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Abstract

We show that a continuum is an S4 space in the sense of Micheal if
and only if it is a dendrite.

1 Introduction

Michael [4, p.178] defined an S4 space to be a space X such that there is a
continuous selection f : S → X for every every partition S of X into nonempty
compact sets. The notion of a weak S4 space, defined in [2], is the same as that
for S4 space except we assume the members of S have at most two points. The
question of which spaces are S4 spaces is asked in [4, p.155], and some partial
answers are given in [4, pp.178–179]. In particular, it is mentioned that no
simple closed curve is an S4 space and that all finite trees are S4 spaces. The
particular question of whether S4 continua are dendrites is due to Gail S. Young
[7]. In [1], it is shown that every S4 continuum is a dendrite. Our purpose here
is to prove that dendrites actually characterize the S4 continua.

Theorem 1 The following conditions are equivalent for a continuum X:

(a) X is an S4 space

(b) X is a weak S4 space

(c) X is a dendrite.

The implication (a)→(b) is immediate from the definitions. The implication
(b)→(c) is shown in [1]. This paper will be dedicated to the implication (c)→(a).
The implication will follow from from a general theorem on the existence of
continuous selectors and a structure theorem on partitions of dendrites.

∗AMS classification numbers: Primary 54
Key words and phrases: dendrite, continuous selectors, partitions into compact sets, S4

space.
The author would like to thank Sam B. Nadler Jr. for his encouragement and some helpful

discussions.

1



2

2 Terminology

By ω we denote the non-negative integers.
For a set A ⊆ X we write cl(A), int(A), bd(A) for the topological closure,

interior, and boundary of A in X, respectively. If a space X can be write as the
union of two disjoint nonempty closed sets A and B we say that A and B form
a separation of X and write X = A|B. If C ⊆ X and X \ C is not connected
we say that C is a separator of X. A maximal connected subset of a space X is
called a component of X. Given a point x ∈ X the quasicomponent of x is the
intersection of all clopen subsets of X containing x. It is well known that every
component of a space is contained a quasicomponent of the space.

By a compactum we mean a nonempty compact metric space. A continuum
connected compactum. A space is a dendrite provided that is a locally connected
continuum containing no simple closed curve. Every connected subset of a
dendrite is arcwise connected [5, 9.10]. Given two points x and y in a dendrite
X we let [x, y]. denote the unique arc in X with endpoints x and y. We say
a space X is regular provided that every point of X has a local base of open
neighborhoods with finite boundary.

Suppose X is a metric space with metric d. The diameter of a nonempty
set A ⊆ X is defined by diam(A) = sup{d(x, y) : x, y ∈ A}. Given nonempty
sets A,B ⊆ X we define d(A,B) = inf({d(x, y) : x ∈ A & y ∈ B}). Given sets
A,B ⊆ X we define the Hausdorff distance between A and B to be

H(A,B) = max(sup({d({x}, B) : x ∈ A}), sup({d(A, {y}) : y ∈ B})).

When H is restricted to the compact subsets of X it is a metric known as the
Hausdorff metric. We denote the space of compacta with the Hausdorff metric
(equivalently the Vietoris topology) by 2X . Recall that a basic open set in the
Vietoris topology has the form

< U1, . . . , Un >= {A ∈ 2X : A ⊆
n⋃

i=1

Ui and A ∩ Ui 6= ∅ for 1 ≤ i ≤ n}.

Where Ui is a nonempty open subset of X for each 1 ≤ i ≤ n.
Given a space X and S ⊆ 2X we say that h : S → X is a selector provided

that the cardinality of h(S) ∈ S for all S ∈ S. If h is continuous we say h is
continuous selector.

3 Results

We say a family F of disjoint sets in space X is manageable provided that
⋃
F

is closed in X and for every F ∈ F there is an open set U such that F ⊆ U
and U ∩ (

⋃
(F \ {F})) = ∅. A partition S of a metric space X into compacta

(considered as a subset of 2X) is said to be admissible provided that:

(C1) S is regular,
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(C2) if S ∈ S has a nondegenerate component then {S} is a component of S,

(C3) any two distinct points of S can be separated by a third point in S, and

(C4) for every ε > 0 the collection of all components Q of S such that some
component of

⋃
Q has diameter at least ε is manageable.

Theorem 2 If X is a separable metric space and S is an admissible partition of
X into compacta, then there is for every p ∈ X a continuous selector h : S → X
such that p ∈ h[S].

Theorem 3 If X is a dendrite, then every partition of X into compacta is
admissible.

The implication (c)→(a) of Theorem 1 follows immediately from Theorem 2
and Theorem 3.

We note the following corollary of Theorem 2 which may be of interest.

Corollary 4 Let X be a separable metric space and C be a partition of X into
totally disconnected compacta that is homeomorphic to a connected subset of a
dendrite, then there is for every p ∈ X a continuous selector h : C → X such
that p ∈ h[C].

If X and Y are compacta and f : X → Y is an open map, then {f−1(y) : y ∈
f [X]} ⊆ 2X is a partition of X which is homeomorphic to f [X]. With this fact
in mind, Corollary 4 can be seen as a generalization of the following result of
Whyburn.

Proposition 5 ([8, Chap. 10, 2.4]) Let X be a compactum Y be a dendrite
and f : X → Y be a continuous light open map. For every p ∈ X there is a
continuum W ⊆ X such that p ∈ W , f |W : W → f [W ] is a homeomorphism.

4 Components and Quasicomponents of regular
spaces

We say that X has property P provided that for any x ∈ X if Q is the quasi-
component of x and U is an open neighborhood of x, then there is an open set
V such that x ∈ V ⊆ U and bd(V ) ⊆ Q.

The spaces satisfying property P is a fairly large class.

Lemma 6 Let X be a topological space. If every x ∈ X has a neighborhood
base consisting of open sets U such that bd(U) is contained the union of finitely
many quasicomponents of X, then X has property P .

Proof. Let U ⊆ X and x ∈ X. Let Q be the quasicomponent of x. By
assumption, there is an open neighborhood V1 of x such that bd(V1) is contained
in the union of finitely many quasicomponents of X and V1 ⊆ U . Let C1, . . . , Cn
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be the quasicomponents of X such that Ci∩(bd(V1)\Q) 6= ∅. For each Ci there
is a clopen set Ei such that Ci ⊆ Ei and Q ∩ Ei = ∅. Let V = V1 \

⋃n
i=1 Ei.

Clearly, V is an open neighborhood of x and V ⊆ U . Notice that X \ V =
(X \ V1) ∪ (

⋃n
i=1 Ei). Also, cl(V ) = cl(V1 \ (

⋃n
i=1 Ei)) = cl(V1) \ (

⋃n
i=1 Ei).

Thus, bd(V ) = cl(V ) ∩ (X \ V ) ⊆ bd(V1) \ (
⋃n

i=1 Ei) ⊆ Q.

Lemma 7 Suppose X is Lindelof, and has property P . If Q ⊆ X is a quasi-
component of X and U ⊆ X is open and Q ⊆ U , then there is a clopen set V
such that Q ⊆ V ⊆ U .

Proof. Let Q be a quasicomponent of X. By property P we may find for each
x ∈ Q find an open set Ux in X such that x ∈ Ux, bd(Ux) ⊆ Q, and Ux ⊆ U .
Let U = {Ux : x ∈ Q} ∪ {U : U is clopen and U ∩ Q = ∅}. Since U is an open
cover of X, there is a countable subcover {Un}n∈ω of X. We define a cover
{Vn}n∈ω as follows:

Vn =

{
Un \

⋃n
i=0 Ui if Un ∩Q = ∅;

Un \ (
⋃
{Ui : i < n and Ui ∩Q = ∅}) if Un ∩Q 6= ∅.

Notice that if Vk ∩Vn 6= ∅, then either n = k or both Vk and Vn have nonempty
intersection with Q.

For n such that Un∩Q 6= ∅ we have Vn∩ (X \Q) clopen in X \Q. With this
observation it is easy to show that Vn is open for every n ∈ ω. The observation
also can be used to show that if Un ∩ Q = ∅, then Vn is clopen in X. Also, if
Un ∩Q = ∅, then Vn ∩ (

⋃
i 6=n Vi) = ∅.

Let V =
⋃
{Vn : Vn ∩Q 6= ∅}. Clearly, V is open and Q ⊆ V ⊆ U . We will

be done if we show that V is closed. Suppose y ∈ cl(V ). Let k ∈ ω be such that
y ∈ Vk. Since y ∈ cl(V ), there is an n such that Vn ∩ Q 6= ∅ and Vn ∩ Vk 6= ∅.
By the statement immediately following the definition of {Vn}n∈ω, we have that
Vk ∩ Q 6= ∅. So, Vk ⊆ V by definition of V . Thus, y ∈ V showing that V is
closed.

Lemma 8 If X is Lindelof, normal, and has property P , then the quasicompo-
nents and components of X are the same.

Proof. Let Q be a quasicomponent of X. By way of contradiction, assume that
Q is not connected. Since Q is closed and X is normal, Q = (U ∩ Q)|(V ∩ Q)
where U and V are disjoint open sets in X. By Lemma 7, there is a clopen
set W such that Q ⊆ W ⊆ U ∪ V . Since U ∩ V = ∅, U ∩ W is clopen.
Now U ∩ Q ⊆ W ∩ U and V ∩ Q ⊆ X \ (W ∩ U) contradicting that Q is a
quasicomponent.

For the proof of Theorem 2 we note the following corollary.

Corollary 9 Let X be a separable metric space and S be an admissible partition
of X into compacta. The quasicomponents and components of any subset of S
are the same. Also, for every component Q of S and open set U containing Q
there is a clopen set V such that Q ⊆ V ⊆ V.
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Proof. By (C1) any subset T of S is a regular separable metric space. The
corollary now follows by Lemma 6, Lemma 8, and Lemma 7.

5 Proof of Theorem 3

Let X be a space and S be a partition of X into compacta. The membership
function F : X → S is the function defined by x ∈ F (x). The next lemma shows
that the membership function has a property close to confluence.

Lemma 10 Suppose X is a topological space and S is a partition of X into
compacta with membership function F . If Q ⊆ S is connected and C is a
quasicomponent of

⋃
Q, then F (C) = Q.

Proof. By way of contradiction, assume there is a M ∈ Q such that M /∈
F (C). Since C ∩ M = ∅, there is for each m ∈ M a separation Um|V m of⋃
Q such that C ⊆ Um and m ∈ V m. Since M is compact, there are finitely

many m1, . . . ,mk ∈ M such that M ⊆
⋃k

i=1 V mi . Let V =
⋃k

i=1 V mi and
U =

⋂k
i=1 Umi . Notice that

⋃
Q = U |V and C ⊆ U and M ⊆ V . Notice that

F (C) ⊆< U, X > and M /∈< U, X >. By connectedness, Q∩bd(< U, X >) 6= ∅.
Let E ∈ Q∩bd(< U, X >). Notice that E ∩bd(U) 6= ∅, contradicting that U |V
is a separation of

⋃
Q.

Lemma 11 If X is regular and S is a partition of X into compacta, then S is
regular.

Proof. Let S ∈ S. Since X is regular and S is compact there is a local base
for S with open sets of the form U =< U1, . . . Un > where each Ui has finite
boundary. Notice that any T ∈ bd(U) must have nonempty intersection with⋃n

i=1 bd(Ui). Since
⋃n

i=1 bd(Ui) is finite and S is a partition, bd(U) is finite.
So, S is regular.

Lemma 12 Let X be a dendrite and S, T ⊆ X be disjoint compacta. Either
there is a s ∈ S such that T is contained in a component of X \ {s} or there is
a t ∈ T such that S is contained in a component of X \ {t}.

Proof. Assume that there is no s ∈ S or t ∈ T with the desired property. Let
t0 ∈ T and s0 ∈ S. Let A0 be the arc [t0, s0]. By our assumption about S,
there is a component C0 of X \ {s0} such that [t0, s0]∩C0 = ∅ and C0 ∩ T 6= ∅.
Let A1 be the arc [s0, t1] where t1 ∈ C0. Since (s0, t1] ⊆ C0, A0 ∪ A1 = [t0, t1].
By assumption, S is not contained in any component of X \ {t1}. Let s1 be
an element of S that is in a component C1 of X \ {t1} that does not contain
[t0, t1). Let A2 be the arc [t1, s1]. Notice that A0 ∪ A1 ∪ A2 = [t0, s1] since
C1 ∩ (A0 ∪A1) = ∅ and (t1, s1] ⊆ C1. Moreover, A0 ∩A2 = ∅.

By our assumptions on S and T we may continue this process indefinitely to
get an infinite sequence of mutually disjoint arcs {A2n}n∈ω of the form [tn, sn].
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Since X is a dendrite, the diameters of these arcs must tend to zero. So, by
compactness of S and T , we have S ∩ T 6= ∅ a contradiction.

Lemma 13 Let X be a dendrite and S be a partition of X into disjoint com-
pacta. If S, T ∈ S are distinct points, then there is a R ∈ S that separates S
from T .

Proof. By Lemma 12, we may assume that there is a t ∈ T such that S is
contained in a component D of X \ {t}. Since t is not a cutpoint of D ∩ {t},
t is an endpoint of D ∪ {t} by [5, 10.7]. So, there is a point p ∈ D such that
p separates t from S in D ∪ {t}. By unicoherence, p separates t from S in X.
Let R = F (p). By way of contradiction assume that S and T are in the same
component C of S \ {R}. Let E be the component of

⋃
C which contains t. By

Lemma 10, S ∈ F [E]. On the other hand, E is contained in the component
G of X \ {p} which contains t. Since G ∩ S = ∅, S /∈ F [E], a contradiction.
Since S and T are in different components of S \ {R}, S and T are in different
quasicomponents of S \ {R}, by Corollary 9 and Lemma 11. Thus, R separates
S and T .

Lemma 14 Let X be a metric space and S be a partition of X into compacta
with membership function F and C ⊆ S be connected. If S ∈ C and there is an
s ∈ S and an open U ⊆ X such that s ∈ U and bd(U) ⊆ S, then F [U ] = S.

Proof. Clearly, S ∈< U,X >. Suppose R /∈< U, X > and R ∈ C. Since
C is connected, there is a T ∈ bd(< U,X >) ∩ C. So, T ∩ bd(U) 6= ∅. Since
bd(U) ⊆ S and S is a partition, T = S. So, S ∈ bd(< U, X >) and S ∈< U, X >
a contradiction.

Proof of Theorem 3 Let X be a dendrite, S be a partition of X into
compacta, and F be the membership function for the partition.

By Lemma 11 S is regular. So, we have (C1).
Suppose S ∈ S contains a nondegenerate component M . Let C be the

component of S in S. Since X is a dendrite there is point p ∈ M such that
p is a cutpoint of both X and M , and p has a base of open neighborhoods U
such that bd(U) has exactly two points [5, 10.42]. Let x,w ∈ M be separated
by p and U an open neighborhood of p such that bd(U) has exactly two points
and w, x /∈ U . Since X is unicoherent and p separates x and w, we have
[x, p] ∩ [p, w] = {p}. It is now easy to see that bd(U) ⊆ M ⊆ S. By Lemma 14,
F [U ] = C. Since we may choose U to be as small we like and the elements of C
are compact, we see that p ∈

⋂
C. Thus, C = {S}. So, we have (C2).

By Lemma 13, any two points of S are separated by a third point. So, we
have (C3)

Let ε > 0 and θ be the collection of components C of S such that some
component DC of

⋃
C has diameter at least ε. Since X is a dendrite and S is

a partition, the collection {DC : C ∈ θ} is finite [3]. Since S is a partition and
θ is a mutually disjoint collection, θ is finite. Since components are closed, θ is
manageable. So, we have (C4).
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Therefore, S is admissible.

6 Proof of Theorem 2

Lemma 15 If a metric space Y is regular and connected, then Y is locally
connected.

Proof. If Y is just a single point, then Y is obviously locally connected. So,
we assume that Y contains at least two points. Let y ∈ Y and x ∈ Y \ {y}. Let
V be open neighborhood of y. Let U ⊆ V \ {x} be an open neighborhood of y
with finite boundary such that cl(U) ⊆ V . Let R be a quasicomponent of cl(U).

Suppose that R∩bd(U) = ∅. Since bd(U) is finite, there would be a separa-
tion Z|W of cl(U) such that bd(U) ⊆ Z and R ⊆ W . Notice that W is clopen
and nonempty in Y and x /∈ W , contradicting that Y is connected. Thus, if R
is a quasicomponent of cl(U), then R ∩ bd(U) 6= ∅.

Since bd(U) is finite, there are only finitely many quasicomponents R of
cl(U). Thus, each quasicomponent of cl(U) is a component of cl(U). Let T
be the component of y in cl(U). Since y ∈ U and T is open in cl(U), T is a
connected neighborhood of y contained in V .

A compact space W is called a perfect compactification of a space X provided
that X is dense in W and for any closed subset C of X if C separates two subsets
A and B of X, then clW (C) separates A and B in W . A space X is said to
be rim compact provided that every point of X has a base of open sets with
compact boundaries. In particular, regular spaces are rim compact.

Proposition 16 ([6, Thm. 4.2, Cor 4.5]) Let X be a separable metric space.
If X is connected, locally connected, and the components and quasicomponents
of each subspace of X are the same and X is rim compact, then there is a
hereditarily locally connected continuum W which is a perfect compactification
of X and W \X contains no nondegenerate continuum.

Lemma 17 Let S be an admissible partition of a separable metric space X into
disjoint compacta. If C ⊆ S is connected, then C is homeomorphic to a connected
subset of a dendrite.

Proof. By (C1) and Lemma 15, C is locally connected and rim compact. By
(C1) and Corollary 9, the components and quasicomponents of each subspace
of X are the same. By Proposition 16, there is a hereditarily locally connected
continuum W which is a perfect compactification of C and W \ C contains no
nondegenerate continuum. Suppose W contains a simple closed curve M . Since
W \ C contains no nondegenerate continuum, there exist distinct S, T ∈ M ∩ C.
By Lemma 13, there is a point R ∈ C such that R separates S and T in C.
Since W is a perfect compactification of C, R also separates S and T in W ,
contradicting that S and T lie on M . Since W contains no simple closed curve,
we conclude that W is a dendrite.
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Lemma 18 Let X be a metric space and S be a partition of X into compacta
and F be the membership function. If C ⊆ S is a nondegenerate continuum,
then F |

⋃
C :
⋃
C → C is continuous and open.

Proof. Let x ∈
⋃
C and {xn}n∈ω be a sequence on

⋃
C such that lim xn = x.

Since C is compact, there is a P ∈ C such that some subsequence of {F (xn)}n∈ω

converges to P . Since xn ∈ F (xn) for every n ∈ ω, it follows that x ∈ P . Since
S is a partition, P = F (x). So, some subsequence of {F (xn)}n∈ω converges to
F (x). So, F |

⋃
C is continuous.

Let x ∈ X and U be an open neighborhood of x. It is immediate from the
definition of F that F [U ] =< U,X > ∩S which is open. So, F is open. Since
F |
⋃
C = F |F−1(C), F |

⋃
C :
⋃
C → C is open.

Lemma 19 Let X be a metric space and S be a partition of X into disjoint
compacta satisfying (C2) with membership function F . Suppose C ⊆ S is home-
omorphic to a nondegenerate connected subset of a dendrite. If {Sn}n∈ω is
sequence on C and limSn = S ∈ C, then

lim
n∈ω

sup
{

diam(D) : D is a component of
⋃

[Sn, S]
}

= 0.

Proof. Since C is contained in a dendrite, lim[Sn, S] = {S}. Since F is open,
lim F−1([Sn, S]) = F−1({S}) = S. By (C2), S is totally disconnected. Since S
is totally disconnected and F−1([Sn, S]) is compact for every n, it follows that
limn∈ω sup {diam(D) : D is a component of

⋃
[Sn, S]} = 0.

Lemma 20 If X is a separable metric space and C is a connected subset of an
admissible partition of X into disjoint compacta, then for every a ∈

⋃
C there

is a continuous selector h for C such that a ∈ h[C].

Proof. If C is a single point then the lemma is obviously true. So, we as-
sume throughout that C is nondegenerate. In particular, condition (C2) in
the definition of admissablity implies that the restricted membership function
F :

⋃
C → C has totally disconnected point-inverses.

Let θ be the collection of all nonempty M ⊆
⋃
C such that a ∈ M , F |M

is one-to-one and for any two points p, q ∈ M there is an arc Ap,q ⊆ M from
p to q such that F |Ap,q is continuous. It is easily checked that θ satisfies the
hypothesis of the Hausdorff Maximal Principle. Let M be a maximal element
of θ.

We claim that F [M ] is closed in C. By way of contradiction, assume that
S ∈ cl(F [M ]) \ F [M ]. Since F [M ] is connected, F [M ] ∪ {S} is connected. By
Lemma 17, C can be embedded into a dendrite. So, F [M ] ∪ {S} is arcwise
connected. Let s0 ∈ M . The arc [F (s0), S] is contained in F [M ] ∪ {S}. Let
{Sn}n∈ω be a sequence of points on [F (s0), S] such that S0 = F (s0), lim Sn = S
and [F (s0), Sn] ⊆ [F (s0), Sn+1). Let sn ∈ Sn ∩ M for every n. Taking a
subsequence if necessary we may assume that there is an s ∈ S such that
lim sn = s. Let n ∈ ω. Since M ∈ θ, F |Asn,sn+1 is a homeomorphism to the
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arc [Sn, Sn+1]. So, Asn,sn+1 ⊆ F−1([Sn, Sn+1]) ⊆ F−1([Sn, S]). Since F |M
is one-to-one,

⋃
n∈ω Asn,sn+1 is homeomorphic to the halfline [S0, S). Since

Asn,sn+1 ⊆ F−1([Sn, S]), Lemma 19 implies that lim diam(Asn,sn+1) = 0. Since
lim sn = s, As0,s = {s}∪ (

⋃
n∈ω Asn,sn+1) is an arc and F |As0,s : As0,s → [S0, S]

is continuous. So, s ∪ M ∈ θ, a contradiction to maximality. Thus, F [M ] is
closed.

We claim F [M ] = C. By way of contradiction, assume there is a S ∈ C\f [M ].
Since C is arcwise connected and F [M ] is closed, there is a nondegenerate arc
[T, S] ⊆ C such that [T, S]∩F [M ] = {T}. By Lemma 18 and (C2), F |

⋃
[T, S] is

continuous, open, and light. As a union of a compact collection of sets,
⋃

[T, S]
is compact. Let t ∈ M ∩ T . By Proposition 5, there is an arc A ⊆

⋃
[T, S] such

that t ∈ A and F |A is a homeomorphism. It is easy to check that M ∪A ∈ θ, a
contradiction to maximality.

Since (F |M)−1 : C → M is a selector and a ∈ M , it remains show that
(F |M)−1 is continuous.

Let [S, T ] be an arc in C. Let s ∈ S∩M and t ∈ T ∩M and A ⊆ M be an arc
from s to t such that f |A is continuous. Since F |A is continuous and one-to-one
and C contains no simple closed curve, F [A] = [S, T ]. Thus, (F |M)−1|[S, T ] is
continuous. So, (F |M)−1 is continuous on arcs.

Let S ∈ C and {Sn}n∈ω be a sequence of distinct points on C such that
lim Sn = S. Since C is contained in a dendrite, lim[Sn, S] = {S}. By Lemma 19,
lim diam(Asn,s) = 0. Thus, lim(F |M)−1(Sn) = lim sn = s = (F |M)−1(S)
showing that (F |M)−1 is continuous.

For the remainder of this paper we will assume that X is a fixed separable
metric space with a fixed admissible partition S into compacta with membership
function F . We will also fix p ∈ X. Moreover, we will assume (remetrizing if
necessary) that the metric d on X has the property that diam(X) < 1. In
particular, diam(S) < 1.

For each n ∈ ω let Jn denote the collection of all components Q of S such
that some component of

⋃
Q has diameter at least 1/2n. Notice that J0 = ∅.

Lemma 21 Every nondegenerate component of S is contained in
⋃

n∈ω Jn. The
collection

⋃
n∈ω Jn is countable.

Proof. Suppose Q is a nondegenerate component of S. By Lemma 10 and
Corollary 9, there is an n ∈ ω such that Q ∈ Jn. Since S is separable and Jn is
manageable, Jk is countable for all k ∈ ω. Obviously

⋃
k∈ω Jk is countable.

Lemma 22 If a component C of S has diameter greater than ε, then some
component of

⋃
C has diameter at greater than ε.

Proof. Suppose diam(C) ≤ ε for every component C of
⋃
C. Let S, T ∈ C. Let

s ∈ S. Let C be the component of s in
⋃
C. By Lemma 10 and Corollary 9,

there is a t ∈ T such that t ∈ C. So, d(s, T ) ≤ ε. A similar argument shows
that d(t, S) ≤ ε for every t ∈ T . So, H(S, T ) ≤ ε. Thus, diam(C) ≤ ε.
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We denote the collection of all finite strings of non-negative integers (in-
cluding the empty string ∅) by ω<ω. By ωn (ω≤n) we denote the set of all
elements of ω<ω of length exactly (less or equal) n. If σ ∈ ω<ω we let |σ| denote
the length (equivalently, cardinality) of σ. Given σ, ρ ∈ ω<ω, we say that σ
is the predecessor of ρ (or that ρ is the successor of σ) provided that σ ⊆ ρ
and |ρ| = |σ| + 1. Given σ ∈ ωn and i ∈ ω we define (σ ∗ i) ∈ ωn+1 so that
(σ ∗ i)|n = σ and (σ ∗ i)(n) = i.

We say a nonempty subset T of ω<ω is a tree provided that ∅ ∈ T , for every
σ ∈ T there is at least one successor of σ in T , and every element of T \ {∅}
has a predecessor. For n ∈ ω we denote T ∩ ωn by Tn. Given a tree T we let
T † ⊆ ωω denote the maximal ⊆-chains in T .

Lemma 23 There is a tree T ⊆ ω<ω and collections {Vσ : σ ∈ T} of clopen sets
and {Qσ : σ ∈ T} of components of S such that for every n ∈ N and τ, σ ∈ T
we have:

(A0) p ∈
⋃
Q∅,

(A1) τ ⊆ σ implies Vσ ⊆ Vτ ,

(A2) Qσ ⊆ Vσ,

(A3) Vσ ∩ Vτ 6= ∅ implies τ = σ,

(A4)
⋃

ξ∈Tn
Vξ = S,

(A5) H(Vσ, Qσ) < 1/2|σ|, and

(A6) Jn ⊆ {Qσ : σ ∈ Tn}, and

(A7) Qσ∗0 = Qσ.

Proof. Let Q∅ be the component of F (p) in S. Let V∅ = S. Keeping in mind
that diam(S) < 1 we see that T0 = {∅}, Q∅, and V∅ satisfy (A0)-(A7)

Assume that n ≥ 1 and we have defined Tm ∈ ωm for every 0 ≤ m ≤ n−1 so
that

⋃n−1
m=0 Tm, {Vσ : σ ∈

⋃n−1
m=0 Tm} and {Sσ : σ ∈

⋃n−1
m=0 Tm} satisfy conditions

(A0)-(A7). We show how to define Tn ⊆ ω≤n so that (A0)-(A7) will be satisfied
by
⋃n

m=0 Tm.
Fix τ ∈ Tn−1. Since S is admissible, Jn+3 is mangable. Notice that Jn+3 ∪

{Qτ} is also mangable. Since S is separable and metric, Jn∪{Qτ} is countable.
Let Let A ⊆ ω and {Pj : j ∈ A} be an enumeration of the elements of Jn+3

which are contained in Vτ together with Qτ . In the enumeration we will assume
that P0 = Qτ . Since {Pj : j ∈ A} is countable and manageable, we may use
Corollary 9 and induction to construct a family {Uj}j∈A of mutually disjoint
clopen subsets of Vτ such that Pj ⊆ Uj and H(Uj , Qj) < 1/22+j for all j. It is
easily checked that

⋃
j∈A Uj is clopen in S.

By Lemma 21 there is a B ⊆ ω such that the nondegenerate components of
Vτ \ (

⋃
j∈A Uj) may be enumerated as {Ck : k ∈ B}. Notice that Ck /∈ Jn+3 for

all k ∈ B.
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Fix k ∈ B. By Corollary 9, there is a clopen neighborhood T k of Ck such
that T k is contained in S \

⋃
j∈A Uj and H(T k, Ck) < 1/2n+3+k.

For each k ∈ B let Rk = T k\(
⋃

i<k T k). Clearly, {Rk : k ∈ ω} is a collection
of disjoint clopen sets covering

⋃
k∈ω Ck. Let B1 ⊆ B denote the set of all k ∈ B

such that Rk 6= ∅. Notice that Ck ⊆ Rk ⊆ T k every k ∈ B1. In particular, we
have H(Rk, Ck) < 1/2n+3+k for all k ∈ B1.

Suppose now that S /∈ (
⋃

k∈B1
Rk)∪(

⋃
j∈A Uj). Since {S} is a component of

S, there is, by Corollary 9, a base of clopen neighborhoods of S. Pick a clopen
neighborhood KS of S such that diam(KS) < 1/2n+3 and KS ∩ (

⋃
j∈A Uj) = ∅.

Let JS = KS ∪ {Rk : Rk ∩ KS 6= ∅}. Notice that JS ⊆ S \
⋃

j∈A Uj .
We claim that diam(JS) < 1/2n. Let P ∈ JS . If P ∈ KS , then H(S, P ) <

1/2n+3. Suppose P /∈ KS . There is a k ∈ B1 such that P ∈ Rk. Since
Rk ∩ (

⋃
j∈A Uj) = ∅, Ck /∈ Jn+3. By Lemma 22, diam(Ck) ≤ 1/2n+3. Thus,

diam(Rk) < 1/2n+2+k + 1/2n+3 ≤ 3/2n+3. So, H(P, S) < 1/2n+3 + 3/2n+3 =
1/2n+1. So, diam(JS) < 1/2n.

We claim that JS is clopen in S. Clearly, JS is open. By way of contradic-
tion, assume that JS is not closed. Let P ∈ cl(JS) \ JS . We may assume that
there exists an increasing sequence {ki}i∈ω on B1 and points Pki

∈ Rki such that
limi∈ω Pki = P . Since P /∈ KS , there is an ε > 0 such that H({P},KS) > ε. So,
diam(Rki) > ε for almost all i. It follows that diam(Cki) > ε for almost all i. By
Lemma 22, Cki

has a component of diameter greater than ε for almost all i. Thus,
Cki

⊆ Jl for some l ∈ ω. Since Jl is manageable and limi∈ω H(Rki , Cki
) = 0,

P ∈ Cki
⊆ Rki for some i. So, P ∈ JS , contradicting our assumption.

Let θ1 = {JS : S /∈ (
⋃

k∈B1
Rk)∪ (

⋃
j∈A Uj)}. We may do a standard induc-

tion to find a D ⊆ ω and a refinement {Ll : l ∈ D} of θ1 made up of mutually
disjoint nonempty clopen sets such that

⋃
{Ll : l ∈ D} =

⋃
θ1.

Define

θ2 = {Ll : l ∈ D} ∪

{
Rk : Rk ∩

(⋃
l∈D

Jl

)
= ∅ and k ∈ B1

}
∪ {Uj : j ∈ A} .

Notice θ2 is a cover of S by mutually nonempty disjoint clopen sets. For every
j ∈ A let Vτ∗3j = Uj and Q3j = Pj . If Rk ∈ θ2, then define V3k+1 = Rk

and Qτ∗(3k+1) = Ck. If l ∈ D, then define Vτ∗(3l+2) = Ll and Qτ∗(3l+2) to
be a component of Ll. Let Tτ = {τ ∗ (3k + 1): Rk ∈ θ2} ∪ {τ ∗ (3l + 2): l ∈
D} ∪ {τ ∗ 3j : j ∈ A}.

For each τ ∈ Tn−1 we perform a similar construction. Let Tn =
⋃

τ∈Tn−1
Tτ .

Now
⋃n

m=0 Tm, {Vσ : σ ∈
⋃n

m=0 Tm}, and {Qσ : σ ∈
⋃n

m=0 Tm} satisfy (A0)-
(A7).

Finally, T =
⋃

n∈ω Tn, {Vσ : σ ∈ T}, and {Qσ : σ ∈ T} are easily checked to
satisfy (A0)-(A7).

Proof of Theorem 2 Let T ⊆ ω<ω, {Vσ : σ ∈ T}, {Jn : n ∈ ω}, and
{Qσ : σ ∈ T} be as in Lemma 23.

Claim 1 For every component Q of S there is a g ∈ T † such that Q =⋂
n∈ω Vg|n and limn∈ω Vg|n = Q.
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Proof. To define g we let g =
⋃
{σ ∈ T : Q ⊆ Vσ}. It follows from (A3)

and (A4) that g ∈ T †.
Clearly, Q ⊆

⋂
n∈ω Vg|n. Consider the sequence {Qg|n}n∈ω.

Suppose {Qg|n}n∈ω is eventually constant. Let S ∈
⋂

n∈ω Vg|n. By (A5),
H(Vg|n,Qg|n) < 1/2n. It follows that there is a sequence {Sn}n∈ω such that
Sn ∈ Qg|n and lim Sn = S. There is an N ∈ ω such that Qg|k = Qg|N for all
k ≥ N . By (A5) and (A7), QN = limQg|k = Q. Since Q is closed and Sk ∈ Q
for almost all k, we have S ∈ Q. So, Q =

⋂
n∈ω Vg|n. By (A3), for all k ≥ N

we have H(Vg|k,Q) = H(Vg|k,Qg|k) < 1/2k. So, limn∈ω Vg|n = Q.
If {Qg|n}n∈ω is not eventually constant, then conditions (A6) and (A7) to-

gether with Lemma 22 imply that that lim diam(Vg|n) = 0. So, Q is a singleton
and

⋂
n∈ω Vg|n = Q and limn∈ω Vg|n = Q.

Claim 2 There are functions {hσ : σ ∈ T} and points {Sσ : σ ∈ T} so that
for every σ, τ ∈ T we have:

(B1) hσ : Qσ → X is a continuous selector,

(B2) Sσ ∈ Qσ,

(B3) Sσ∗0 = Sσ and hσ∗0 = hσ, and

(B4) if |σ| > 0 and τ is the predecessor of σ, then there exists an S ∈ Qσ such
that H(S, Sτ ) < 1/2|τ | and d(hτ (Sτ ), hσ(S)) < 1/2|τ |.

Moreover, we may asssume that p ∈
⋃

σ∈T hσ[Qσ].

Proof. By Lemma 20 and (A0) there is a continuous selector h∅ : Q∅ → X
such that p ∈ h∅[Q∅]. Let S∅ ∈ Q∅ be arbitrary. Clearly these choices satisfy
(B1)-(B4).

Assume we have defined hσ for all σ ∈
⋃n

k=0 Tk so that (B1)-(B4) are satis-
fied. Let ρ ∈ Tn+1 and σ ∈ Tn be such that σ ⊆ ρ. If ρ = σ∗0, then, by (A7), we
may let hρ = hσ and Sρ = Sσ. Suppose now that ρ 6= σ∗0. Since Qρ ⊆ Vρ ⊆ Vσ

and H(Vσ, Qσ) < 1/2|σ|, there is a Sρ ∈ Qρ such that H(Qσ, Sρ) < 1/2|σ|. Let
S ∈ Qσ be such that H(S, Sρ) < 1/2|σ|. By the definition of the Hausdorff
metric, there is an x ∈ Sρ such that d(x, hσ(S)) < 1/2|σ|. By Lemma 20, there
is a continuous selector hρ : Qρ → X such that hρ(Sρ) = x. Thus, S ∈ Qσ and
d(hρ(Sρ), hσ(S)) < 1/2|σ| and H(S, Sρ) < 1/2|σ|. So, we have (B3) and (B4).
Clearly, (B1) and (B2) are satisfied by hρ and Qρ.

By induction, we have that {hσ : σ ∈ T} and {Sσ : σ ∈ T} satisfy (B1)-(B4).
Obviously, p ∈

⋃
σ∈T hσ[Qσ].

Let h∗ be the partial function defined by h∗ =
⋃

σ∈T hσ. Notice that h∗ is
well defined by (B3), (A2), and (A3).

Claim 3 Let σ ∈ Tn. If R ∈ Vσ and R is in the domain of h∗, then there is a
P ∈ Qσ such that d(h∗(P ), h∗(R)) <

∑∞
l=n 1/2l−2 and H(P,R) <

∑∞
l=n 1/2l−2.
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Proof. Let τ ∈ Tn be such that R ∈ Qτ . By (A7) and (A2), we may assume
that σ ⊆ τ .

Suppose 0 = |τ | − |σ|. Let P = R and observe that

max{d(h∗(P ), h∗(R)),H(P,R)} = 0 <
n+0∑
l=n

1/2l−2.

Assume now that m ≥ 0 and that we have shown that for every R, if R ∈ Qτ

and m = |τ | − |σ|, then there is a P ∈ Qσ such that

max{d(h∗(P ), h∗(R)),H(P,R)} <
n+m∑
l=n

1/2l−2.

We now extend the statement to m + 1. Let m + 1 = |τ | − |σ| and σ ⊆ τ . Let
ρ be the predecessor of τ . We consider two exhaustive cases.

Suppose τ = ρ ∗ 0. By (A7), R ∈ Qρ. So, by inductive hypothesis there is a
P ∈ Qσ such that

max{d(h∗(P ), h∗(R)),H(P,R)} <

n+m∑
l=n

1/2l−2 <

n+m+1∑
l=n

1/2l−2.

Suppose τ 6= ρ ∗ 0. By (A7) and (A6), Qτ /∈ Jn+m. By (B4), there is an
S ∈ Qρ such that d(h∗(Sτ ), h∗(S)) < 1/2n+m and H(Sτ , S) < 1/2n+m. Since
Qτ /∈ Jn+m, Lemma 22 implies that diam(Qτ ) ≤ 1/2n+m. So,

H(R,S) < 1/2n+m + 1/2n+m = 1/2n+m−1.

Since Qτ /∈ Jn+m, diam(h∗[Qτ ]) < 1/2m+n. So,

d(h∗(R), h∗(S)) < 1/2n+m + 1/2n+m = 1/2n+m−1.

By inductive hypothesis, there is a P ∈ Qσ such that

max{H(P, S),d(h∗(P ), h∗(S))} <
n+m∑
l=n

1/2l−2.

Thus,

max{H(R,P ),d(h∗(R), h∗(P ))} <
n+m∑
l=n

1/2l−2 + 1/2n+m−1 =
n+m+1∑

l=n

1/2l−2.

By induction, for every R ∈ Vσ such that R is in the domain of h∗ there is
a P ∈ Qσ such that max{H(R,P ),d(h∗(R), h∗(P ))} <

∑∞
l=n 1/2l−2.

Claim 4 For every S ∈ S and ε > 0 there is an open neighborhood U of S
such that diam(h∗[U ]) < ε.
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Proof. We consider two exhaustive cases.
Case 1 S is in the domain of h∗.

Let Q be the component of S in S. Notice that Q is contained in the domain
of h∗ and h∗|Q is continuous. Let δ > 0 be such that d(h∗(S), h∗(P )) < ε/2 for
all P such that H(P, S) < δ and P ∈ Q. There is a σ ∈ T such that Q = Qσ

and |σ| = n where n is large enough that
∑∞

l=n 1/2l−2 < min{δ/2, ε/2}. Let U
be the intersection of the an open neighborhood of S with diameter δ/2 and Vσ.
Let R ∈ U be in the domain of h∗. By Claim 3, there is a P ∈ Q such that

max{H(R,P ),d(h∗(R), h∗(P ))} <
∞∑

l=n

1/2l−2 < min{δ/2, ε/2}.

Since H(R,P ) < δ/2 and diam(U) < δ/2, H(P, S) < δ. By our choice of δ,
d(h∗(P ), h∗(S)) < ε/2. Since d(h∗(R), h∗(P )) < ε/2, we have d(h∗(R), h∗(S)) <
ε.

Case 2 S is not in the domain of h∗.
Let Q be the component of S in S. Since Q /∈ {Qτ : τ ∈ T}, it follows from
(A6) that Q /∈

⋃∞
k=1 Jk. In particular, Q = {S} and S is totally disconnected.

By (A4) and Claim 1, there is a σ ∈ T such that Q ⊆ Vσ, no component of⋃
Qσ has diameter greater than ε/3, and |σ| = n where n is large enough that∑∞
l=n 1/2l−2 < ε/3. Let R,P ∈ Vσ be in the domain of h∗. By Claim 3, there

exist GP , GR ∈ Qσ such that

max{H(h∗(P ), h∗(GP )),H(h∗(R), h∗(GR))} < ε/3.

Since no component of Qσ has diameter larger than ε/3, d(h∗(GP ), h∗(GR)) <
ε/3. Thus, H(h∗(P ), h∗(R)) < ε.

Since the domain of h∗ is dense in S, Claim 3 implies that h∗ may be
extended to a continuous function h defined on all of S. The continuity of h
and the fact that h∗ is a selector on its domain implies that h is a selector. By
Claim 3, p ∈ h[S].
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