is
easily checked that | e 4 U; is clopen in S.

By Lemma 21 there is a B C w such that the nondegenerate components of
Vr \ (UjeaU;) may be enumerated as {Cj: k € B}. Notice that Cy ¢ J,43 for
all k € B.
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Fix k € B. By Corollary 9, there is a clopen neighborhood 7% of C such
that 7% is contained in S\ Ujeattj and H(T",C) < 1/2n+3+k,

For each k € Blet RF = T*\ (U, T%). Clearly, {R*: k € w} is a collection
of disjoint clopen sets covering | J,c,, Ck- Let B1 C B denote the set of all k € B
such that RF # (). Notice that C, € R* C T* every k € B;. In particular, we
have H(R¥,Cy) < 1/2"T3+F for all k € By.

Suppose now that S ¢ (U, p, RF)U (Ujea ;). Since {S} is a component of
S, there is, by Corollary 9, a base of clopen neighborhoods of S. Pick a clopen
neighborhood K of S such that diam(Ks) < 1/2"+% and Ks N (U;eU;) = 0.
Let Js = Ks U{RF: RFNKs # 0}. Notice that J5 C S\ UjeaU;.

We claim that diam(Jg) < 1/2™. Let P € Js. If P € Kg, then H(S, P) <
1/2"+3. Suppose P ¢ Kg. There is a k € By such that P € R*. Since
R¥ N (Ujealy) = 0, Ck ¢ Jnys. By Lemma 22, diam(Cy) < 1/2"*3. Thus,
diam(RF¥) < 1/2n+2+k 4 1/27+3 < 3/27+3. So, H(P,S) < 1/27+3 +3/2n+3 =
1/27*1. So, diam(Js) < 1/2™.

We claim that Jg is clopen in §. Clearly, Jgs is open. By way of contradic-
tion, assume that Jg is not closed. Let P € cl(Js) \ Js. We may assume that
there exists an increasing sequence {k; };c.,, on By and points Py, € R¥i such that
lim;e,, Py, = P. Since P ¢ Kg, there is an € > 0 such that H({P},Ks) > €. So,
diam(R¥) > € for almost all 3. It follows that diam(Cy,) > € for almost all i. By
Lemma 22, Ci, has a component of diameter greater than e for almost all 2. Thus,
Cr, C J, for some [ € w. Since J; is manageable and lim;e, H(R*,Cy,) = 0,
P € Cy, € RF for some i. So, P € Js, contradicting our assumption.

Let 6y = {Js: S ¢ (Upep, RF)U (Ujealt;)}. We may do a standard induc-
tion to find a D C w and a refinement {£;: I € D} of §; made up of mutually
disjoint nonempty clopen sets such that (J{L;: l € D} =J#6;.

Define

ng{ﬁl:leD}u{Rk:Rkﬂ (U m) :(Z)andkeBl}U{Z/{j:jeA}.
leD

Notice 65 is a cover of S by mutually nonempty disjoint clopen sets. For every

j € Alet Vi3 = U; and Q35 = P;. If RE € 65, then define Vs = R

and Qryisk+1) = Ck. If I € D, then define V ,(3142) = £ and Qry(3142) to

be a component of £;. Let T, = {7+ 3k +1): RF € .} U{r % (3l +2):1 €

DYu{r«3j:j€ A}.

For each 7 € T},,_; we perform a similar construction. Let T,, = UTGTW1 T-.
Now U _oTm: (Vo0 € Ul _oTm}, and {Qy: 0 € U, _ T} satisfy (AO)-
(AT7).

Finally, T = J,,c,, Tn, {Vo: 0 € T}, and {Q,: 0 € T} are easily checked to
satisfy (A0)-(AT). [ |

PROOF OF THEOREM 2 Let T C w<¥, {V,: 0 € T}, {Jp: n € w}, and
{Qy: 0 €T} be as in Lemma 23.

Claim 1 For every component Q of S there is a ¢ € TT such that Q =
Mhew Voin and limpe, Vg, = Q.
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PrROOF. To define g we let g = J{o € T: Q@ C V,}. It follows from (A3)
and (A4) that g € TT.

Clearly, Q@ C (,,c., Vgn- Consider the sequence {Qg, }new-

Suppose {Qgjn tnew is eventually constant. Let S € (,c,, Vyin- By (A5),
H(Vyjn, Qqn) < 1/2". It follows that there is a sequence {S, }new such that
S, € ng and lim S,, = S. There is an N € w such that Qg“C = Qg‘N for all
k> N. By (A5) and (A7), Qn = lim Q ), = Q. Since Q is closed and Sy € Q
for almost all &, we have S € Q. So, @ = (1, c,, Vgjn- By (A3), for all k > N
we have H(Vyjx, Q) = HVyi, Q) < 1/2%. So, lim,e,, Vgin = Q.

If {Qgn}new is not eventually constant, then conditions (A6) and (A7) to-
gether with Lemma 22 imply that that lim diam(Vy,,) = 0. So, Q is a singleton
and (,,c,, Vgin = Q and lim,e, Vg, = Q. [ ]

new

Claim 2 There are functions {h,: ¢ € T} and points {S,: 0 € T} so that
for every o, 7 € T we have:

(B1) hy: Q, — X is a continuous selector,
(B2) S, € Q,,
(B3) Sox0 =S, and hgwo = by, and

(B4) if |o| > 0 and 7 is the predecessor of o, then there exists an S € Q, such
that H(S, S,) < 1/2I"l and d(h,(S;), he(S)) < 1/27].

Moreover, we may asssume that p € [, cr ho[Qo]-

PROOF. By Lemma 20 and (A0) there is a continuous selector hy: Qp — X
such that p € hy[Qg]. Let Sy € Qp be arbitrary. Clearly these choices satisfy
(B1)-(B4).

Assume we have defined h,, for all o € |J;_, Tk so that (B1)-(B4) are satis-
fied. Let p € T),+1 and o € T,, be such that o C p. If p = 60, then, by (A7), we
may let h, = h, and S, = S,. Suppose now that p # o *0. Since @, CV, C V,
and H(V,,Q,) < 1/2/°!, there is a S, € Q, such that H(Q,,S,) < 1/2/°l. Let
S € Q, be such that H(S,S,) < 1/2°l. By the definition of the Hausdorff
metric, there is an o € S, such that d(z, h,(S)) < 1/2/°l. By Lemma 20, there
is a continuous selector h,: Q, — X such that h,(S,) = . Thus, S € Q, and
d(h,(S,), ho(S)) < 1/2l°l and H(S, S,) < 1/2l°l. So, we have (B3) and (B4).
Clearly, (B1) and (B2) are satisfied by h, and Q,.

By induction, we have that {h,: 0 € T} and {S,: o € T} satisfy (B1)-(B4).
Obviously, p € U, cr ho[Qo]- [

Let h* be the partial function defined by h* = h,. Notice that h* is

well defined by (B3), (A2), and (A3).

oeT

Claim 3 Let 0 € T;,. If R € V,, and R is in the domain of h*, then there is a
P € Q, such that d(h*(P),h*(R)) < > 2, 1/2"72 and H(P,R) < Y ;= 1/2!72.



13

PROOF. Let 7 € T}, be such that R € Q,. By (A7) and (A2), we may assume
that o C 7.
Suppose 0 = || — |o|. Let P = R and observe that

n+0
max{d(h*(P),h*(R)),H(P,R)} =0 < i 1/2!2,

l=n

Assume now that m > 0 and that we have shown that for every R, if R € 9,
and m = |7| — |o|, then there is a P € Q, such that

n+m
max{d(h*(P),h"(R)),H(P,R)} < > 1/2'72.

l=n

We now extend the statement to m + 1. Let m+ 1 = |7| — |o| and o C 7. Let
p be the predecessor of 7. We consider two exhaustive cases.

Suppose T = p*0. By (A7), R € Q,. So, by inductive hypothesis there is a
P € Q, such that

n+m n+m-+1
max{d(h*(P),h*(R)),H(P,R)} < > _1/27%< > 1/2"2
l=n l=n

Suppose T # p* 0. By (A7) and (A6), Q, ¢ Jyim. By (B4), there is an
S € Q, such that d(h*(S-),h*(S)) < 1/2"*™ and H(S-,S) < 1/2"*™. Since
Q. ¢ Juim, Lemma 22 implies that diam(Q,) < 1/2"T™. So,

H(]%7 S) < 1/2n+m + 1/2n+m _ 1/2n+m71.
Since Q, ¢ Jy i, diam(h*[Q,]) < 1/27™+". So,
d(h*(R),h*(5)) < 1/2n+m + 1/2n+m _ 1/2n+m—1.

By inductive hypothesis, there is a P € Q, such that

n+m
max{H(P, 5),d(h*(P),h*(S))} < S 1/21-2.

l=n

Thus,
n+m n+m-+1
max{H(R, P),d(h"(R),h*(P))} < »_ 1/2'72 4 1/2"tm~1 = 3~ 172172,
l=n l=n

By induction, for every R € V, such that R is in the domain of A* there is
a P € Q, such that max{H(R, P),d(h*(R),h*(P))} < > =, 1/2172 [ |

Claim 4 For every S € S and € > 0 there is an open neighborhood U of S
such that diam(h*[U]) < e.
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Proor. We consider two exhaustive cases.

Case 1 S is in the domain of h*.
Let Q be the component of S in §. Notice that Q is contained in the domain
of h* and h*|Q is continuous. Let § > 0 be such that d(h*(S), h*(P)) < ¢/2 for
all P such that H(P,S) < § and P € Q. There is a ¢ € T such that Q@ = Q,,
and |o| = n where n is large enough that >, 1/2/=2 < min{6/2,¢/2}. Let U
be the intersection of the an open neighborhood of S with diameter /2 and V.
Let R € U be in the domain of h*. By Claim 3, there is a P € Q such that

max{H(R, P),d(h*(R), h*(P))} < i 1/2'72 < min{6/2,¢/2}.

l=n

Since H(R, P) < §/2 and diam(U) < §/2, H(P,S) < §. By our choice of 4,
d(h*(P),h*(S)) < €/2. Since d(h*(R), h*(P)) < €/2, we have d(h*(R), h*(S5)) <

€.

Case 2 S is not in the domain of h*.
Let Q be the component of S in S. Since Q ¢ {Q,: 7 € T}, it follows from
(A6) that Q ¢ Jp—; Jk. In particular, @ = {S} and S is totally disconnected.
By (A4) and Claim 1, there is a ¢ € T such that @ C V,, no component of
U Qs has diameter greater than €/3, and |o| = n where n is large enough that
S, 1/2072 < ¢/3. Let R, P € V, be in the domain of h*. By Claim 3, there
exist Gp,Gr € 9, such that

max{H(h*(P),h"(Gp)),H(h"(R),h"(GRr))} < €/3.

Since no component of 9, has diameter larger than /3, d(h*(Gp), h*(GRr)) <
€/3. Thus, H(h*(P),h*(R)) < e. [

Since the domain of A* is dense in &, Claim 3 implies that h* may be
extended to a continuous function h defined on all of S. The continuity of h
and the fact that h* is a selector on its domain implies that h is a selector. By
Claim 3, p € h[S]. [ |
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