# The $S_{4}$ continua in sense of Michael are precisely the dendrites 

Francis Jordan, Department of Mathematical Sciences, Georgia Southern University, Statesboro, Ga 30458<br>(fjordan@georgiasouthern.edu)


#### Abstract

We show that a continuum is an $S_{4}$ space in the sense of Micheal if and only if it is a dendrite.


## 1 Introduction

Michael [4, p.178] defined an $S_{4}$ space to be a space $X$ such that there is a continuous selection $f: \mathcal{S} \rightarrow X$ for every every partition $\mathcal{S}$ of $X$ into nonempty compact sets. The notion of a weak $S_{4}$ space, defined in [2], is the same as that for $S_{4}$ space except we assume the members of $\mathcal{S}$ have at most two points. The question of which spaces are $S_{4}$ spaces is asked in [4, p.155], and some partial answers are given in [4, pp.178-179]. In particular, it is mentioned that no simple closed curve is an $S_{4}$ space and that all finite trees are $S_{4}$ spaces. The particular question of whether $S_{4}$ continua are dendrites is due to Gail S. Young [7]. In [1], it is shown that every $S_{4}$ continuum is a dendrite. Our purpose here is to prove that dendrites actually characterize the $S_{4}$ continua.

Theorem 1 The following conditions are equivalent for a continuum $X$ :
(a) $X$ is an $S_{4}$ space
(b) $X$ is a weak $S_{4}$ space
(c) $X$ is a dendrite.

The implication (a) $\rightarrow$ (b) is immediate from the definitions. The implication $(\mathrm{b}) \rightarrow(\mathrm{c})$ is shown in [1]. This paper will be dedicated to the implication $(\mathrm{c}) \rightarrow(\mathrm{a})$. The implication will follow from from a general theorem on the existence of continuous selectors and a structure theorem on partitions of dendrites.

[^0]
## 2 Terminology

By $\omega$ we denote the non-negative integers.
For a set $A \subseteq X$ we write $\operatorname{cl}(A), \operatorname{int}(A), \operatorname{bd}(A)$ for the topological closure, interior, and boundary of $A$ in $X$, respectively. If a space $X$ can be write as the union of two disjoint nonempty closed sets $A$ and $B$ we say that $A$ and $B$ form a separation of $X$ and write $X=A \mid B$. If $C \subseteq X$ and $X \backslash C$ is not connected we say that $C$ is a separator of $X$. A maximal connected subset of a space $X$ is called a component of $X$. Given a point $x \in X$ the quasicomponent of $x$ is the intersection of all clopen subsets of $X$ containing $x$. It is well known that every component of a space is contained a quasicomponent of the space.

By a compactum we mean a nonempty compact metric space. A continuum connected compactum. A space is a dendrite provided that is a locally connected continuum containing no simple closed curve. Every connected subset of a dendrite is arcwise connected [5, 9.10]. Given two points $x$ and $y$ in a dendrite $X$ we let $[x, y]$. denote the unique arc in $X$ with endpoints $x$ and $y$. We say a space $X$ is regular provided that every point of $X$ has a local base of open neighborhoods with finite boundary.

Suppose $X$ is a metric space with metric d. The diameter of a nonempty set $A \subseteq X$ is defined by $\operatorname{diam}(A)=\sup \{d(x, y): x, y \in A\}$. Given nonempty sets $A, B \subseteq X$ we define $\underline{\mathrm{d}}(A, B)=\inf (\{d(x, y): x \in A \& y \in B\})$. Given sets $A, B \subseteq X$ we define the Hausdorff distance between $A$ and $B$ to be

$$
\mathrm{H}(A, B)=\max (\sup (\{\underline{\mathrm{d}}(\{x\}, B): x \in A\}), \sup (\{\underline{\mathrm{d}}(A,\{y\}): y \in B\})) .
$$

When H is restricted to the compact subsets of $X$ it is a metric known as the Hausdorff metric. We denote the space of compacta with the Hausdorff metric (equivalently the Vietoris topology) by $2^{X}$. Recall that a basic open set in the Vietoris topology has the form

$$
<U_{1}, \ldots, U_{n}>=\left\{A \in 2^{X}: A \subseteq \bigcup_{i=1}^{n} U_{i} \text { and } A \cap U_{i} \neq \emptyset \text { for } 1 \leq i \leq n\right\}
$$

Where $U_{i}$ is a nonempty open subset of $X$ for each $1 \leq i \leq n$.
Given a space $X$ and $\mathcal{S} \subseteq 2^{X}$ we say that $h: \mathcal{S} \rightarrow X$ is a selector provided that the cardinality of $h(S) \in S$ for all $S \in \mathcal{S}$. If $h$ is continuous we say $h$ is continuous selector.

## 3 Results

We say a family $\mathcal{F}$ of disjoint sets in space $X$ is manageable provided that $\bigcup \mathcal{F}$ is closed in $X$ and for every $F \in \mathcal{F}$ there is an open set $U$ such that $F \subseteq U$ and $U \cap(\bigcup(\mathcal{F} \backslash\{F\}))=\emptyset$. A partition $\mathcal{S}$ of a metric space $X$ into compacta (considered as a subset of $2^{X}$ ) is said to be admissible provided that:
(C1) $\mathcal{S}$ is regular,
(C2) if $S \in \mathcal{S}$ has a nondegenerate component then $\{S\}$ is a component of $\mathcal{S}$,
(C3) any two distinct points of $\mathcal{S}$ can be separated by a third point in $\mathcal{S}$, and
(C4) for every $\epsilon>0$ the collection of all components $\mathcal{Q}$ of $\mathcal{S}$ such that some component of $\bigcup \mathcal{Q}$ has diameter at least $\epsilon$ is manageable.

Theorem 2 If $X$ is a separable metric space and $\mathcal{S}$ is an admissible partition of $X$ into compacta, then there is for every $p \in X$ a continuous selector $h: \mathcal{S} \rightarrow X$ such that $p \in h[\mathcal{S}]$.

Theorem 3 If $X$ is a dendrite, then every partition of $X$ into compacta is admissible.

The implication (c) $\rightarrow$ (a) of Theorem 1 follows immediately from Theorem 2 and Theorem 3.

We note the following corollary of Theorem 2 which may be of interest.
Corollary 4 Let $X$ be a separable metric space and $\mathcal{C}$ be a partition of $X$ into totally disconnected compacta that is homeomorphic to a connected subset of a dendrite, then there is for every $p \in X$ a continuous selector $h: \mathcal{C} \rightarrow X$ such that $p \in h[\mathcal{C}]$.

If $X$ and $Y$ are compacta and $f: X \rightarrow Y$ is an open map, then $\left\{f^{-1}(y): y \in\right.$ $f[X]\} \subseteq 2^{X}$ is a partition of $X$ which is homeomorphic to $f[X]$. With this fact in mind, Corollary 4 can be seen as a generalization of the following result of Whyburn.

Proposition 5 ([8, Chap. 10, 2.4]) Let $X$ be a compactum $Y$ be a dendrite and $f: X \rightarrow Y$ be a continuous light open map. For every $p \in X$ there is a continuum $W \subseteq X$ such that $p \in W, f \mid W: W \rightarrow f[W]$ is a homeomorphism.

## 4 Components and Quasicomponents of regular spaces

We say that $X$ has property $P$ provided that for any $x \in X$ if $Q$ is the quasicomponent of $x$ and $U$ is an open neighborhood of $x$, then there is an open set $V$ such that $x \in V \subseteq U$ and $\operatorname{bd}(V) \subseteq Q$.

The spaces satisfying property $P$ is a fairly large class.
Lemma 6 Let $X$ be a topological space. If every $x \in X$ has a neighborhood base consisting of open sets $U$ such that $\operatorname{bd}(U)$ is contained the union of finitely many quasicomponents of $X$, then $X$ has property $P$.

Proof. Let $U \subseteq X$ and $x \in X$. Let $Q$ be the quasicomponent of $x$. By assumption, there is an open neighborhood $V_{1}$ of $x$ such that $\operatorname{bd}\left(V_{1}\right)$ is contained in the union of finitely many quasicomponents of $X$ and $V_{1} \subseteq U$. Let $C_{1}, \ldots, C_{n}$
be the quasicomponents of $X$ such that $C_{i} \cap\left(\operatorname{bd}\left(V_{1}\right) \backslash Q\right) \neq \emptyset$. For each $C_{i}$ there is a clopen set $E_{i}$ such that $C_{i} \subseteq E_{i}$ and $Q \cap E_{i}=\emptyset$. Let $V=V_{1} \backslash \bigcup_{i=1}^{n} E_{i}$. Clearly, $V$ is an open neighborhood of $x$ and $V \subseteq U$. Notice that $X \backslash V=$ $\left(X \backslash V_{1}\right) \cup\left(\bigcup_{i=1}^{n} E_{i}\right)$. Also, $\operatorname{cl}(V)=\operatorname{cl}\left(V_{1} \backslash\left(\bigcup_{i=1}^{n} E_{i}\right)\right)=\operatorname{cl}\left(V_{1}\right) \backslash\left(\bigcup_{i=1}^{n} E_{i}\right)$. Thus, $\operatorname{bd}(V)=\operatorname{cl}(V) \cap(X \backslash V) \subseteq \operatorname{bd}\left(V_{1}\right) \backslash\left(\bigcup_{i=1}^{n} E_{i}\right) \subseteq Q$.

Lemma 7 Suppose $X$ is Lindelof, and has property $P$. If $Q \subseteq X$ is a quasicomponent of $X$ and $U \subseteq X$ is open and $Q \subseteq U$, then there is a clopen set $V$ such that $Q \subseteq V \subseteq U$.

Proof. Let $Q$ be a quasicomponent of $X$. By property $P$ we may find for each $x \in Q$ find an open set $U_{x}$ in $X$ such that $x \in U_{x}, \operatorname{bd}\left(U_{x}\right) \subseteq Q$, and $U_{x} \subseteq U$. Let $\mathcal{U}=\left\{U_{x}: x \in Q\right\} \cup\{U: U$ is clopen and $U \cap Q=\emptyset\}$. Since $\mathcal{U}$ is an open cover of $X$, there is a countable subcover $\left\{U_{n}\right\}_{n \in \omega}$ of $X$. We define a cover $\left\{V_{n}\right\}_{n \in \omega}$ as follows:

$$
V_{n}= \begin{cases}U_{n} \backslash \bigcup_{i=0}^{n} U_{i} & \text { if } U_{n} \cap Q=\emptyset \\ U_{n} \backslash\left(\bigcup\left\{U_{i}: i<n \text { and } U_{i} \cap Q=\emptyset\right\}\right) & \text { if } U_{n} \cap Q \neq \emptyset\end{cases}
$$

Notice that if $V_{k} \cap V_{n} \neq \emptyset$, then either $n=k$ or both $V_{k}$ and $V_{n}$ have nonempty intersection with $Q$.

For $n$ such that $U_{n} \cap Q \neq \emptyset$ we have $V_{n} \cap(X \backslash Q)$ clopen in $X \backslash Q$. With this observation it is easy to show that $V_{n}$ is open for every $n \in \omega$. The observation also can be used to show that if $U_{n} \cap Q=\emptyset$, then $V_{n}$ is clopen in $X$. Also, if $U_{n} \cap Q=\emptyset$, then $V_{n} \cap\left(\bigcup_{i \neq n} V_{i}\right)=\emptyset$.

Let $V=\bigcup\left\{V_{n}: V_{n} \cap Q \neq \emptyset\right\}$. Clearly, $V$ is open and $Q \subseteq V \subseteq U$. We will be done if we show that $V$ is closed. Suppose $y \in \operatorname{cl}(V)$. Let $k \in \omega$ be such that $y \in V_{k}$. Since $y \in \operatorname{cl}(V)$, there is an $n$ such that $V_{n} \cap Q \neq \emptyset$ and $V_{n} \cap V_{k} \neq \emptyset$. By the statement immediately following the definition of $\left\{V_{n}\right\}_{n \in \omega}$, we have that $V_{k} \cap Q \neq \emptyset$. So, $V_{k} \subseteq V$ by definition of $V$. Thus, $y \in V$ showing that $V$ is closed.

Lemma 8 If $X$ is Lindelof, normal, and has property $P$, then the quasicomponents and components of $X$ are the same.

Proof. Let $Q$ be a quasicomponent of $X$. By way of contradiction, assume that $Q$ is not connected. Since $Q$ is closed and $X$ is normal, $Q=(U \cap Q) \mid(V \cap Q)$ where $U$ and $V$ are disjoint open sets in $X$. By Lemma 7, there is a clopen set $W$ such that $Q \subseteq W \subseteq U \cup V$. Since $U \cap V=\emptyset, U \cap W$ is clopen. Now $U \cap Q \subseteq W \cap U$ and $V \cap Q \subseteq X \backslash(W \cap U)$ contradicting that $Q$ is a quasicomponent.

For the proof of Theorem 2 we note the following corollary.
Corollary 9 Let $X$ be a separable metric space and $\mathcal{S}$ be an admissible partition of $X$ into compacta. The quasicomponents and components of any subset of $\mathcal{S}$ are the same. Also, for every component $\mathcal{Q}$ of $\mathcal{S}$ and open set $\mathcal{U}$ containing $\mathcal{Q}$ there is a clopen set $\mathcal{V}$ such that $Q \subseteq \mathcal{V} \subseteq \mathcal{V}$.

Proof. By (C1) any subset $\mathcal{T}$ of $\mathcal{S}$ is a regular separable metric space. The corollary now follows by Lemma 6, Lemma 8, and Lemma 7.

## 5 Proof of Theorem 3

Let $X$ be a space and $\mathcal{S}$ be a partition of $X$ into compacta. The membership function $F: X \rightarrow \mathcal{S}$ is the function defined by $x \in F(x)$. The next lemma shows that the membership function has a property close to confluence.

Lemma 10 Suppose $X$ is a topological space and $\mathcal{S}$ is a partition of $X$ into compacta with membership function $F$. If $\mathcal{Q} \subseteq \mathcal{S}$ is connected and $C$ is a quasicomponent of $\bigcup \mathcal{Q}$, then $F(C)=\mathcal{Q}$.

Proof. By way of contradiction, assume there is a $M \in \mathcal{Q}$ such that $M \notin$ $F(C)$. Since $C \cap M=\emptyset$, there is for each $m \in M$ a separation $U^{m} \mid V^{m}$ of $\cup \mathcal{Q}$ such that $C \subseteq U^{m}$ and $m \in V^{m}$. Since $M$ is compact, there are finitely many $m_{1}, \ldots, m_{k} \in M$ such that $M \subseteq \bigcup_{i=1}^{k} V^{m_{i}}$. Let $V=\bigcup_{i=1}^{k} V^{m_{i}}$ and $U=\bigcap_{i=1}^{k} U^{m_{i}}$. Notice that $\bigcup \mathcal{Q}=U \mid V$ and $C \subseteq U$ and $M \subseteq V$. Notice that $F(C) \subseteq<U, X>$ and $M \notin<U, X>$. By connectedness, $\mathcal{Q} \cap \mathrm{bd}(<U, X>) \neq \emptyset$. Let $E \in \mathcal{Q} \cap \mathrm{bd}(<U, X>)$. Notice that $E \cap \mathrm{bd}(U) \neq \emptyset$, contradicting that $U \mid V$ is a separation of $\bigcup \mathcal{Q}$.

Lemma 11 If $X$ is regular and $\mathcal{S}$ is a partition of $X$ into compacta, then $\mathcal{S}$ is regular.

Proof. Let $S \in \mathcal{S}$. Since $X$ is regular and $S$ is compact there is a local base for $S$ with open sets of the form $\mathcal{U}=<U_{1}, \ldots U_{n}>$ where each $U_{i}$ has finite boundary. Notice that any $T \in \operatorname{bd}(\mathcal{U})$ must have nonempty intersection with $\bigcup_{i=1}^{n} \operatorname{bd}\left(U_{i}\right)$. Since $\bigcup_{i=1}^{n} \operatorname{bd}\left(U_{i}\right)$ is finite and $\mathcal{S}$ is a partition, $\operatorname{bd}(\mathcal{U})$ is finite. So, $\mathcal{S}$ is regular.

Lemma 12 Let $X$ be a dendrite and $S, T \subseteq X$ be disjoint compacta. Either there is a $s \in S$ such that $T$ is contained in a component of $X \backslash\{s\}$ or there is a $t \in T$ such that $S$ is contained in a component of $X \backslash\{t\}$.

Proof. Assume that there is no $s \in S$ or $t \in T$ with the desired property. Let $t_{0} \in T$ and $s_{0} \in S$. Let $A_{0}$ be the $\operatorname{arc}\left[t_{0}, s_{0}\right]$. By our assumption about $S$, there is a component $C_{0}$ of $X \backslash\left\{s_{0}\right\}$ such that $\left[t_{0}, s_{0}\right] \cap C_{0}=\emptyset$ and $C_{0} \cap T \neq \emptyset$. Let $A_{1}$ be the arc $\left[s_{0}, t_{1}\right]$ where $t_{1} \in C_{0}$. Since $\left(s_{0}, t_{1}\right] \subseteq C_{0}, A_{0} \cup A_{1}=\left[t_{0}, t_{1}\right]$. By assumption, $S$ is not contained in any component of $X \backslash\left\{t_{1}\right\}$. Let $s_{1}$ be an element of $S$ that is in a component $C_{1}$ of $X \backslash\left\{t_{1}\right\}$ that does not contain $\left[t_{0}, t_{1}\right)$. Let $A_{2}$ be the $\operatorname{arc}\left[t_{1}, s_{1}\right]$. Notice that $A_{0} \cup A_{1} \cup A_{2}=\left[t_{0}, s_{1}\right]$ since $C_{1} \cap\left(A_{0} \cup A_{1}\right)=\emptyset$ and $\left(t_{1}, s_{1}\right] \subseteq C_{1}$. Moreover, $A_{0} \cap A_{2}=\emptyset$.

By our assumptions on $S$ and $T$ we may continue this process indefinitely to get an infinite sequence of mutually disjoint arcs $\left\{A_{2 n}\right\}_{n \in \omega}$ of the form $\left[t_{n}, s_{n}\right]$.

Since $X$ is a dendrite, the diameters of these arcs must tend to zero. So, by compactness of $S$ and $T$, we have $S \cap T \neq \emptyset$ a contradiction.

Lemma 13 Let $X$ be a dendrite and $\mathcal{S}$ be a partition of $X$ into disjoint compacta. If $S, T \in \mathcal{S}$ are distinct points, then there is a $R \in \mathcal{S}$ that separates $S$ from $T$.

Proof. By Lemma 12, we may assume that there is a $t \in T$ such that $S$ is contained in a component $D$ of $X \backslash\{t\}$. Since $t$ is not a cutpoint of $D \cap\{t\}$, $t$ is an endpoint of $D \cup\{t\}$ by [5, 10.7]. So, there is a point $p \in D$ such that $p$ separates $t$ from $S$ in $D \cup\{t\}$. By unicoherence, $p$ separates $t$ from $S$ in $X$. Let $R=F(p)$. By way of contradiction assume that $S$ and $T$ are in the same component $\mathcal{C}$ of $\mathcal{S} \backslash\{R\}$. Let $E$ be the component of $\cup \mathcal{C}$ which contains $t$. By Lemma $10, S \in F[E]$. On the other hand, $E$ is contained in the component $G$ of $X \backslash\{p\}$ which contains $t$. Since $G \cap S=\emptyset, S \notin F[E]$, a contradiction. Since $S$ and $T$ are in different components of $\mathcal{S} \backslash\{R\}, S$ and $T$ are in different quasicomponents of $\mathcal{S} \backslash\{R\}$, by Corollary 9 and Lemma 11. Thus, $R$ separates $S$ and $T$.

Lemma 14 Let $X$ be a metric space and $\mathcal{S}$ be a partition of $X$ into compacta with membership function $F$ and $\mathcal{C} \subseteq \mathcal{S}$ be connected. If $S \in \mathcal{C}$ and there is an $s \in S$ and an open $U \subseteq X$ such that $s \in U$ and $\operatorname{bd}(U) \subseteq S$, then $F[U]=\mathcal{S}$.

Proof. Clearly, $S \in<U, X>$. Suppose $R \notin<U, X>$ and $R \in \mathcal{C}$. Since $\mathcal{C}$ is connected, there is a $T \in \operatorname{bd}(<U, X>) \cap \mathcal{C}$. So, $T \cap \operatorname{bd}(U) \neq \emptyset$. Since $\operatorname{bd}(U) \subseteq S$ and $\mathcal{S}$ is a partition, $T=S$. So, $S \in \operatorname{bd}(<U, X>)$ and $S \in<U, X>$ a contradiction.

Proof of Theorem 3 Let $X$ be a dendrite, $\mathcal{S}$ be a partition of $X$ into compacta, and $F$ be the membership function for the partition.

By Lemma $11 \mathcal{S}$ is regular. So, we have (C1).
Suppose $S \in \mathcal{S}$ contains a nondegenerate component $M$. Let $\mathcal{C}$ be the component of $S$ in $\mathcal{S}$. Since $X$ is a dendrite there is point $p \in M$ such that $p$ is a cutpoint of both $X$ and $M$, and $p$ has a base of open neighborhoods $U$ such that $\operatorname{bd}(U)$ has exactly two points $[5,10.42]$. Let $x, w \in M$ be separated by $p$ and $U$ an open neighborhood of $p$ such that $\operatorname{bd}(U)$ has exactly two points and $w, x \notin U$. Since $X$ is unicoherent and $p$ separates $x$ and $w$, we have $[x, p] \cap[p, w]=\{p\}$. It is now easy to see that $\operatorname{bd}(U) \subseteq M \subseteq S$. By Lemma 14, $F[U]=\mathcal{C}$. Since we may choose $U$ to be as small we like and the elements of $\mathcal{C}$ are compact, we see that $p \in \bigcap \mathcal{C}$. Thus, $\mathcal{C}=\{S\}$. So, we have (C2).

By Lemma 13, any two points of $\mathcal{S}$ are separated by a third point. So, we have (C3)

Let $\epsilon>0$ and $\theta$ be the collection of components $\mathcal{C}$ of $\mathcal{S}$ such that some component $D_{\mathcal{C}}$ of $\bigcup \mathcal{C}$ has diameter at least $\epsilon$. Since $X$ is a dendrite and $\mathcal{S}$ is a partition, the collection $\left\{D_{\mathcal{C}}: \mathcal{C} \in \theta\right\}$ is finite [3]. Since $\mathcal{S}$ is a partition and $\theta$ is a mutually disjoint collection, $\theta$ is finite. Since components are closed, $\theta$ is manageable. So, we have (C4).

Therefore, $\mathcal{S}$ is admissible.

## 6 Proof of Theorem 2

Lemma 15 If a metric space $Y$ is regular and connected, then $Y$ is locally connected.

Proof. If $Y$ is just a single point, then $Y$ is obviously locally connected. So, we assume that $Y$ contains at least two points. Let $y \in Y$ and $x \in Y \backslash\{y\}$. Let $V$ be open neighborhood of $y$. Let $U \subseteq V \backslash\{x\}$ be an open neighborhood of $y$ with finite boundary such that $\operatorname{cl}(U) \subseteq V$. Let $R$ be a quasicomponent of $\operatorname{cl}(U)$.

Suppose that $R \cap \operatorname{bd}(U)=\emptyset$. Since $\operatorname{bd}(U)$ is finite, there would be a separation $Z \mid W$ of $\operatorname{cl}(U)$ such that $\operatorname{bd}(U) \subseteq Z$ and $R \subseteq W$. Notice that $W$ is clopen and nonempty in $Y$ and $x \notin W$, contradicting that $Y$ is connected. Thus, if $R$ is a quasicomponent of $\operatorname{cl}(U)$, then $R \cap \operatorname{bd}(U) \neq \emptyset$.

Since $\operatorname{bd}(U)$ is finite, there are only finitely many quasicomponents $R$ of $\operatorname{cl}(U)$. Thus, each quasicomponent of $\operatorname{cl}(U)$ is a component of $\operatorname{cl}(U)$. Let $T$ be the component of $y$ in $\operatorname{cl}(U)$. Since $y \in U$ and $T$ is open in $\operatorname{cl}(U), T$ is a connected neighborhood of $y$ contained in $V$.

A compact space $W$ is called a perfect compactification of a space $X$ provided that $X$ is dense in $W$ and for any closed subset $C$ of $X$ if $C$ separates two subsets $A$ and $B$ of $X$, then $\operatorname{cl}_{W}(C)$ separates $A$ and $B$ in $W$. A space $X$ is said to be rim compact provided that every point of $X$ has a base of open sets with compact boundaries. In particular, regular spaces are rim compact.

Proposition 16 ([6, Thm. 4.2, Cor 4.5]) Let $X$ be a separable metric space. If $X$ is connected, locally connected, and the components and quasicomponents of each subspace of $X$ are the same and $X$ is rim compact, then there is a hereditarily locally connected continuum $W$ which is a perfect compactification of $X$ and $W \backslash X$ contains no nondegenerate continuum.

Lemma 17 Let $\mathcal{S}$ be an admissible partition of a separable metric space $X$ into disjoint compacta. If $\mathcal{C} \subseteq \mathcal{S}$ is connected, then $\mathcal{C}$ is homeomorphic to a connected subset of a dendrite.

Proof. By (C1) and Lemma $15, \mathcal{C}$ is locally connected and rim compact. By (C1) and Corollary 9, the components and quasicomponents of each subspace of $X$ are the same. By Proposition 16, there is a hereditarily locally connected continuum $W$ which is a perfect compactification of $\mathcal{C}$ and $W \backslash \mathcal{C}$ contains no nondegenerate continuum. Suppose $W$ contains a simple closed curve $M$. Since $W \backslash \mathcal{C}$ contains no nondegenerate continuum, there exist distinct $S, T \in M \cap \mathcal{C}$. By Lemma 13, there is a point $R \in \mathcal{C}$ such that $R$ separates $S$ and $T$ in $\mathcal{C}$. Since $W$ is a perfect compactification of $\mathcal{C}, R$ also separates $S$ and $T$ in $W$, contradicting that $S$ and $T$ lie on $M$. Since $W$ contains no simple closed curve, we conclude that $W$ is a dendrite.

Lemma 18 Let $X$ be a metric space and $\mathcal{S}$ be a partition of $X$ into compacta and $F$ be the membership function. If $\mathcal{C} \subseteq \mathcal{S}$ is a nondegenerate continuum, then $F \mid \bigcup \mathcal{C}: \cup \mathcal{C} \rightarrow \mathcal{C}$ is continuous and open.

Proof. Let $x \in \bigcup \mathcal{C}$ and $\left\{x_{n}\right\}_{n \in \omega}$ be a sequence on $\bigcup \mathcal{C}$ such that $\lim x_{n}=x$. Since $\mathcal{C}$ is compact, there is a $P \in \mathcal{C}$ such that some subsequence of $\left\{F\left(x_{n}\right)\right\}_{n \in \omega}$ converges to $P$. Since $x_{n} \in F\left(x_{n}\right)$ for every $n \in \omega$, it follows that $x \in P$. Since $\mathcal{S}$ is a partition, $P=F(x)$. So, some subsequence of $\left\{F\left(x_{n}\right)\right\}_{n \in \omega}$ converges to $F(x)$. So, $F \mid \bigcup \mathcal{C}$ is continuous.

Let $x \in X$ and $U$ be an open neighborhood of $x$. It is immediate from the definition of $F$ that $F[U]=<U, X>\cap \mathcal{S}$ which is open. So, $F$ is open. Since $F|\cup \mathcal{C}=F| F^{-1}(\mathcal{C}), F \mid \bigcup \mathcal{C}: \cup \mathcal{C} \rightarrow \mathcal{C}$ is open.

Lemma 19 Let $X$ be a metric space and $\mathcal{S}$ be a partition of $X$ into disjoint compacta satisfying (C2) with membership function $F$. Suppose $\mathcal{C} \subseteq \mathcal{S}$ is homeomorphic to a nondegenerate connected subset of a dendrite. If $\left\{S_{n}\right\}_{n \in \omega}$ is sequence on $\mathcal{C}$ and $\lim S_{n}=S \in \mathcal{C}$, then

$$
\lim _{n \in \omega} \sup \left\{\operatorname{diam}(D): D \text { is a component of } \bigcup\left[S_{n}, S\right]\right\}=0
$$

Proof. Since $\mathcal{C}$ is contained in a dendrite, $\lim \left[S_{n}, S\right]=\{S\}$. Since $F$ is open, $\lim F^{-1}\left(\left[S_{n}, S\right]\right)=F^{-1}(\{S\})=S$. By (C2), $S$ is totally disconnected. Since $S$ is totally disconnected and $F^{-1}\left(\left[S_{n}, S\right]\right)$ is compact for every $n$, it follows that $\lim _{n \in \omega} \sup \left\{\operatorname{diam}(D): D\right.$ is a component of $\left.\bigcup\left[S_{n}, S\right]\right\}=0$.

Lemma 20 If $X$ is a separable metric space and $\mathcal{C}$ is a connected subset of an admissible partition of $X$ into disjoint compacta, then for every $a \in \bigcup \mathcal{C}$ there is a continuous selector $h$ for $\mathcal{C}$ such that $a \in h[\mathcal{C}]$.

Proof. If $\mathcal{C}$ is a single point then the lemma is obviously true. So, we assume throughout that $\mathcal{C}$ is nondegenerate. In particular, condition (C2) in the definition of admissablity implies that the restricted membership function $F: \cup \mathcal{C} \rightarrow \mathcal{C}$ has totally disconnected point-inverses.

Let $\theta$ be the collection of all nonempty $M \subseteq \bigcup \mathcal{C}$ such that $a \in M, F \mid M$ is one-to-one and for any two points $p, q \in M$ there is an $\operatorname{arc} A_{p, q} \subseteq M$ from $p$ to $q$ such that $F \mid A_{p, q}$ is continuous. It is easily checked that $\theta$ satisfies the hypothesis of the Hausdorff Maximal Principle. Let $M$ be a maximal element of $\theta$.

We claim that $F[M]$ is closed in $\mathcal{C}$. By way of contradiction, assume that $S \in \operatorname{cl}(F[M]) \backslash F[M]$. Since $F[M]$ is connected, $F[M] \cup\{S\}$ is connected. By Lemma 17, $\mathcal{C}$ can be embedded into a dendrite. So, $F[M] \cup\{S\}$ is arcwise connected. Let $s_{0} \in M$. The arc $\left[F\left(s_{0}\right), S\right]$ is contained in $F[M] \cup\{S\}$. Let $\left\{S_{n}\right\}_{n \in \omega}$ be a sequence of points on $\left[F\left(s_{0}\right), S\right]$ such that $S_{0}=F\left(s_{0}\right), \lim S_{n}=S$ and $\left[F\left(s_{0}\right), S_{n}\right] \subseteq\left[F\left(s_{0}\right), S_{n+1}\right)$. Let $s_{n} \in S_{n} \cap M$ for every $n$. Taking a subsequence if necessary we may assume that there is an $s \in S$ such that $\lim s_{n}=s$. Let $n \in \omega$. Since $M \in \theta, F \mid A_{s_{n}, s_{n+1}}$ is a homeomorphism to the
$\operatorname{arc}\left[S_{n}, S_{n+1}\right]$. So, $A_{s_{n}, s_{n+1}} \subseteq F^{-1}\left(\left[S_{n}, S_{n+1}\right]\right) \subseteq F^{-1}\left(\left[S_{n}, S\right]\right)$. Since $F \mid M$ is one-to-one, $\bigcup_{n \in \omega} A_{s_{n}, s_{n+1}}$ is homeomorphic to the halfline $\left[S_{0}, S\right)$. Since $A_{s_{n}, s_{n+1}} \subseteq F^{-1}\left(\left[S_{n}, S\right]\right)$, Lemma 19 implies that $\lim \operatorname{diam}\left(A_{s_{n}, s_{n+1}}\right)=0$. Since $\lim s_{n}=s, A_{s_{0}, s}=\{s\} \cup\left(\bigcup_{n \in \omega} A_{s_{n}, s_{n+1}}\right)$ is an arc and $F \mid A_{s_{0}, s}: A_{s_{0}, s} \rightarrow\left[S_{0}, S\right]$ is continuous. So, $s \cup M \in \theta$, a contradiction to maximality. Thus, $F[M]$ is closed.

We claim $F[M]=\mathcal{C}$. By way of contradiction, assume there is a $S \in \mathcal{C} \backslash f[M]$. Since $\mathcal{C}$ is arcwise connected and $F[M]$ is closed, there is a nondegenerate arc $[T, S] \subseteq \mathcal{C}$ such that $[T, S] \cap F[M]=\{T\}$. By Lemma 18 and (C2), $F \mid \bigcup[T, S]$ is continuous, open, and light. As a union of a compact collection of sets, $\bigcup[T, S]$ is compact. Let $t \in M \cap T$. By Proposition 5 , there is an $\operatorname{arc} A \subseteq \bigcup[T, S]$ such that $t \in A$ and $F \mid A$ is a homeomorphism. It is easy to check that $M \cup A \in \theta$, a contradiction to maximality.

Since $(F \mid M)^{-1}: \mathcal{C} \rightarrow M$ is a selector and $a \in M$, it remains show that $(F \mid M)^{-1}$ is continuous.

Let $[S, T]$ be an $\operatorname{arc}$ in $\mathcal{C}$. Let $s \in S \cap M$ and $t \in T \cap M$ and $A \subseteq M$ be an arc from $s$ to $t$ such that $f \mid A$ is continuous. Since $F \mid A$ is continuous and one-to-one and $\mathcal{C}$ contains no simple closed curve, $F[A]=[S, T]$. Thus, $(F \mid M)^{-1} \mid[S, T]$ is continuous. So, $(F \mid M)^{-1}$ is continuous on arcs.

Let $S \in \mathcal{C}$ and $\left\{S_{n}\right\}_{n \in \omega}$ be a sequence of distinct points on $\mathcal{C}$ such that $\lim S_{n}=S$. Since $\mathcal{C}$ is contained in a dendrite, $\lim \left[S_{n}, S\right]=\{S\}$. By Lemma 19, $\lim \operatorname{diam}\left(A_{s_{n}, s}\right)=0$. Thus, $\lim (F \mid M)^{-1}\left(S_{n}\right)=\lim s_{n}=s=(F \mid M)^{-1}(S)$ showing that $(F \mid M)^{-1}$ is continuous.

For the remainder of this paper we will assume that $X$ is a fixed separable metric space with a fixed admissible partition $\mathcal{S}$ into compacta with membership function $F$. We will also fix $p \in X$. Moreover, we will assume (remetrizing if necessary) that the metric d on $X$ has the property that $\operatorname{diam}(X)<1$. In particular, $\operatorname{diam}(\mathcal{S})<1$.

For each $n \in \omega$ let $J_{n}$ denote the collection of all components $\mathcal{Q}$ of $\mathcal{S}$ such that some component of $\bigcup \mathcal{Q}$ has diameter at least $1 / 2^{n}$. Notice that $J_{0}=\emptyset$.

Lemma 21 Every nondegenerate component of $\mathcal{S}$ is contained in $\bigcup_{n \in \omega} J_{n}$. The collection $\bigcup_{n \in \omega} J_{n}$ is countable.

Proof. Suppose $\mathcal{Q}$ is a nondegenerate component of $\mathcal{S}$. By Lemma 10 and Corollary 9 , there is an $n \in \omega$ such that $\mathcal{Q} \in J_{n}$. Since $\mathcal{S}$ is separable and $J_{n}$ is manageable, $J_{k}$ is countable for all $k \in \omega$. Obviously $\bigcup_{k \in \omega} J_{k}$ is countable.

Lemma 22 If a component $\mathcal{C}$ of $\mathcal{S}$ has diameter greater than $\epsilon$, then some component of $\cup \mathcal{C}$ has diameter at greater than $\epsilon$.

Proof. Suppose $\operatorname{diam}(C) \leq \epsilon$ for every component $C$ of $\cup \mathcal{C}$. Let $S, T \in \mathcal{C}$. Let $s \in S$. Let $C$ be the component of $s$ in $\bigcup \mathcal{C}$. By Lemma 10 and Corollary 9, there is a $t \in T$ such that $t \in C$. So, $\underline{\mathrm{d}}(s, T) \leq \epsilon$. A similar argument shows that $\underline{\mathrm{d}}(t, S) \leq \epsilon$ for every $t \in T$. So, $\mathrm{H}(S, T) \leq \epsilon$. Thus, $\operatorname{diam}(\mathcal{C}) \leq \epsilon$.

We denote the collection of all finite strings of non-negative integers (including the empty string $\emptyset$ ) by $\omega^{<\omega}$. By $\omega^{n}\left(\omega^{\leq n}\right)$ we denote the set of all elements of $\omega^{<\omega}$ of length exactly (less or equal) $n$. If $\sigma \in \omega^{<\omega}$ we let $|\sigma|$ denote the length (equivalently, cardinality) of $\sigma$. Given $\sigma, \rho \in \omega^{<\omega}$, we say that $\sigma$ is the predecessor of $\rho$ (or that $\rho$ is the successor of $\sigma$ ) provided that $\sigma \subseteq \rho$ and $|\rho|=|\sigma|+1$. Given $\sigma \in \omega^{n}$ and $i \in \omega$ we define $(\sigma * i) \in \omega^{n+1}$ so that $(\sigma * i) \mid n=\sigma$ and $(\sigma * i)(n)=i$.

We say a nonempty subset $T$ of $\omega^{<\omega}$ is a tree provided that $\emptyset \in T$, for every $\sigma \in T$ there is at least one successor of $\sigma$ in $T$, and every element of $T \backslash\{\emptyset\}$ has a predecessor. For $n \in \omega$ we denote $T \cap \omega^{n}$ by $T_{n}$. Given a tree $T$ we let $T^{\dagger} \subseteq \omega^{\omega}$ denote the maximal $\subseteq$-chains in $T$.

Lemma 23 There is a tree $T \subseteq \omega^{<\omega}$ and collections $\left\{\mathcal{V}_{\sigma}: \sigma \in T\right\}$ of clopen sets and $\left\{\mathcal{Q}_{\sigma}: \sigma \in T\right\}$ of components of $\mathcal{S}$ such that for every $n \in \mathbb{N}$ and $\tau, \sigma \in T$ we have:

$$
\begin{aligned}
& \text { (A0) } p \in \bigcup \mathcal{Q}_{\emptyset}, \\
& \text { (A1) } \tau \subseteq \sigma \text { implies } \mathcal{V}_{\sigma} \subseteq \mathcal{V}_{\tau}, \\
& \text { (A2) } \mathcal{Q}_{\sigma} \subseteq \mathcal{V}_{\sigma}, \\
& \text { (A3) } \mathcal{V}_{\sigma} \cap \mathcal{V}_{\tau} \neq \emptyset \text { implies } \tau=\sigma, \\
& \text { (A4) } \bigcup_{\xi \in T_{n}} \mathcal{V}_{\xi}=\mathcal{S}, \\
& \text { (A5) } \mathrm{H}\left(\mathcal{V}_{\sigma}, Q_{\sigma}\right)<1 / 2^{|\sigma|} \text {, and } \\
& \text { (A6) } J_{n} \subseteq\left\{Q_{\sigma}: \sigma \in T_{n}\right\}, \text { and } \\
& \text { (A7) } \mathcal{Q}_{\sigma * 0}=\mathcal{Q}_{\sigma} .
\end{aligned}
$$

Proof. Let $\mathcal{Q}_{\emptyset}$ be the component of $F(p)$ in $\mathcal{S}$. Let $\mathcal{V}_{\emptyset}=\mathcal{S}$. Keeping in mind that $\operatorname{diam}(\mathcal{S})<1$ we see that $T_{0}=\{\emptyset\}, \mathcal{Q}_{\emptyset}$, and $\mathcal{V}_{\emptyset}$ satisfy (A0)-(A7)

Assume that $n \geq 1$ and we have defined $T_{m} \in \omega^{m}$ for every $0 \leq m \leq n-1$ so that $\bigcup_{m=0}^{n-1} T_{m},\left\{V_{\sigma}: \sigma \in \bigcup_{m=0}^{n-1} T_{m}\right\}$ and $\left\{S_{\sigma}: \sigma \in \bigcup_{m=0}^{n-1} T_{m}\right\}$ satisfy conditions (A0)-(A7). We show how to define $T_{n} \subseteq \omega^{\leq n}$ so that (A0)-(A7) will be satisfied by $\bigcup_{m=0}^{n} T_{m}$.

Fix $\tau \in T_{n-1}$. Since $\mathcal{S}$ is admissible, $J_{n+3}$ is mangable. Notice that $J_{n+3} \cup$ $\left\{\mathcal{Q}_{\tau}\right\}$ is also mangable. Since $\mathcal{S}$ is separable and metric, $J_{n} \cup\left\{\mathcal{Q}_{\tau}\right\}$ is countable. Let Let $A \subseteq \omega$ and $\left\{\mathcal{P}_{j}: j \in A\right\}$ be an enumeration of the elements of $J_{n+3}$ which are contained in $\mathcal{V}_{\tau}$ together with $\mathcal{Q}_{\tau}$. In the enumeration we will assume that $\mathcal{P}_{0}=\mathcal{Q}_{\tau}$. Since $\left\{\mathcal{P}_{j}: j \in A\right\}$ is countable and manageable, we may use Corollary 9 and induction to construct a family $\left\{\mathcal{U}_{j}\right\}_{j \in A}$ of mutually disjoint clopen subsets of $\mathcal{V}_{\tau}$ such that $\mathcal{P}_{j} \subseteq \mathcal{U}_{j}$ and $\mathrm{H}\left(\mathcal{U}_{j}, Q_{j}\right)<1 / 2^{2+j}$ for all $j$. It is easily checked that $\bigcup_{j \in A} \mathcal{U}_{j}$ is clopen in $\mathcal{S}$.

By Lemma 21 there is a $B \subseteq \omega$ such that the nondegenerate components of $\mathcal{V}_{\tau} \backslash\left(\bigcup_{j \in A} \mathcal{U}_{j}\right)$ may be enumerated as $\left\{\mathcal{C}_{k}: k \in B\right\}$. Notice that $\mathcal{C}_{k} \notin J_{n+3}$ for all $k \in B$.

Fix $k \in B$. By Corollary 9, there is a clopen neighborhood $\mathcal{T}^{k}$ of $\mathcal{C}_{k}$ such that $\mathcal{T}^{k}$ is contained in $\mathcal{S} \backslash \bigcup_{j \in A} \mathcal{U}_{j}$ and $\mathrm{H}\left(\mathcal{T}^{k}, \mathcal{C}_{k}\right)<1 / 2^{n+3+k}$.

For each $k \in B$ let $\mathcal{R}^{k}=\mathcal{T}^{k} \backslash\left(\bigcup_{i<k} \mathcal{T}^{k}\right)$. Clearly, $\left\{\mathcal{R}^{k}: k \in \omega\right\}$ is a collection of disjoint clopen sets covering $\bigcup_{k \in \omega} \mathcal{C}_{k}$. Let $B_{1} \subseteq B$ denote the set of all $k \in B$ such that $R^{k} \neq \emptyset$. Notice that $\mathcal{C}_{k} \subseteq \mathcal{R}^{k} \subseteq \mathcal{T}^{k}$ every $k \in B_{1}$. In particular, we have $\mathrm{H}\left(\mathcal{R}^{k}, \mathcal{C}_{k}\right)<1 / 2^{n+3+k}$ for all $k \in B_{1}$.

Suppose now that $S \notin\left(\bigcup_{k \in B_{1}} \mathcal{R}^{k}\right) \cup\left(\bigcup_{j \in A} \mathcal{U}_{j}\right)$. Since $\{S\}$ is a component of $\mathcal{S}$, there is, by Corollary 9 , a base of clopen neighborhoods of $S$. Pick a clopen neighborhood $\mathcal{K}_{S}$ of $S$ such that $\operatorname{diam}\left(\mathcal{K}_{S}\right)<1 / 2^{n+3}$ and $\mathcal{K}_{S} \cap\left(\bigcup_{j \in A} \mathcal{U}_{j}\right)=\emptyset$. Let $\mathcal{J}_{S}=\mathcal{K}_{S} \cup\left\{\mathcal{R}^{k}: \mathcal{R}^{k} \cap \mathcal{K}_{S} \neq \emptyset\right\}$. Notice that $\mathcal{J}_{S} \subseteq \mathcal{S} \backslash \bigcup_{j \in A} \mathcal{U}_{j}$.

We claim that $\operatorname{diam}\left(\mathcal{J}_{S}\right)<1 / 2^{n}$. Let $P \in \mathcal{J}_{S}$. If $P \in \mathcal{K}_{S}$, then $\mathrm{H}(S, P)<$ $1 / 2^{n+3}$. Suppose $P \notin \mathcal{K}_{S}$. There is a $k \in B_{1}$ such that $P \in \mathcal{R}^{k}$. Since $\mathcal{R}^{k} \cap\left(\bigcup_{j \in A} \mathcal{U}_{j}\right)=\emptyset, \mathcal{C}_{k} \notin J_{n+3}$. By Lemma 22, $\operatorname{diam}\left(\mathcal{C}_{k}\right) \leq 1 / 2^{n+3}$. Thus, $\operatorname{diam}\left(\mathcal{R}^{k}\right)<1 / 2^{n+2+k}+1 / 2^{n+3} \leq 3 / 2^{n+3}$. So, $\mathrm{H}(P, S)<1 / 2^{n+3}+3 / 2^{n+3}=$ $1 / 2^{n+1}$. $\operatorname{So}, \operatorname{diam}\left(\mathcal{J}_{S}\right)<1 / 2^{n}$.

We claim that $\mathcal{J}_{S}$ is clopen in $\mathcal{S}$. Clearly, $\mathcal{J}_{S}$ is open. By way of contradiction, assume that $\mathcal{J}_{S}$ is not closed. Let $P \in \operatorname{cl}\left(\mathcal{J}_{S}\right) \backslash \mathcal{J}_{S}$. We may assume that there exists an increasing sequence $\left\{k_{i}\right\}_{i \in \omega}$ on $B_{1}$ and points $P_{k_{i}} \in \mathcal{R}^{k_{i}}$ such that $\lim _{i \in \omega} P_{k_{i}}=P$. Since $P \notin \mathcal{K}_{S}$, there is an $\epsilon>0$ such that $\underline{\mathrm{H}}\left(\{P\}, \mathcal{K}_{S}\right)>\epsilon$. So, $\operatorname{diam}\left(\mathcal{R}^{k_{i}}\right)>\epsilon$ for almost all $i$. It follows that $\operatorname{diam}\left(\mathcal{C}_{k_{i}}\right)>\epsilon$ for almost all $i$. By Lemma 22, $\mathcal{C}_{k_{i}}$ has a component of diameter greater than $\epsilon$ for almost all $i$. Thus, $\mathcal{C}_{k_{i}} \subseteq J_{l}$ for some $l \in \omega$. Since $J_{l}$ is manageable and $\lim _{i \in \omega} \underline{\mathrm{H}}\left(\mathcal{R}^{k_{i}}, \mathcal{C}_{k_{i}}\right)=0$, $P \in \mathcal{C}_{k_{i}} \subseteq \mathcal{R}^{k_{i}}$ for some $i$. So, $P \in \mathcal{J}_{S}$, contradicting our assumption.

Let $\theta_{1}=\left\{\mathcal{J}_{S}: S \notin\left(\bigcup_{k \in B_{1}} \mathcal{R}^{k}\right) \cup\left(\bigcup_{j \in A} \mathcal{U}_{j}\right)\right\}$. We may do a standard induction to find a $D \subseteq \omega$ and a refinement $\left\{\mathcal{L}_{l}: l \in D\right\}$ of $\theta_{1}$ made up of mutually disjoint nonempty clopen sets such that $\bigcup\left\{\mathcal{L}_{l}: l \in D\right\}=\bigcup \theta_{1}$.

Define

$$
\theta_{2}=\left\{\mathcal{L}_{l}: l \in D\right\} \cup\left\{\mathcal{R}^{k}: \mathcal{R}^{k} \cap\left(\bigcup_{l \in D} \mathcal{J}_{l}\right)=\emptyset \text { and } k \in B_{1}\right\} \cup\left\{\mathcal{U}_{j}: j \in A\right\} .
$$

Notice $\theta_{2}$ is a cover of $\mathcal{S}$ by mutually nonempty disjoint clopen sets. For every $j \in A$ let $\mathcal{V}_{\tau * 3 j}=\mathcal{U}_{j}$ and $\mathcal{Q}_{3 j}=\mathcal{P}_{j}$. If $\mathcal{R}^{k} \in \theta_{2}$, then define $\mathcal{V}_{3 k+1}=\mathcal{R}^{k}$ and $Q_{\tau *(3 k+1)}=\mathcal{C}_{k}$. If $l \in D$, then define $\mathcal{V}_{\tau *(3 l+2)}=\mathcal{L}_{l}$ and $Q_{\tau *(3 l+2)}$ to be a component of $\mathcal{L}_{l}$. Let $T_{\tau}=\left\{\tau *(3 k+1): \mathcal{R}^{k} \in \theta_{2}\right\} \cup\{\tau *(3 l+2): l \in$ $D\} \cup\{\tau * 3 j: j \in A\}$.

For each $\tau \in T_{n-1}$ we perform a similar construction. Let $T_{n}=\bigcup_{\tau \in T_{n-1}} T_{\tau}$. Now $\bigcup_{m=0}^{n} T_{m},\left\{\mathcal{V}_{\sigma}: \sigma \in \bigcup_{m=0}^{n} T_{m}\right\}$, and $\left\{\mathcal{Q}_{\sigma}: \sigma \in \bigcup_{m=0}^{n} T_{m}\right\}$ satisfy (A0)(A7).

Finally, $T=\bigcup_{n \in \omega} T_{n},\left\{\mathcal{V}_{\sigma}: \sigma \in T\right\}$, and $\left\{\mathcal{Q}_{\sigma}: \sigma \in T\right\}$ are easily checked to satisfy (A0)-(A7).

Proof of Theorem 2 Let $T \subseteq \omega^{<\omega},\left\{\mathcal{V}_{\sigma}: \sigma \in T\right\},\left\{J_{n}: n \in \omega\right\}$, and $\left\{\mathcal{Q}_{\sigma}: \sigma \in T\right\}$ be as in Lemma 23.

Claim 1 For every component $\mathcal{Q}$ of $\mathcal{S}$ there is a $g \in T^{\dagger}$ such that $\mathcal{Q}=$ $\bigcap_{n \in \omega} \mathcal{V}_{g \mid n}$ and $\lim _{n \in \omega} \mathcal{V}_{g \mid n}=\mathcal{Q}$.

Proof. To define $g$ we let $g=\bigcup\left\{\sigma \in T: \mathcal{Q} \subseteq \mathcal{V}_{\sigma}\right\}$. It follows from (A3) and (A4) that $g \in T^{\dagger}$.

Clearly, $\mathcal{Q} \subseteq \bigcap_{n \in \omega} \mathcal{V}_{g \mid n}$. Consider the sequence $\left\{\mathcal{Q}_{g \mid n}\right\}_{n \in \omega}$.
Suppose $\left\{\mathcal{Q}_{g \mid n}\right\}_{n \in \omega}$ is eventually constant. Let $S \in \bigcap_{n \in \omega} \mathcal{V}_{g \mid n}$. By (A5), $\mathrm{H}\left(\mathcal{V}_{g \mid n}, \mathcal{Q}_{g \mid n}\right)<1 / 2^{n}$. It follows that there is a sequence $\left\{S_{n}\right\}_{n \in \omega}$ such that $S_{n} \in \mathcal{Q}_{g \mid n}$ and $\lim S_{n}=S$. There is an $N \in \omega$ such that $\mathcal{Q}_{g \mid k}=\mathcal{Q}_{g \mid N}$ for all $k \geq N$. By (A5) and (A7), $\mathcal{Q}_{N}=\lim \mathcal{Q}_{g \mid k}=\mathcal{Q}$. Since $\mathcal{Q}$ is closed and $S_{k} \in \mathcal{Q}$ for almost all $k$, we have $S \in \mathcal{Q}$. So, $\mathcal{Q}=\bigcap_{n \in \omega} \mathcal{V}_{g \mid n}$. By (A3), for all $k \geq N$ we have $\mathrm{H}\left(\mathcal{V}_{g \mid k}, \mathcal{Q}\right)=\mathrm{H}\left(\mathcal{V}_{g \mid k}, \mathcal{Q}_{g \mid k}\right)<1 / 2^{k}$. So, $\lim _{n \in \omega} \mathcal{V}_{g \mid n}=\mathcal{Q}$.

If $\left\{\mathcal{Q}_{g \mid n}\right\}_{n \in \omega}$ is not eventually constant, then conditions (A6) and (A7) together with Lemma 22 imply that that $\lim \operatorname{diam}\left(\mathcal{V}_{g \mid n}\right)=0$. So, $\mathcal{Q}$ is a singleton and $\bigcap_{n \in \omega} \mathcal{V}_{g \mid n}=\mathcal{Q}$ and $\lim _{n \in \omega} \mathcal{V}_{g \mid n}=\mathcal{Q}$.

Claim 2 There are functions $\left\{h_{\sigma}: \sigma \in T\right\}$ and points $\left\{S_{\sigma}: \sigma \in T\right\}$ so that for every $\sigma, \tau \in T$ we have:
(B1) $h_{\sigma}: \mathcal{Q}_{\sigma} \rightarrow X$ is a continuous selector,
(B2) $S_{\sigma} \in \mathcal{Q}_{\sigma}$,
(B3) $S_{\sigma * 0}=S_{\sigma}$ and $h_{\sigma * 0}=h_{\sigma}$, and
(B4) if $|\sigma|>0$ and $\tau$ is the predecessor of $\sigma$, then there exists an $S \in \mathcal{Q}_{\sigma}$ such that $\mathrm{H}\left(S, S_{\tau}\right)<1 / 2^{|\tau|}$ and $\mathrm{d}\left(h_{\tau}\left(S_{\tau}\right), h_{\sigma}(S)\right)<1 / 2^{|\tau|}$.

Moreover, we may asssume that $p \in \bigcup_{\sigma \in T} h_{\sigma}\left[\mathcal{Q}_{\sigma}\right]$.
Proof. By Lemma 20 and (A0) there is a continuous selector $h_{\emptyset}: \mathcal{Q}_{\emptyset} \rightarrow X$ such that $p \in h_{\emptyset}\left[\mathcal{Q}_{\emptyset}\right]$. Let $S_{\emptyset} \in Q_{\emptyset}$ be arbitrary. Clearly these choices satisfy (B1)-(B4).

Assume we have defined $h_{\sigma}$ for all $\sigma \in \bigcup_{k=0}^{n} T_{k}$ so that (B1)-(B4) are satisfied. Let $\rho \in T_{n+1}$ and $\sigma \in T_{n}$ be such that $\sigma \subseteq \rho$. If $\rho=\sigma * 0$, then, by (A7), we may let $h_{\rho}=h_{\sigma}$ and $S_{\rho}=S_{\sigma}$. Suppose now that $\rho \neq \sigma * 0$. Since $\mathcal{Q}_{\rho} \subseteq \mathcal{V}_{\rho} \subseteq \mathcal{V}_{\sigma}$ and $\mathrm{H}\left(\mathcal{V}_{\sigma}, Q_{\sigma}\right)<1 / 2^{|\sigma|}$, there is a $S_{\rho} \in \mathcal{Q}_{\rho}$ such that $\underline{\mathrm{H}}\left(\mathcal{Q}_{\sigma}, S_{\rho}\right)<1 / 2^{|\sigma|}$. Let $S \in \mathcal{Q}_{\sigma}$ be such that $\mathrm{H}\left(S, S_{\rho}\right)<1 / 2^{|\sigma|}$. By the definition of the Hausdorff metric, there is an $x \in S_{\rho}$ such that $\mathrm{d}\left(x, h_{\sigma}(S)\right)<1 / 2^{|\sigma|}$. By Lemma 20, there is a continuous selector $h_{\rho}: \mathcal{Q}_{\rho} \rightarrow X$ such that $h_{\rho}\left(S_{\rho}\right)=x$. Thus, $S \in \mathcal{Q}_{\sigma}$ and $\mathrm{d}\left(h_{\rho}\left(S_{\rho}\right), h_{\sigma}(S)\right)<1 / 2^{|\sigma|}$ and $\mathrm{H}\left(S, S_{\rho}\right)<1 / 2^{|\sigma|}$. So, we have (B3) and (B4). Clearly, (B1) and (B2) are satisfied by $h_{\rho}$ and $\mathcal{Q}_{\rho}$.

By induction, we have that $\left\{h_{\sigma}: \sigma \in T\right\}$ and $\left\{S_{\sigma}: \sigma \in T\right\}$ satisfy (B1)-(B4). Obviously, $p \in \bigcup_{\sigma \in T} h_{\sigma}\left[\mathcal{Q}_{\sigma}\right]$.

Let $h^{*}$ be the partial function defined by $h^{*}=\bigcup_{\sigma \in T} h_{\sigma}$. Notice that $h^{*}$ is well defined by (B3), (A2), and (A3).

Claim 3 Let $\sigma \in T_{n}$. If $R \in \mathcal{V}_{\sigma}$ and $R$ is in the domain of $h^{*}$, then there is a $P \in \mathcal{Q}_{\sigma}$ such that $\mathrm{d}\left(h^{*}(P), h^{*}(R)\right)<\sum_{l=n}^{\infty} 1 / 2^{l-2}$ and $\mathrm{H}(P, R)<\sum_{l=n}^{\infty} 1 / 2^{l-2}$.

Proof. Let $\tau \in T_{n}$ be such that $R \in \mathcal{Q}_{\tau}$. By (A7) and (A2), we may assume that $\sigma \subseteq \tau$.

Suppose $0=|\tau|-|\sigma|$. Let $P=R$ and observe that

$$
\max \left\{\mathrm{d}\left(h^{*}(P), h^{*}(R)\right), \mathrm{H}(P, R)\right\}=0<\sum_{l=n}^{n+0} 1 / 2^{l-2}
$$

Assume now that $m \geq 0$ and that we have shown that for every $R$, if $R \in \mathcal{Q}_{\tau}$ and $m=|\tau|-|\sigma|$, then there is a $P \in \mathcal{Q}_{\sigma}$ such that

$$
\max \left\{\mathrm{d}\left(h^{*}(P), h^{*}(R)\right), \mathrm{H}(P, R)\right\}<\sum_{l=n}^{n+m} 1 / 2^{l-2}
$$

We now extend the statement to $m+1$. Let $m+1=|\tau|-|\sigma|$ and $\sigma \subseteq \tau$. Let $\rho$ be the predecessor of $\tau$. We consider two exhaustive cases.

Suppose $\tau=\rho * 0$. By (A7), $R \in \mathcal{Q}_{\rho}$. So, by inductive hypothesis there is a $P \in \mathcal{Q}_{\sigma}$ such that

$$
\max \left\{\mathrm{d}\left(h^{*}(P), h^{*}(R)\right), \mathrm{H}(P, R)\right\}<\sum_{l=n}^{n+m} 1 / 2^{l-2}<\sum_{l=n}^{n+m+1} 1 / 2^{l-2}
$$

Suppose $\tau \neq \rho * 0$. By (A7) and (A6), $\mathcal{Q}_{\tau} \notin J_{n+m}$. By (B4), there is an $S \in \mathcal{Q}_{\rho}$ such that $\mathrm{d}\left(h^{*}\left(S_{\tau}\right), h^{*}(S)\right)<1 / 2^{n+m}$ and $\mathrm{H}\left(S_{\tau}, S\right)<1 / 2^{n+m}$. Since $\mathcal{Q}_{\tau} \notin J_{n+m}$, Lemma 22 implies that $\operatorname{diam}\left(\mathcal{Q}_{\tau}\right) \leq 1 / 2^{n+m}$. So,

$$
\mathrm{H}(R, S)<1 / 2^{n+m}+1 / 2^{n+m}=1 / 2^{n+m-1}
$$

Since $\mathcal{Q}_{\tau} \notin J_{n+m}, \operatorname{diam}\left(h^{*}\left[\mathcal{Q}_{\tau}\right]\right)<1 / 2^{m+n}$. So,

$$
\mathrm{d}\left(h^{*}(R), h^{*}(S)\right)<1 / 2^{n+m}+1 / 2^{n+m}=1 / 2^{n+m-1} .
$$

By inductive hypothesis, there is a $P \in \mathcal{Q}_{\sigma}$ such that

$$
\max \left\{\mathrm{H}(P, S), \mathrm{d}\left(h^{*}(P), h^{*}(S)\right)\right\}<\sum_{l=n}^{n+m} 1 / 2^{l-2}
$$

Thus,

$$
\max \left\{\mathrm{H}(R, P), \mathrm{d}\left(h^{*}(R), h^{*}(P)\right)\right\}<\sum_{l=n}^{n+m} 1 / 2^{l-2}+1 / 2^{n+m-1}=\sum_{l=n}^{n+m+1} 1 / 2^{l-2}
$$

By induction, for every $R \in \mathcal{V}_{\sigma}$ such that $R$ is in the domain of $h^{*}$ there is a $P \in \mathcal{Q}_{\sigma}$ such that $\max \left\{\mathrm{H}(R, P), \mathrm{d}\left(h^{*}(R), h^{*}(P)\right)\right\}<\sum_{l=n}^{\infty} 1 / 2^{l-2}$.

Claim 4 For every $S \in \mathcal{S}$ and $\epsilon>0$ there is an open neighborhood $\mathcal{U}$ of $S$ such that $\operatorname{diam}\left(h^{*}[\mathcal{U}]\right)<\epsilon$.

Proof. We consider two exhaustive cases.
Case $1 S$ is in the domain of $h^{*}$.
Let $\mathcal{Q}$ be the component of $S$ in $\mathcal{S}$. Notice that $\mathcal{Q}$ is contained in the domain of $h^{*}$ and $h^{*} \mid \mathcal{Q}$ is continuous. Let $\delta>0$ be such that $\mathrm{d}\left(h^{*}(S), h^{*}(P)\right)<\epsilon / 2$ for all $P$ such that $\mathrm{H}(P, S)<\delta$ and $P \in \mathcal{Q}$. There is a $\sigma \in T$ such that $\mathcal{Q}=\mathcal{Q}_{\sigma}$ and $|\sigma|=n$ where $n$ is large enough that $\sum_{l=n}^{\infty} 1 / 2^{l-2}<\min \{\delta / 2, \epsilon / 2\}$. Let $\mathcal{U}$ be the intersection of the an open neighborhood of $S$ with diameter $\delta / 2$ and $\mathcal{V}_{\sigma}$. Let $R \in \mathcal{U}$ be in the domain of $h^{*}$. By Claim 3, there is a $P \in \mathcal{Q}$ such that

$$
\max \left\{\mathrm{H}(R, P), \mathrm{d}\left(h^{*}(R), h^{*}(P)\right)\right\}<\sum_{l=n}^{\infty} 1 / 2^{l-2}<\min \{\delta / 2, \epsilon / 2\}
$$

Since $\mathrm{H}(R, P)<\delta / 2$ and $\operatorname{diam}(\mathcal{U})<\delta / 2, \mathrm{H}(P, S)<\delta$. By our choice of $\delta$, $\mathrm{d}\left(h^{*}(P), h^{*}(S)\right)<\epsilon / 2$. Since $\mathrm{d}\left(h^{*}(R), h^{*}(P)\right)<\epsilon / 2$, we have $\mathrm{d}\left(h^{*}(R), h^{*}(S)\right)<$ $\epsilon$.

Case $2 S$ is not in the domain of $h^{*}$.
Let $\mathcal{Q}$ be the component of $S$ in $\mathcal{S}$. Since $\mathcal{Q} \notin\left\{\mathcal{Q}_{\tau}: \tau \in T\right\}$, it follows from (A6) that $\mathcal{Q} \notin \bigcup_{k=1}^{\infty} J_{k}$. In particular, $\mathcal{Q}=\{S\}$ and $S$ is totally disconnected. By (A4) and Claim 1, there is a $\sigma \in T$ such that $\mathcal{Q} \subseteq \mathcal{V}_{\sigma}$, no component of $\cup \mathcal{Q}_{\sigma}$ has diameter greater than $\epsilon / 3$, and $|\sigma|=n$ where $n$ is large enough that $\sum_{l=n}^{\infty} 1 / 2^{l-2}<\epsilon / 3$. Let $R, P \in \mathcal{V}_{\sigma}$ be in the domain of $h^{*}$. By Claim 3, there exist $G_{P}, G_{R} \in \mathcal{Q}_{\sigma}$ such that

$$
\max \left\{\mathrm{H}\left(h^{*}(P), h^{*}\left(G_{P}\right)\right), \mathrm{H}\left(h^{*}(R), h^{*}\left(G_{R}\right)\right)\right\}<\epsilon / 3 .
$$

Since no component of $\mathcal{Q}_{\sigma}$ has diameter larger than $\epsilon / 3, \mathrm{~d}\left(h^{*}\left(G_{P}\right), h^{*}\left(G_{R}\right)\right)<$ $\epsilon / 3$. Thus, $\mathrm{H}\left(h^{*}(P), h^{*}(R)\right)<\epsilon$.

Since the domain of $h^{*}$ is dense in $\mathcal{S}$, Claim 3 implies that $h^{*}$ may be extended to a continuous function $h$ defined on all of $\mathcal{S}$. The continuity of $h$ and the fact that $h^{*}$ is a selector on its domain implies that $h$ is a selector. By Claim 3, $p \in h[\mathcal{S}]$.

## References

[1] F. Jordan, $S_{4}$ continua in the sense of Michael are dendrites, Topology Appl., 129 (2003), 19-27.
[2] F. Jordan, S. B. Nadler, Jr., A result about a selection problem of Michael, Proc. Amer. Math. Soc., 129(4) (2001), 1219-1228.
[3] A. Lelek, On the topology of curves, Fund. Math,., 70 (1971), 131-138.
[4] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71(1951), (152-182)
[5] S. B. Nadler, Jr., Continuum Theory, Marcel Dekker inc. New York and Basel and Hong Kong 1992.
[6] T. Nishiura E.D. and Tymchatyn, Hereditarily Locally connected spaces, Houston J. Math., 2(4)(1976), (581-599)
[7] Gail S. Young, Lecture Notes in Mathematics, SUNY Buffalo, vol. 171, Springer-Verlag New York, New York 1969.
[8] Gordon Thomas Whyburn, Jr., Analytic Topology, Amer. Math .Soc. Collo. Publ., vol.28, Amer. Math. Soc., Providence, RI, 1942.


[^0]:    *AMS classification numbers: Primary 54
    Key words and phrases: dendrite, continuous selectors, partitions into compact sets, $S_{4}$ space.

    The author would like to thank Sam B. Nadler Jr. for his encouragement and some helpful discussions.

