The S_4 continua in sense of Michael are precisely the dendrites

Francis Jordan^{*}, Department of Mathematical Sciences, Georgia Southern University, Statesboro, Ga 30458 (fjordan@georgiasouthern.edu)

Abstract

We show that a continuum is an S_4 space in the sense of Micheal if and only if it is a dendrite.

1 Introduction

Michael [4, p.178] defined an S_4 space to be a space X such that there is a continuous selection $f: S \to X$ for every every partition S of X into nonempty compact sets. The notion of a weak S_4 space, defined in [2], is the same as that for S_4 space except we assume the members of S have at most two points. The question of which spaces are S_4 spaces is asked in [4, p.155], and some partial answers are given in [4, pp.178–179]. In particular, it is mentioned that no simple closed curve is an S_4 space and that all finite trees are S_4 spaces. The particular question of whether S_4 continua are dendrites is due to Gail S. Young [7]. In [1], it is shown that every S_4 continuum is a dendrite. Our purpose here is to prove that dendrites actually characterize the S_4 continua.

Theorem 1 The following conditions are equivalent for a continuum X:

- (a) X is an S_4 space
- (b) X is a weak S_4 space
- (c) X is a dendrite.

The implication $(a) \rightarrow (b)$ is immediate from the definitions. The implication $(b) \rightarrow (c)$ is shown in [1]. This paper will be dedicated to the implication $(c) \rightarrow (a)$. The implication will follow from from a general theorem on the existence of continuous selectors and a structure theorem on partitions of dendrites.

^{*}AMS classification numbers: Primary 54

Key words and phrases: dendrite, continuous selectors, partitions into compact sets, ${\cal S}_4$ space.

The author would like to thank Sam B. Nadler Jr. for his encouragement and some helpful discussions.

2 Terminology

By ω we denote the non-negative integers.

For a set $A \subseteq X$ we write cl(A), int(A), bd(A) for the topological closure, interior, and boundary of A in X, respectively. If a space X can be write as the union of two disjoint nonempty closed sets A and B we say that A and B form a separation of X and write X = A|B. If $C \subseteq X$ and $X \setminus C$ is not connected we say that C is a separator of X. A maximal connected subset of a space X is called a component of X. Given a point $x \in X$ the quasicomponent of x is the intersection of all clopen subsets of X containing x. It is well known that every component of a space is contained a quasicomponent of the space.

By a compactum we mean a nonempty compact metric space. A continuum connected compactum. A space is a dendrite provided that is a locally connected continuum containing no simple closed curve. Every connected subset of a dendrite is arcwise connected [5, 9.10]. Given two points x and y in a dendrite X we let [x, y]. denote the unique arc in X with endpoints x and y. We say a space X is regular provided that every point of X has a local base of open neighborhoods with finite boundary.

Suppose X is a metric space with metric d. The diameter of a nonempty set $A \subseteq X$ is defined by diam $(A) = \sup\{d(x, y) : x, y \in A\}$. Given nonempty sets $A, B \subseteq X$ we define $\underline{d}(A, B) = \inf(\{d(x, y) : x \in A \& y \in B\})$. Given sets $A, B \subseteq X$ we define the Hausdorff distance between A and B to be

$$\mathcal{H}(A,B) = \max(\sup(\{\underline{d}(\{x\},B)\colon x\in A\}), \sup(\{\underline{d}(A,\{y\})\colon y\in B\})).$$

When H is restricted to the compact subsets of X it is a metric known as the Hausdorff metric. We denote the space of compacta with the Hausdorff metric (equivalently the Vietoris topology) by 2^X . Recall that a basic open set in the Vietoris topology has the form

$$\langle U_1, \dots, U_n \rangle = \{A \in 2^X \colon A \subseteq \bigcup_{i=1}^n U_i \text{ and } A \cap U_i \neq \emptyset \text{ for } 1 \le i \le n\}.$$

Where U_i is a nonempty open subset of X for each $1 \leq i \leq n$.

Given a space X and $S \subseteq 2^X$ we say that $h: S \to X$ is a selector provided that the cardinality of $h(S) \in S$ for all $S \in S$. If h is continuous we say h is continuous selector.

3 Results

We say a family \mathcal{F} of disjoint sets in space X is manageable provided that $\bigcup \mathcal{F}$ is closed in X and for every $F \in \mathcal{F}$ there is an open set U such that $F \subseteq U$ and $U \cap (\bigcup (\mathcal{F} \setminus \{F\})) = \emptyset$. A partition \mathcal{S} of a metric space X into compacta (considered as a subset of 2^X) is said to be admissible provided that:

(C1) S is regular,

- (C2) if $S \in S$ has a nondegenerate component then $\{S\}$ is a component of S,
- (C3) any two distinct points of S can be separated by a third point in S, and
- (C4) for every $\epsilon > 0$ the collection of all components Q of S such that some component of $\bigcup Q$ has diameter at least ϵ is manageable.

Theorem 2 If X is a separable metric space and S is an admissible partition of X into compacta, then there is for every $p \in X$ a continuous selector $h: S \to X$ such that $p \in h[S]$.

Theorem 3 If X is a dendrite, then every partition of X into compact is admissible.

The implication (c) \rightarrow (a) of Theorem 1 follows immediately from Theorem 2 and Theorem 3.

We note the following corollary of Theorem 2 which may be of interest.

Corollary 4 Let X be a separable metric space and C be a partition of X into totally disconnected compact that is homeomorphic to a connected subset of a dendrite, then there is for every $p \in X$ a continuous selector $h: C \to X$ such that $p \in h[C]$.

If X and Y are compacta and $f: X \to Y$ is an open map, then $\{f^{-1}(y): y \in f[X]\} \subseteq 2^X$ is a partition of X which is homeomorphic to f[X]. With this fact in mind, Corollary 4 can be seen as a generalization of the following result of Whyburn.

Proposition 5 ([8, Chap. 10, 2.4]) Let X be a compactum Y be a dendrite and $f: X \to Y$ be a continuous light open map. For every $p \in X$ there is a continuum $W \subseteq X$ such that $p \in W$, $f|W: W \to f[W]$ is a homeomorphism.

4 Components and Quasicomponents of regular spaces

We say that X has property P provided that for any $x \in X$ if Q is the quasicomponent of x and U is an open neighborhood of x, then there is an open set V such that $x \in V \subseteq U$ and $bd(V) \subseteq Q$.

The spaces satisfying property P is a fairly large class.

Lemma 6 Let X be a topological space. If every $x \in X$ has a neighborhood base consisting of open sets U such that bd(U) is contained the union of finitely many quasicomponents of X, then X has property P.

PROOF. Let $U \subseteq X$ and $x \in X$. Let Q be the quasicomponent of x. By assumption, there is an open neighborhood V_1 of x such that $bd(V_1)$ is contained in the union of finitely many quasicomponents of X and $V_1 \subseteq U$. Let C_1, \ldots, C_n

be the quasicomponents of X such that $C_i \cap (\operatorname{bd}(V_1) \setminus Q) \neq \emptyset$. For each C_i there is a clopen set E_i such that $C_i \subseteq E_i$ and $Q \cap E_i = \emptyset$. Let $V = V_1 \setminus \bigcup_{i=1}^n E_i$. Clearly, V is an open neighborhood of x and $V \subseteq U$. Notice that $X \setminus V = (X \setminus V_1) \cup (\bigcup_{i=1}^n E_i)$. Also, $\operatorname{cl}(V) = \operatorname{cl}(V_1 \setminus (\bigcup_{i=1}^n E_i)) = \operatorname{cl}(V_1) \setminus (\bigcup_{i=1}^n E_i)$. Thus, $\operatorname{bd}(V) = \operatorname{cl}(V) \cap (X \setminus V) \subseteq \operatorname{bd}(V_1) \setminus (\bigcup_{i=1}^n E_i) \subseteq Q$.

Lemma 7 Suppose X is Lindelof, and has property P. If $Q \subseteq X$ is a quasicomponent of X and $U \subseteq X$ is open and $Q \subseteq U$, then there is a clopen set V such that $Q \subseteq V \subseteq U$.

PROOF. Let Q be a quasicomponent of X. By property P we may find for each $x \in Q$ find an open set U_x in X such that $x \in U_x$, $\operatorname{bd}(U_x) \subseteq Q$, and $U_x \subseteq U$. Let $\mathcal{U} = \{U_x : x \in Q\} \cup \{U : U \text{ is clopen and } U \cap Q = \emptyset\}$. Since \mathcal{U} is an open cover of X, there is a countable subcover $\{U_n\}_{n \in \omega}$ of X. We define a cover $\{V_n\}_{n \in \omega}$ as follows:

$$V_n = \begin{cases} U_n \setminus \bigcup_{i=0}^n U_i & \text{if } U_n \cap Q = \emptyset; \\ U_n \setminus (\bigcup \{U_i \colon i < n \text{ and } U_i \cap Q = \emptyset\}) & \text{if } U_n \cap Q \neq \emptyset. \end{cases}$$

Notice that if $V_k \cap V_n \neq \emptyset$, then either n = k or both V_k and V_n have nonempty intersection with Q.

For n such that $U_n \cap Q \neq \emptyset$ we have $V_n \cap (X \setminus Q)$ clopen in $X \setminus Q$. With this observation it is easy to show that V_n is open for every $n \in \omega$. The observation also can be used to show that if $U_n \cap Q = \emptyset$, then V_n is clopen in X. Also, if $U_n \cap Q = \emptyset$, then $V_n \cap (\bigcup_{i \neq n} V_i) = \emptyset$.

Let $V = \bigcup \{V_n : V_n \cap Q \neq \emptyset\}$. Clearly, V is open and $Q \subseteq V \subseteq U$. We will be done if we show that V is closed. Suppose $y \in cl(V)$. Let $k \in \omega$ be such that $y \in V_k$. Since $y \in cl(V)$, there is an n such that $V_n \cap Q \neq \emptyset$ and $V_n \cap V_k \neq \emptyset$. By the statement immediately following the definition of $\{V_n\}_{n \in \omega}$, we have that $V_k \cap Q \neq \emptyset$. So, $V_k \subseteq V$ by definition of V. Thus, $y \in V$ showing that V is closed.

Lemma 8 If X is Lindelof, normal, and has property P, then the quasicomponents and components of X are the same.

PROOF. Let Q be a quasicomponent of X. By way of contradiction, assume that Q is not connected. Since Q is closed and X is normal, $Q = (U \cap Q) | (V \cap Q)$ where U and V are disjoint open sets in X. By Lemma 7, there is a clopen set W such that $Q \subseteq W \subseteq U \cup V$. Since $U \cap V = \emptyset$, $U \cap W$ is clopen. Now $U \cap Q \subseteq W \cap U$ and $V \cap Q \subseteq X \setminus (W \cap U)$ contradicting that Q is a quasicomponent.

For the proof of Theorem 2 we note the following corollary.

Corollary 9 Let X be a separable metric space and S be an admissible partition of X into compacta. The quasicomponents and components of any subset of S are the same. Also, for every component Q of S and open set U containing Qthere is a clopen set V such that $Q \subseteq V \subseteq V$. PROOF. By (C1) any subset \mathcal{T} of \mathcal{S} is a regular separable metric space. The corollary now follows by Lemma 6, Lemma 8, and Lemma 7.

5 Proof of Theorem 3

Let X be a space and S be a partition of X into compacta. The membership function $F: X \to S$ is the function defined by $x \in F(x)$. The next lemma shows that the membership function has a property close to confluence.

Lemma 10 Suppose X is a topological space and S is a partition of X into compacta with membership function F. If $Q \subseteq S$ is connected and C is a quasicomponent of $\bigcup Q$, then F(C) = Q.

PROOF. By way of contradiction, assume there is a $M \in \mathcal{Q}$ such that $M \notin F(C)$. Since $C \cap M = \emptyset$, there is for each $m \in M$ a separation $U^m | V^m$ of $\bigcup \mathcal{Q}$ such that $C \subseteq U^m$ and $m \in V^m$. Since M is compact, there are finitely many $m_1, \ldots, m_k \in M$ such that $M \subseteq \bigcup_{i=1}^k V^{m_i}$. Let $V = \bigcup_{i=1}^k V^{m_i}$ and $U = \bigcap_{i=1}^k U^{m_i}$. Notice that $\bigcup \mathcal{Q} = U | V$ and $C \subseteq U$ and $M \subseteq V$. Notice that $F(C) \subseteq \langle U, X \rangle$ and $M \notin \langle U, X \rangle$. By connectedness, $\mathcal{Q} \cap \mathrm{bd}(\langle U, X \rangle) \neq \emptyset$. Let $E \in \mathcal{Q} \cap \mathrm{bd}(\langle U, X \rangle)$. Notice that $E \cap \mathrm{bd}(U) \neq \emptyset$, contradicting that U | V is a separation of $\bigcup \mathcal{Q}$.

Lemma 11 If X is regular and S is a partition of X into compacta, then S is regular.

PROOF. Let $S \in \mathcal{S}$. Since X is regular and S is compact there is a local base for S with open sets of the form $\mathcal{U} = \langle U_1, \ldots, U_n \rangle$ where each U_i has finite boundary. Notice that any $T \in \mathrm{bd}(\mathcal{U})$ must have nonempty intersection with $\bigcup_{i=1}^n \mathrm{bd}(U_i)$. Since $\bigcup_{i=1}^n \mathrm{bd}(U_i)$ is finite and \mathcal{S} is a partition, $\mathrm{bd}(\mathcal{U})$ is finite. So, \mathcal{S} is regular.

Lemma 12 Let X be a dendrite and $S, T \subseteq X$ be disjoint compacta. Either there is a $s \in S$ such that T is contained in a component of $X \setminus \{s\}$ or there is a $t \in T$ such that S is contained in a component of $X \setminus \{t\}$.

PROOF. Assume that there is no $s \in S$ or $t \in T$ with the desired property. Let $t_0 \in T$ and $s_0 \in S$. Let A_0 be the arc $[t_0, s_0]$. By our assumption about S, there is a component C_0 of $X \setminus \{s_0\}$ such that $[t_0, s_0] \cap C_0 = \emptyset$ and $C_0 \cap T \neq \emptyset$. Let A_1 be the arc $[s_0, t_1]$ where $t_1 \in C_0$. Since $(s_0, t_1] \subseteq C_0$, $A_0 \cup A_1 = [t_0, t_1]$. By assumption, S is not contained in any component of $X \setminus \{t_1\}$. Let s_1 be an element of S that is in a component C_1 of $X \setminus \{t_1\}$ that does not containe $[t_0, t_1)$. Let A_2 be the arc $[t_1, s_1]$. Notice that $A_0 \cup A_1 \cup A_2 = [t_0, s_1]$ since $C_1 \cap (A_0 \cup A_1) = \emptyset$ and $(t_1, s_1] \subseteq C_1$. Moreover, $A_0 \cap A_2 = \emptyset$.

By our assumptions on S and T we may continue this process indefinitely to get an infinite sequence of mutually disjoint arcs $\{A_{2n}\}_{n\in\omega}$ of the form $[t_n, s_n]$.

Since X is a dendrite, the diameters of these arcs must tend to zero. So, by compactness of S and T, we have $S \cap T \neq \emptyset$ a contradiction.

Lemma 13 Let X be a dendrite and S be a partition of X into disjoint compacta. If $S, T \in S$ are distinct points, then there is a $R \in S$ that separates S from T.

PROOF. By Lemma 12, we may assume that there is a $t \in T$ such that S is contained in a component D of $X \setminus \{t\}$. Since t is not a cutpoint of $D \cap \{t\}$, t is an endpoint of $D \cup \{t\}$ by [5, 10.7]. So, there is a point $p \in D$ such that p separates t from S in $D \cup \{t\}$. By unicoherence, p separates t from S in X. Let R = F(p). By way of contradiction assume that S and T are in the same component C of $S \setminus \{R\}$. Let E be the component of $\bigcup C$ which contains t. By Lemma 10, $S \in F[E]$. On the other hand, E is contained in the component G of $X \setminus \{p\}$ which contains t. Since $G \cap S = \emptyset$, $S \notin F[E]$, a contradiction. Since S and T are in different components of $S \setminus \{R\}$, separates S and T.

Lemma 14 Let X be a metric space and S be a partition of X into compacta with membership function F and $C \subseteq S$ be connected. If $S \in C$ and there is an $s \in S$ and an open $U \subseteq X$ such that $s \in U$ and $bd(U) \subseteq S$, then F[U] = S.

PROOF. Clearly, $S \in U, X >$. Suppose $R \notin U, X >$ and $R \in C$. Since C is connected, there is a $T \in bd(\langle U, X \rangle) \cap C$. So, $T \cap bd(U) \neq \emptyset$. Since $bd(U) \subseteq S$ and S is a partition, T = S. So, $S \in bd(\langle U, X \rangle)$ and $S \in U, X >$ a contradiction.

PROOF OF THEOREM 3 Let X be a dendrite, S be a partition of X into compacta, and F be the membership function for the partition.

By Lemma 11 S is regular. So, we have (C1).

Suppose $S \in \mathcal{S}$ contains a nondegenerate component M. Let \mathcal{C} be the component of S in \mathcal{S} . Since X is a dendrite there is point $p \in M$ such that p is a cutpoint of both X and M, and p has a base of open neighborhoods U such that bd(U) has exactly two points [5, 10.42]. Let $x, w \in M$ be separated by p and U an open neighborhood of p such that bd(U) has exactly two points and $w, x \notin U$. Since X is unicoherent and p separates x and w, we have $[x,p] \cap [p,w] = \{p\}$. It is now easy to see that $bd(U) \subseteq M \subseteq S$. By Lemma 14, $F[U] = \mathcal{C}$. Since we may choose U to be as small we like and the elements of \mathcal{C} are compact, we see that $p \in \bigcap \mathcal{C}$. Thus, $\mathcal{C} = \{S\}$. So, we have (C2).

By Lemma 13, any two points of S are separated by a third point. So, we have (C3)

Let $\epsilon > 0$ and θ be the collection of components C of S such that some component D_C of $\bigcup C$ has diameter at least ϵ . Since X is a dendrite and S is a partition, the collection $\{D_C : C \in \theta\}$ is finite [3]. Since S is a partition and θ is a mutually disjoint collection, θ is finite. Since components are closed, θ is manageable. So, we have (C4). Therefore, \mathcal{S} is admissible.

6 Proof of Theorem 2

Lemma 15 If a metric space Y is regular and connected, then Y is locally connected.

PROOF. If Y is just a single point, then Y is obviously locally connected. So, we assume that Y contains at least two points. Let $y \in Y$ and $x \in Y \setminus \{y\}$. Let V be open neighborhood of y. Let $U \subseteq V \setminus \{x\}$ be an open neighborhood of y with finite boundary such that $cl(U) \subseteq V$. Let R be a quasicomponent of cl(U).

Suppose that $R \cap \operatorname{bd}(U) = \emptyset$. Since $\operatorname{bd}(U)$ is finite, there would be a separation Z|W of $\operatorname{cl}(U)$ such that $\operatorname{bd}(U) \subseteq Z$ and $R \subseteq W$. Notice that W is clopen and nonempty in Y and $x \notin W$, contradicting that Y is connected. Thus, if R is a quasicomponent of $\operatorname{cl}(U)$, then $R \cap \operatorname{bd}(U) \neq \emptyset$.

Since bd(U) is finite, there are only finitely many quasicomponents R of cl(U). Thus, each quasicomponent of cl(U) is a component of cl(U). Let T be the component of y in cl(U). Since $y \in U$ and T is open in cl(U), T is a connected neighborhood of y contained in V.

A compact space W is called a perfect compactification of a space X provided that X is dense in W and for any closed subset C of X if C separates two subsets A and B of X, then $cl_W(C)$ separates A and B in W. A space X is said to be rim compact provided that every point of X has a base of open sets with compact boundaries. In particular, regular spaces are rim compact.

Proposition 16 ([6, Thm. 4.2, Cor 4.5]) Let X be a separable metric space. If X is connected, locally connected, and the components and quasicomponents of each subspace of X are the same and X is rim compact, then there is a hereditarily locally connected continuum W which is a perfect compactification of X and $W \setminus X$ contains no nondegenerate continuum.

Lemma 17 Let S be an admissible partition of a separable metric space X into disjoint compacta. If $C \subseteq S$ is connected, then C is homeomorphic to a connected subset of a dendrite.

PROOF. By (C1) and Lemma 15, C is locally connected and rim compact. By (C1) and Corollary 9, the components and quasicomponents of each subspace of X are the same. By Proposition 16, there is a hereditarily locally connected continuum W which is a perfect compactification of C and $W \setminus C$ contains no nondegenerate continuum. Suppose W contains a simple closed curve M. Since $W \setminus C$ contains no nondegenerate continuum, there exist distinct $S, T \in M \cap C$. By Lemma 13, there is a point $R \in C$ such that R separates S and T in C. Since W is a perfect compactification of C, R also separates S and T in W, contradicting that S and T lie on M. Since W contains no simple closed curve, we conclude that W is a dendrite.

Lemma 18 Let X be a metric space and S be a partition of X into compacta and F be the membership function. If $C \subseteq S$ is a nondegenerate continuum, then $F | \bigcup C : \bigcup C \to C$ is continuous and open.

PROOF. Let $x \in \bigcup \mathcal{C}$ and $\{x_n\}_{n \in \omega}$ be a sequence on $\bigcup \mathcal{C}$ such that $\lim x_n = x$. Since \mathcal{C} is compact, there is a $P \in \mathcal{C}$ such that some subsequence of $\{F(x_n)\}_{n \in \omega}$ converges to P. Since $x_n \in F(x_n)$ for every $n \in \omega$, it follows that $x \in P$. Since \mathcal{S} is a partition, P = F(x). So, some subsequence of $\{F(x_n)\}_{n \in \omega}$ converges to F(x). So, $F | \bigcup \mathcal{C}$ is continuous.

Let $x \in X$ and U be an open neighborhood of x. It is immediate from the definition of F that $F[U] = \langle U, X \rangle \cap S$ which is open. So, F is open. Since $F|\bigcup \mathcal{C} = F|F^{-1}(\mathcal{C}), F|\bigcup \mathcal{C} : \bigcup \mathcal{C} \to \mathcal{C}$ is open.

Lemma 19 Let X be a metric space and S be a partition of X into disjoint compacts satisfying (C2) with membership function F. Suppose $C \subseteq S$ is homeomorphic to a nondegenerate connected subset of a dendrite. If $\{S_n\}_{n\in\omega}$ is sequence on C and $\lim S_n = S \in C$, then

 $\lim_{n \in \omega} \sup \left\{ \operatorname{diam}(D) \colon D \text{ is a component of } \bigcup [S_n, S] \right\} = 0.$

PROOF. Since C is contained in a dendrite, $\lim[S_n, S] = \{S\}$. Since F is open, $\lim F^{-1}([S_n, S]) = F^{-1}(\{S\}) = S$. By (C2), S is totally disconnected. Since S is totally disconnected and $F^{-1}([S_n, S])$ is compact for every n, it follows that $\lim_{n \in \omega} \sup \{\operatorname{diam}(D) : D \text{ is a component of } \bigcup [S_n, S]\} = 0.$

Lemma 20 If X is a separable metric space and C is a connected subset of an admissible partition of X into disjoint compacta, then for every $a \in \bigcup C$ there is a continuous selector h for C such that $a \in h[C]$.

PROOF. If \mathcal{C} is a single point then the lemma is obviously true. So, we assume throughout that \mathcal{C} is nondegenerate. In particular, condition (C2) in the definition of admissability implies that the restricted membership function $F: \bigcup \mathcal{C} \to \mathcal{C}$ has totally disconnected point-inverses.

Let θ be the collection of all nonempty $M \subseteq \bigcup \mathcal{C}$ such that $a \in M$, F|M is one-to-one and for any two points $p, q \in M$ there is an arc $A_{p,q} \subseteq M$ from p to q such that $F|A_{p,q}$ is continuous. It is easily checked that θ satisfies the hypothesis of the Hausdorff Maximal Principle. Let M be a maximal element of θ .

We claim that F[M] is closed in \mathcal{C} . By way of contradiction, assume that $S \in \operatorname{cl}(F[M]) \setminus F[M]$. Since F[M] is connected, $F[M] \cup \{S\}$ is connected. By Lemma 17, \mathcal{C} can be embedded into a dendrite. So, $F[M] \cup \{S\}$ is arcwise connected. Let $s_0 \in M$. The arc $[F(s_0), S]$ is contained in $F[M] \cup \{S\}$. Let $\{S_n\}_{n \in \omega}$ be a sequence of points on $[F(s_0), S]$ such that $S_0 = F(s_0)$, $\lim S_n = S$ and $[F(s_0), S_n] \subseteq [F(s_0), S_{n+1})$. Let $s_n \in S_n \cap M$ for every n. Taking a subsequence if necessary we may assume that there is an $s \in S$ such that $\lim s_n = s$. Let $n \in \omega$. Since $M \in \theta$, $F|A_{s_n,s_{n+1}}$ is a homeomorphism to the

arc $[S_n, S_{n+1}]$. So, $A_{s_n, s_{n+1}} \subseteq F^{-1}([S_n, S_{n+1}]) \subseteq F^{-1}([S_n, S])$. Since F|M is one-to-one, $\bigcup_{n \in \omega} A_{s_n, s_{n+1}}$ is homeomorphic to the halfline $[S_0, S)$. Since $A_{s_n, s_{n+1}} \subseteq F^{-1}([S_n, S])$, Lemma 19 implies that $\liminf(A_{s_n, s_{n+1}}) = 0$. Since $\lim s_n = s, A_{s_0, s} = \{s\} \cup (\bigcup_{n \in \omega} A_{s_n, s_{n+1}})$ is an arc and $F|A_{s_0, s} : A_{s_0, s} \to [S_0, S]$ is continuous. So, $s \cup M \in \theta$, a contradiction to maximality. Thus, F[M] is closed.

We claim $F[M] = \mathcal{C}$. By way of contradiction, assume there is a $S \in \mathcal{C} \setminus f[M]$. Since \mathcal{C} is arcwise connected and F[M] is closed, there is a nondegenerate arc $[T, S] \subseteq \mathcal{C}$ such that $[T, S] \cap F[M] = \{T\}$. By Lemma 18 and (C2), $F | \bigcup [T, S]$ is continuous, open, and light. As a union of a compact collection of sets, $\bigcup [T, S]$ is compact. Let $t \in M \cap T$. By Proposition 5, there is an arc $A \subseteq \bigcup [T, S]$ such that $t \in A$ and F|A is a homeomorphism. It is easy to check that $M \cup A \in \theta$, a contradiction to maximality.

Since $(F|M)^{-1}: \mathcal{C} \to M$ is a selector and $a \in M$, it remains show that $(F|M)^{-1}$ is continuous.

Let [S,T] be an arc in \mathcal{C} . Let $s \in S \cap M$ and $t \in T \cap M$ and $A \subseteq M$ be an arc from s to t such that f|A is continuous. Since F|A is continuous and one-to-one and \mathcal{C} contains no simple closed curve, F[A] = [S,T]. Thus, $(F|M)^{-1}|[S,T]$ is continuous. So, $(F|M)^{-1}$ is continuous on arcs.

Let $S \in \mathcal{C}$ and $\{S_n\}_{n \in \omega}$ be a sequence of distinct points on \mathcal{C} such that $\lim S_n = S$. Since \mathcal{C} is contained in a dendrite, $\lim [S_n, S] = \{S\}$. By Lemma 19, $\lim \operatorname{diam}(A_{s_n,s}) = 0$. Thus, $\lim (F|M)^{-1}(S_n) = \lim s_n = s = (F|M)^{-1}(S)$ showing that $(F|M)^{-1}$ is continuous.

For the remainder of this paper we will assume that X is a fixed separable metric space with a fixed admissible partition S into compact with membership function F. We will also fix $p \in X$. Moreover, we will assume (remetrizing if necessary) that the metric d on X has the property that diam(X) < 1. In particular, diam(S) < 1.

For each $n \in \omega$ let J_n denote the collection of all components \mathcal{Q} of \mathcal{S} such that some component of $\bigcup \mathcal{Q}$ has diameter at least $1/2^n$. Notice that $J_0 = \emptyset$.

Lemma 21 Every nondegenerate component of S is contained in $\bigcup_{n \in \omega} J_n$. The collection $\bigcup_{n \in \omega} J_n$ is countable.

PROOF. Suppose \mathcal{Q} is a nondegenerate component of \mathcal{S} . By Lemma 10 and Corollary 9, there is an $n \in \omega$ such that $\mathcal{Q} \in J_n$. Since \mathcal{S} is separable and J_n is manageable, J_k is countable for all $k \in \omega$. Obviously $\bigcup_{k \in \omega} J_k$ is countable.

Lemma 22 If a component C of S has diameter greater than ϵ , then some component of $\bigcup C$ has diameter at greater than ϵ .

PROOF. Suppose diam $(C) \leq \epsilon$ for every component C of $\bigcup C$. Let $S, T \in C$. Let $s \in S$. Let C be the component of s in $\bigcup C$. By Lemma 10 and Corollary 9, there is a $t \in T$ such that $t \in C$. So, $\underline{d}(s,T) \leq \epsilon$. A similar argument shows that $\underline{d}(t,S) \leq \epsilon$ for every $t \in T$. So, $H(S,T) \leq \epsilon$. Thus, diam $(C) \leq \epsilon$.

We denote the collection of all finite strings of non-negative integers (including the empty string \emptyset) by $\omega^{<\omega}$. By ω^n ($\omega^{\leq n}$) we denote the set of all elements of $\omega^{<\omega}$ of length exactly (less or equal) n. If $\sigma \in \omega^{<\omega}$ we let $|\sigma|$ denote the length (equivalently, cardinality) of σ . Given $\sigma, \rho \in \omega^{<\omega}$, we say that σ is the predecessor of ρ (or that ρ is the successor of σ) provided that $\sigma \subseteq \rho$ and $|\rho| = |\sigma| + 1$. Given $\sigma \in \omega^n$ and $i \in \omega$ we define $(\sigma * i) \in \omega^{n+1}$ so that $(\sigma * i)|_n = \sigma$ and $(\sigma * i)(n) = i$.

We say a nonempty subset T of $\omega^{<\omega}$ is a tree provided that $\emptyset \in T$, for every $\sigma \in T$ there is at least one successor of σ in T, and every element of $T \setminus \{\emptyset\}$ has a predecessor. For $n \in \omega$ we denote $T \cap \omega^n$ by T_n . Given a tree T we let $T^{\dagger} \subseteq \omega^{\omega}$ denote the maximal \subseteq -chains in T.

Lemma 23 There is a tree $T \subseteq \omega^{<\omega}$ and collections $\{\mathcal{V}_{\sigma} : \sigma \in T\}$ of clopen sets and $\{\mathcal{Q}_{\sigma} : \sigma \in T\}$ of components of S such that for every $n \in \mathbb{N}$ and $\tau, \sigma \in T$ we have:

- $(A0) \ p \in \bigcup \mathcal{Q}_{\emptyset},$
- (A1) $\tau \subseteq \sigma$ implies $\mathcal{V}_{\sigma} \subseteq \mathcal{V}_{\tau}$,
- $(A2) \mathcal{Q}_{\sigma} \subseteq \mathcal{V}_{\sigma},$
- (A3) $\mathcal{V}_{\sigma} \cap \mathcal{V}_{\tau} \neq \emptyset$ implies $\tau = \sigma$,
- $(A4) \bigcup_{\xi \in T_n} \mathcal{V}_{\xi} = \mathcal{S},$
- (A5) $\operatorname{H}(\mathcal{V}_{\sigma}, Q_{\sigma}) < 1/2^{|\sigma|}$, and
- (A6) $J_n \subseteq \{Q_{\sigma} : \sigma \in T_n\}, and$
- $(A7) \mathcal{Q}_{\sigma*0} = \mathcal{Q}_{\sigma}.$

PROOF. Let \mathcal{Q}_{\emptyset} be the component of F(p) in \mathcal{S} . Let $\mathcal{V}_{\emptyset} = \mathcal{S}$. Keeping in mind that diam $(\mathcal{S}) < 1$ we see that $T_0 = \{\emptyset\}, \mathcal{Q}_{\emptyset}$, and \mathcal{V}_{\emptyset} satisfy (A0)-(A7)

Assume that $n \ge 1$ and we have defined $T_m \in \omega^m$ for every $0 \le m \le n-1$ so that $\bigcup_{m=0}^{n-1} T_m$, $\{V_{\sigma} : \sigma \in \bigcup_{m=0}^{n-1} T_m\}$ and $\{S_{\sigma} : \sigma \in \bigcup_{m=0}^{n-1} T_m\}$ satisfy conditions (A0)-(A7). We show how to define $T_n \subseteq \omega^{\le n}$ so that (A0)-(A7) will be satisfied by $\bigcup_{m=0}^n T_m$.

Fix $\tau \in T_{n-1}$. Since S is admissible, J_{n+3} is mangable. Notice that $J_{n+3} \cup \{Q_{\tau}\}$ is also mangable. Since S is separable and metric, $J_n \cup \{Q_{\tau}\}$ is countable. Let Let $A \subseteq \omega$ and $\{\mathcal{P}_j : j \in A\}$ be an enumeration of the elements of J_{n+3} which are contained in \mathcal{V}_{τ} together with Q_{τ} . In the enumeration we will assume that $\mathcal{P}_0 = Q_{\tau}$. Since $\{\mathcal{P}_j : j \in A\}$ is countable and manageable, we may use Corollary 9 and induction to construct a family $\{\mathcal{U}_j\}_{j\in A}$ of mutually disjoint clopen subsets of \mathcal{V}_{τ} such that $\mathcal{P}_j \subseteq \mathcal{U}_j$ and $\mathrm{H}(\mathcal{U}_j, Q_j) < 1/2^{2+j}$ for all j. It is easily checked that $\bigcup_{j\in A} \mathcal{U}_j$ is clopen in S.

By Lemma 21 there is a $B \subseteq \omega$ such that the nondegenerate components of $\mathcal{V}_{\tau} \setminus (\bigcup_{j \in A} \mathcal{U}_j)$ may be enumerated as $\{\mathcal{C}_k : k \in B\}$. Notice that $\mathcal{C}_k \notin J_{n+3}$ for all $k \in B$.

Fix $k \in B$. By Corollary 9, there is a clopen neighborhood \mathcal{T}^k of \mathcal{C}_k such that \mathcal{T}^k is contained in $\mathcal{S} \setminus \bigcup_{i \in A} \mathcal{U}_i$ and $\mathrm{H}(\mathcal{T}^k, \mathcal{C}_k) < 1/2^{n+3+k}$.

For each $k \in B$ let $\mathcal{R}^k = \mathcal{T}^k \setminus (\bigcup_{i < k} \mathcal{T}^k)$. Clearly, $\{\mathcal{R}^k : k \in \omega\}$ is a collection of disjoint clopen sets covering $\bigcup_{k \in \omega} \mathcal{C}_k$. Let $B_1 \subseteq B$ denote the set of all $k \in B$ such that $\mathcal{R}^k \neq \emptyset$. Notice that $\mathcal{C}_k \subseteq \mathcal{R}^k \subseteq \mathcal{T}^k$ every $k \in B_1$. In particular, we have $\mathrm{H}(\mathcal{R}^k, \mathcal{C}_k) < 1/2^{n+3+k}$ for all $k \in B_1$.

Suppose now that $S \notin (\bigcup_{k \in B_1} \mathcal{R}^k) \cup (\bigcup_{j \in A} \mathcal{U}_j)$. Since $\{S\}$ is a component of \mathcal{S} , there is, by Corollary 9, a base of clopen neighborhoods of S. Pick a clopen neighborhood \mathcal{K}_S of S such that diam $(\mathcal{K}_S) < 1/2^{n+3}$ and $\mathcal{K}_S \cap (\bigcup_{j \in A} \mathcal{U}_j) = \emptyset$. Let $\mathcal{J}_S = \mathcal{K}_S \cup \{\mathcal{R}^k : \mathcal{R}^k \cap \mathcal{K}_S \neq \emptyset\}$. Notice that $\mathcal{J}_S \subseteq \mathcal{S} \setminus \bigcup_{j \in A} \mathcal{U}_j$.

We claim that diam $(\mathcal{J}_S) < 1/2^n$. Let $P \in \mathcal{J}_S$. If $P \in \mathcal{K}_S$, then $\mathrm{H}(S, P) < 1/2^{n+3}$. Suppose $P \notin \mathcal{K}_S$. There is a $k \in B_1$ such that $P \in \mathcal{R}^k$. Since $\mathcal{R}^k \cap (\bigcup_{j \in A} \mathcal{U}_j) = \emptyset$, $\mathcal{C}_k \notin \mathcal{J}_{n+3}$. By Lemma 22, diam $(\mathcal{C}_k) \leq 1/2^{n+3}$. Thus, diam $(\mathcal{R}^k) < 1/2^{n+2+k} + 1/2^{n+3} \leq 3/2^{n+3}$. So, $\mathrm{H}(P,S) < 1/2^{n+3} + 3/2^{n+3} = 1/2^{n+1}$. So, diam $(\mathcal{J}_S) < 1/2^n$.

We claim that \mathcal{J}_S is clopen in \mathcal{S} . Clearly, \mathcal{J}_S is open. By way of contradiction, assume that \mathcal{J}_S is not closed. Let $P \in \operatorname{cl}(\mathcal{J}_S) \setminus \mathcal{J}_S$. We may assume that there exists an increasing sequence $\{k_i\}_{i\in\omega}$ on B_1 and points $P_{k_i} \in \mathcal{R}^{k_i}$ such that $\lim_{i\in\omega} P_{k_i} = P$. Since $P \notin \mathcal{K}_S$, there is an $\epsilon > 0$ such that $\underline{\mathrm{H}}(\{P\}, \mathcal{K}_S) > \epsilon$. So, $\operatorname{diam}(\mathcal{R}^{k_i}) > \epsilon$ for almost all *i*. It follows that $\operatorname{diam}(\mathcal{C}_{k_i}) > \epsilon$ for almost all *i*. By Lemma 22, \mathcal{C}_{k_i} has a component of diameter greater than ϵ for almost all *i*. Thus, $\mathcal{C}_{k_i} \subseteq J_l$ for some $l \in \omega$. Since J_l is manageable and $\lim_{i\in\omega} \underline{\mathrm{H}}(\mathcal{R}^{k_i}, \mathcal{C}_{k_i}) = 0$, $P \in \mathcal{C}_{k_i} \subseteq \mathcal{R}^{k_i}$ for some *i*. So, $P \in \mathcal{J}_S$, contradicting our assumption.

Let $\theta_1 = \{\mathcal{J}_S \colon S \notin (\bigcup_{k \in B_1} \mathcal{R}^k) \cup (\bigcup_{j \in A} \mathcal{U}_j)\}$. We may do a standard induction to find a $D \subseteq \omega$ and a refinement $\{\mathcal{L}_l \colon l \in D\}$ of θ_1 made up of mutually disjoint nonempty clopen sets such that $\bigcup \{\mathcal{L}_l \colon l \in D\} = \bigcup \theta_1$.

Define

$$\theta_2 = \{\mathcal{L}_l \colon l \in D\} \cup \left\{ \mathcal{R}^k \colon \mathcal{R}^k \cap \left(\bigcup_{l \in D} \mathcal{J}_l\right) = \emptyset \text{ and } k \in B_1 \right\} \cup \{\mathcal{U}_j \colon j \in A\}.$$

Notice θ_2 is a cover of S by mutually nonempty disjoint clopen sets. For every $j \in A$ let $\mathcal{V}_{\tau*3j} = \mathcal{U}_j$ and $\mathcal{Q}_{3j} = \mathcal{P}_j$. If $\mathcal{R}^k \in \theta_2$, then define $\mathcal{V}_{3k+1} = \mathcal{R}^k$ and $\mathcal{Q}_{\tau*(3k+1)} = \mathcal{C}_k$. If $l \in D$, then define $\mathcal{V}_{\tau*(3l+2)} = \mathcal{L}_l$ and $\mathcal{Q}_{\tau*(3l+2)}$ to be a component of \mathcal{L}_l . Let $T_{\tau} = \{\tau * (3k+1) : \mathcal{R}^k \in \theta_2\} \cup \{\tau * (3l+2) : l \in D\} \cup \{\tau * 3j : j \in A\}.$

For each $\tau \in T_{n-1}$ we perform a similar construction. Let $T_n = \bigcup_{\tau \in T_{n-1}} T_{\tau}$. Now $\bigcup_{m=0}^n T_m$, $\{\mathcal{V}_{\sigma} : \sigma \in \bigcup_{m=0}^n T_m\}$, and $\{\mathcal{Q}_{\sigma} : \sigma \in \bigcup_{m=0}^n T_m\}$ satisfy (A0)-(A7).

Finally, $T = \bigcup_{n \in \omega} T_n$, $\{\mathcal{V}_{\sigma} : \sigma \in T\}$, and $\{\mathcal{Q}_{\sigma} : \sigma \in T\}$ are easily checked to satisfy (A0)-(A7).

PROOF OF THEOREM 2 Let $T \subseteq \omega^{<\omega}$, $\{\mathcal{V}_{\sigma} : \sigma \in T\}$, $\{J_n : n \in \omega\}$, and $\{\mathcal{Q}_{\sigma} : \sigma \in T\}$ be as in Lemma 23.

Claim 1 For every component \mathcal{Q} of \mathcal{S} there is a $g \in T^{\dagger}$ such that $\mathcal{Q} = \bigcap_{n \in \omega} \mathcal{V}_{g|n}$ and $\lim_{n \in \omega} \mathcal{V}_{g|n} = \mathcal{Q}$.

PROOF. To define g we let $g = \bigcup \{ \sigma \in T : Q \subseteq \mathcal{V}_{\sigma} \}$. It follows from (A3) and (A4) that $g \in T^{\dagger}$.

Clearly, $\mathcal{Q} \subseteq \bigcap_{n \in \omega} \mathcal{V}_{g|n}$. Consider the sequence $\{\mathcal{Q}_{g|n}\}_{n \in \omega}$.

Suppose $\{\mathcal{Q}_{g|n}\}_{n\in\omega}$ is eventually constant. Let $S \in \bigcap_{n\in\omega} \mathcal{V}_{g|n}$. By (A5), $\mathrm{H}(\mathcal{V}_{g|n}, \mathcal{Q}_{g|n}) < 1/2^n$. It follows that there is a sequence $\{S_n\}_{n\in\omega}$ such that $S_n \in \mathcal{Q}_{g|n}$ and $\lim S_n = S$. There is an $N \in \omega$ such that $\mathcal{Q}_{g|k} = \mathcal{Q}_{g|N}$ for all $k \geq N$. By (A5) and (A7), $\mathcal{Q}_N = \lim \mathcal{Q}_{g|k} = \mathcal{Q}$. Since \mathcal{Q} is closed and $S_k \in \mathcal{Q}$ for almost all k, we have $S \in \mathcal{Q}$. So, $\mathcal{Q} = \bigcap_{n\in\omega} \mathcal{V}_{g|n}$. By (A3), for all $k \geq N$ we have $\mathrm{H}(\mathcal{V}_{g|k}, \mathcal{Q}) = \mathrm{H}(\mathcal{V}_{g|k}, \mathcal{Q}_{g|k}) < 1/2^k$. So, $\lim_{n\in\omega} \mathcal{V}_{g|n} = \mathcal{Q}$.

If $\{\mathcal{Q}_{g|n}\}_{n\in\omega}$ is not eventually constant, then conditions (A6) and (A7) together with Lemma 22 imply that that $\lim \operatorname{diam}(\mathcal{V}_{g|n}) = 0$. So, \mathcal{Q} is a singleton and $\bigcap_{n\in\omega}\mathcal{V}_{g|n} = \mathcal{Q}$ and $\lim_{n\in\omega}\mathcal{V}_{g|n} = \mathcal{Q}$.

Claim 2 There are functions $\{h_{\sigma} : \sigma \in T\}$ and points $\{S_{\sigma} : \sigma \in T\}$ so that for every $\sigma, \tau \in T$ we have:

- **(B1)** $h_{\sigma} \colon \mathcal{Q}_{\sigma} \to X$ is a continuous selector,
- (B2) $S_{\sigma} \in \mathcal{Q}_{\sigma}$,
- **(B3)** $S_{\sigma*0} = S_{\sigma}$ and $h_{\sigma*0} = h_{\sigma}$, and
- (B4) if $|\sigma| > 0$ and τ is the predecessor of σ , then there exists an $S \in \mathcal{Q}_{\sigma}$ such that $H(S, S_{\tau}) < 1/2^{|\tau|}$ and $d(h_{\tau}(S_{\tau}), h_{\sigma}(S)) < 1/2^{|\tau|}$.

Moreover, we may assume that $p \in \bigcup_{\sigma \in T} h_{\sigma}[\mathcal{Q}_{\sigma}]$.

PROOF. By Lemma 20 and (A0) there is a continuous selector $h_{\emptyset} \colon \mathcal{Q}_{\emptyset} \to X$ such that $p \in h_{\emptyset}[\mathcal{Q}_{\emptyset}]$. Let $S_{\emptyset} \in Q_{\emptyset}$ be arbitrary. Clearly these choices satisfy (B1)-(B4).

Assume we have defined h_{σ} for all $\sigma \in \bigcup_{k=0}^{n} T_{k}$ so that (B1)-(B4) are satisfied. Let $\rho \in T_{n+1}$ and $\sigma \in T_{n}$ be such that $\sigma \subseteq \rho$. If $\rho = \sigma * 0$, then, by (A7), we may let $h_{\rho} = h_{\sigma}$ and $S_{\rho} = S_{\sigma}$. Suppose now that $\rho \neq \sigma * 0$. Since $\mathcal{Q}_{\rho} \subseteq \mathcal{V}_{\rho} \subseteq \mathcal{V}_{\sigma}$ and $\mathrm{H}(\mathcal{V}_{\sigma}, \mathcal{Q}_{\sigma}) < 1/2^{|\sigma|}$, there is a $S_{\rho} \in \mathcal{Q}_{\rho}$ such that $\underline{\mathrm{H}}(\mathcal{Q}_{\sigma}, S_{\rho}) < 1/2^{|\sigma|}$. Let $S \in \mathcal{Q}_{\sigma}$ be such that $\mathrm{H}(S, S_{\rho}) < 1/2^{|\sigma|}$. By the definition of the Hausdorff metric, there is an $x \in S_{\rho}$ such that $d(x, h_{\sigma}(S)) < 1/2^{|\sigma|}$. By Lemma 20, there is a continuous selector $h_{\rho} \colon \mathcal{Q}_{\rho} \to X$ such that $h_{\rho}(S_{\rho}) = x$. Thus, $S \in \mathcal{Q}_{\sigma}$ and $d(h_{\rho}(S_{\rho}), h_{\sigma}(S)) < 1/2^{|\sigma|}$ and $\mathrm{H}(S, S_{\rho}) < 1/2^{|\sigma|}$. So, we have (B3) and (B4). Clearly, (B1) and (B2) are satisfied by h_{ρ} and \mathcal{Q}_{ρ} .

By induction, we have that $\{h_{\sigma} : \sigma \in T\}$ and $\{S_{\sigma} : \sigma \in T\}$ satisfy (B1)-(B4). Obviously, $p \in \bigcup_{\sigma \in T} h_{\sigma}[\mathcal{Q}_{\sigma}]$.

Let h^* be the partial function defined by $h^* = \bigcup_{\sigma \in T} h_{\sigma}$. Notice that h^* is well defined by (B3), (A2), and (A3).

Claim 3 Let $\sigma \in T_n$. If $R \in \mathcal{V}_{\sigma}$ and R is in the domain of h^* , then there is a $P \in \mathcal{Q}_{\sigma}$ such that $d(h^*(P), h^*(R)) < \sum_{l=n}^{\infty} 1/2^{l-2}$ and $H(P, R) < \sum_{l=n}^{\infty} 1/2^{l-2}$.

PROOF. Let $\tau \in T_n$ be such that $R \in Q_{\tau}$. By (A7) and (A2), we may assume that $\sigma \subseteq \tau$.

Suppose $0 = |\tau| - |\sigma|$. Let P = R and observe that

$$\max\{\mathbf{d}(h^*(P), h^*(R)), \mathbf{H}(P, R)\} = 0 < \sum_{l=n}^{n+0} 1/2^{l-2}.$$

Assume now that $m \ge 0$ and that we have shown that for every R, if $R \in Q_{\tau}$ and $m = |\tau| - |\sigma|$, then there is a $P \in Q_{\sigma}$ such that

$$\max\{\mathrm{d}(h^*(P), h^*(R)), \mathrm{H}(P, R)\} < \sum_{l=n}^{n+m} 1/2^{l-2}.$$

We now extend the statement to m + 1. Let $m + 1 = |\tau| - |\sigma|$ and $\sigma \subseteq \tau$. Let ρ be the predecessor of τ . We consider two exhaustive cases.

Suppose $\tau = \rho * 0$. By (A7), $R \in \mathcal{Q}_{\rho}$. So, by inductive hypothesis there is a $P \in \mathcal{Q}_{\sigma}$ such that

$$\max\{\mathbf{d}(h^*(P),h^*(R)),\mathbf{H}(P,R)\} < \sum_{l=n}^{n+m} 1/2^{l-2} < \sum_{l=n}^{n+m+1} 1/2^{l-2}.$$

Suppose $\tau \neq \rho * 0$. By (A7) and (A6), $\mathcal{Q}_{\tau} \notin J_{n+m}$. By (B4), there is an $S \in \mathcal{Q}_{\rho}$ such that $d(h^*(S_{\tau}), h^*(S)) < 1/2^{n+m}$ and $H(S_{\tau}, S) < 1/2^{n+m}$. Since $\mathcal{Q}_{\tau} \notin J_{n+m}$, Lemma 22 implies that $diam(\mathcal{Q}_{\tau}) \leq 1/2^{n+m}$. So,

$$H(R,S) < 1/2^{n+m} + 1/2^{n+m} = 1/2^{n+m-1}.$$

Since $\mathcal{Q}_{\tau} \notin J_{n+m}$, diam $(h^*[\mathcal{Q}_{\tau}]) < 1/2^{m+n}$. So,

$$d(h^*(R), h^*(S)) < 1/2^{n+m} + 1/2^{n+m} = 1/2^{n+m-1}.$$

By inductive hypothesis, there is a $P \in \mathcal{Q}_{\sigma}$ such that

$$\max\{\mathrm{H}(P,S), \mathrm{d}(h^*(P), h^*(S))\} < \sum_{l=n}^{n+m} 1/2^{l-2}.$$

Thus,

$$\max\{\mathbf{H}(R,P), \mathbf{d}(h^*(R),h^*(P))\} < \sum_{l=n}^{n+m} 1/2^{l-2} + 1/2^{n+m-1} = \sum_{l=n}^{n+m+1} 1/2^{l-2}.$$

By induction, for every $R \in \mathcal{V}_{\sigma}$ such that R is in the domain of h^* there is a $P \in \mathcal{Q}_{\sigma}$ such that $\max\{\mathrm{H}(R, P), \mathrm{d}(h^*(R), h^*(P))\} < \sum_{l=n}^{\infty} 1/2^{l-2}$.

Claim 4 For every $S \in S$ and $\epsilon > 0$ there is an open neighborhood \mathcal{U} of S such that diam $(h^*[\mathcal{U}]) < \epsilon$.

PROOF. We consider two exhaustive cases.

Case 1 S is in the domain of h^* .

Let \mathcal{Q} be the component of S in \mathcal{S} . Notice that \mathcal{Q} is contained in the domain of h^* and $h^*|\mathcal{Q}$ is continuous. Let $\delta > 0$ be such that $d(h^*(S), h^*(P)) < \epsilon/2$ for all P such that $H(P, S) < \delta$ and $P \in \mathcal{Q}$. There is a $\sigma \in T$ such that $\mathcal{Q} = \mathcal{Q}_{\sigma}$ and $|\sigma| = n$ where n is large enough that $\sum_{l=n}^{\infty} 1/2^{l-2} < \min\{\delta/2, \epsilon/2\}$. Let \mathcal{U} be the intersection of the an open neighborhood of S with diameter $\delta/2$ and \mathcal{V}_{σ} . Let $R \in \mathcal{U}$ be in the domain of h^* . By Claim 3, there is a $P \in \mathcal{Q}$ such that

$$\max\{\mathrm{H}(R,P), \mathrm{d}(h^*(R), h^*(P))\} < \sum_{l=n}^{\infty} 1/2^{l-2} < \min\{\delta/2, \epsilon/2\}.$$

Since $\operatorname{H}(R, P) < \delta/2$ and $\operatorname{diam}(\mathcal{U}) < \delta/2$, $\operatorname{H}(P, S) < \delta$. By our choice of δ , $\operatorname{d}(h^*(P), h^*(S)) < \epsilon/2$. Since $\operatorname{d}(h^*(R), h^*(P)) < \epsilon/2$, we have $\operatorname{d}(h^*(R), h^*(S)) < \epsilon$.

Case 2 S is not in the domain of h^* .

Let \mathcal{Q} be the component of S in \mathcal{S} . Since $\mathcal{Q} \notin \{\mathcal{Q}_{\tau} : \tau \in T\}$, it follows from (A6) that $\mathcal{Q} \notin \bigcup_{k=1}^{\infty} J_k$. In particular, $\mathcal{Q} = \{S\}$ and S is totally disconnected. By (A4) and Claim 1, there is a $\sigma \in T$ such that $\mathcal{Q} \subseteq \mathcal{V}_{\sigma}$, no component of $\bigcup \mathcal{Q}_{\sigma}$ has diameter greater than $\epsilon/3$, and $|\sigma| = n$ where n is large enough that $\sum_{l=n}^{\infty} 1/2^{l-2} < \epsilon/3$. Let $R, P \in \mathcal{V}_{\sigma}$ be in the domain of h^* . By Claim 3, there exist $G_P, G_R \in \mathcal{Q}_{\sigma}$ such that

$$\max\{\mathrm{H}(h^*(P), h^*(G_P)), \mathrm{H}(h^*(R), h^*(G_R))\} < \epsilon/3.$$

Since no component of \mathcal{Q}_{σ} has diameter larger than $\epsilon/3$, $d(h^*(G_P), h^*(G_R)) < \epsilon/3$. Thus, $H(h^*(P), h^*(R)) < \epsilon$.

Since the domain of h^* is dense in S, Claim 3 implies that h^* may be extended to a continuous function h defined on all of S. The continuity of h and the fact that h^* is a selector on its domain implies that h is a selector. By Claim 3, $p \in h[S]$.

References

- F. Jordan, S₄ continua in the sense of Michael are dendrites, *Topology* Appl., **129** (2003), 19–27.
- [2] F. Jordan, S. B. Nadler, Jr., A result about a selection problem of Michael, Proc. Amer. Math. Soc., 129(4) (2001), 1219–1228.
- [3] A. Lelek, On the topology of curves, Fund. Math., 70 (1971), 131–138.
- [4] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71(1951), (152–182)

- [5] S. B. Nadler, Jr., *Continuum Theory*, Marcel Dekker inc. New York and Basel and Hong Kong 1992.
- [6] T. Nishiura E.D. and Tymchatyn, Hereditarily Locally connected spaces, *Houston J. Math.*, 2(4)(1976), (581–599)
- [7] Gail S. Young, Lecture Notes in Mathematics, SUNY Buffalo, vol. 171, Springer-Verlag New York, New York 1969.
- [8] Gordon Thomas Whyburn, Jr., Analytic Topology, Amer. Math. Soc. Collo. Publ., vol.28, Amer. Math. Soc., Providence, RI, 1942.