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Abstract. By a mean on a space X we understand a mapping µ : X ×X →
X such that µ(x, y) = µ(y, x) and µ(x, x) = x for x, y ∈ X. A chainable
continuum is a metric compact connected space which admits an ε- mapping
onto the interval [0, 1] for every number ε > 0. We show that every chainable
continuum that admits a mean is homeomorphic to the interval. In this way
we answer a question by P. Bacon. We answer some other question concerning
means as well.

A continuum is a metric compact connected space. A continuum X is chainable
if for every number ε > 0 there exists an ε-mapping of X onto an interval. This
is equivalent to the existence of a representation of X as an inverse sequence of
arcs (the joining mappings may be supposed to be surjective). A mapping f of
a continuum X onto a continuum Y is said to be weakly confluent if for every
continuum Z ⊂ Y there exists continuum W ⊂ X such that f(W ) = Z. A
mapping µ : X ×X → X, where X is a space, is called a mean on X if for every
x, y ∈ X we have µ(x, y) = µ(y, x), and µ(x, x) = x. Cohomology means here the
Alexander-Čech cohomology. P. Bacon in [B] showed that the sin 1

x
-curve, one of

the standard examples of chainable continua, does not admit a mean and asked
whether the only chainable continuum with a mean is the arc. Many works give
a partial (positive) answer to the problem. A survey of these results can be found
in [Ch]. In this note we give a complete answer to this problem. Our argument
uses the idea of K. Sigmon, who in [Sig] applied Alexander-Čech cohomology
for investigations of compact spaces admitting a mean. On the other hand our
proof is similar to the proof that the only psudocontractible (in the sense of W.
Kuperberg) chainable continuum is an arc in [So].

These results were presented at the Henryk Toruńczyk’s Seminar at Warsaw
University in October 2005. Recently I obtained a preprint by Alejandro Illanes
and Hugo Villanueva who solved independently the problem of P. Bacon by dif-
ferent methods.

Let us remind the following standard fact (see [Ch]).

Theorem 1. Let X and Y be spaces with means µX and µY respectively. Then
the formula µ((x, y), (x′, y′)) = (µX(x, x′), µY (y, y′)) for (x, y), (x′, y′) ∈ X × Y
defines a mean on X × Y .

Proof. We have µ((x, y)(x′, y′)) = (µX(x, x′), µY (y, y′)) = (µX(x′, x), µY (y′, y)) =
µ((x′, y′), (x, y)) and µ((x, y)(x, y)) = (µX(x, x), µY (y, y)) = (x, y). ¤
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Definition 1. The mean on X × Y we described in Theorem 1 will be called a
product mean and denoted by µX×Y .

Proposition 1. If µX×X is the product mean on the cartesian square X × X
then µX×X(∆×∆) = ∆, where ∆ = {(x, x) ∈ X ×X : for x ∈ X}.
Proof. Let (x, x), (y, y) ∈ ∆. Then µX×X((x, x), (y, y)) = (µX(x, y), µX(x, y)) ∈
∆. ¤
Definition 2. Let ε be a positive number. The set {(x, y) ∈ X×X : ρ(x, y) ≤ ε}
we will denote ∆ε.

The compactness of a continuum X and Proposition 1 imply the following

Proposition 2. If X is a continuum with a mean µX , then for every number
ε > 0 we can choose a number δ > 0 such that µX×X(∆δ) ⊆ ∆ε.

We have the following

Lemma 1 (Long fold lemma). Let X be a chainable continuum. If X is not
locally connected then there exists a number δ > 0 such that for every number
ε > 0 there exist mappings p : X → T , r : T → W , where T , W are arcs, and a
subcontinuum Y ⊂ X satisfying the following properties:

(i) diam Y > δ
(ii) rp : X → W is an ε-mapping
(iii) the sets L = p(Y ) and J = rp(Y ) are arcs
(iv) the mapping r | L : L → J is open and there exist three different

arcs L1, L2, L3 each of which is mapped homeomorphically onto
J ( Fig.1 is a graph of such a map).

Proof. The non-locally connected continuum X contains a sequence of pairwise
disjoint continua K, K1, K2, K3, . . . , such that lim Ki = K ([Ku], 6.§49.VI.
Th.1). Put δ = diam K

10
. Now let us consider a representation of X as an inverse

sequence of copies of the unit interval X = lim←−{In, fm
n }, where fm

n are surjections.
For a given number ε > 0 let j be such that fj : X ³ Ij, the projection
of the inverse limit is a min(ε,δ)

10
-mapping. Let N > 0 be an integer such that

diam fj
−1([ i

N
, i+1

N
]) ≤ min(ε,δ)

5
. Let M be an integer such that for m ≥ M the

Hausdorff distance between fj(K) and fj(Km) is less than 1
4N

. Now, let fk :
X ³ Ik, k > j be a projection such that the images fk(KM), fk(KM+1),. . . ,
fk(KM+4N+4) are mutually disjoint and let i0 < i1 ≤ N be indices such that
inf(ρ(x, y) : x ∈ fj

−1( i0
N

), y ∈ fj
−1( i1

N
)) > δ and { i0

N
, i1

N
} ⊆ fj(Km), for every

m > M . Now we define a sequence a1 ≤ b1 < c1 ≤ d1 < a2 · · · < a2N ≤ b2N <
c2N ≤ d2N < a2N+1 of points of the segment Ik. We assume that the continua
KM , KM+1, . . . , KM+4N+4 are indexed in accordance with the order in Ik of their
images under the mapping fk. The point a1 is the first point Ik belonging to
fk(KM) for which fk

j (a1) = i1
N
, the point c1 is the first point following a1 such
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Figure 1

that fk
j (c1) = i0

N
, b1 is a point of absolute maximum of fk

j over [a1, c1], a2 is
the first point following c1 such that fk

j (a2) = i1
N
, d1 is the point of absolute

minimum of fk
j over [c1, a2], etc. After the n-th step of the construction the

arc fk(KM+2n+1) lies behind [a1, an] so we can continue the construction. Let
n(x) for x ∈ Ik be the integer fulfilling fk

j (x) ∈ (n(x)
N

, n(x)+1
N

]. Each strictly
monotone sequence of n(bi) is shorter than N , hence there is an index l fulfilling
n(bl) ≥ n(bl+1) ≤ n(bl+2). We can assume that fk

j (dl) ≥ fk
j (dl+1) (otherwise

we can invert the order of Ik). Let q0 : Ij → Ij be a nondecreasing surjection,
which maps the interval [n(bl+1)

N
, n(bl+1)+1

N
], to a point, and this interval is the

only fiber of this mapping different from a one-point set. Let q = q0f
k
j . Let us

remark that qfj is an ε-mapping and that q(bl) ≥ q(bl+1) ≤ q(bl+2) and q(dl) ≥
q(dl+1), and q(bn) > q(dm) for all indices n, m. Now dl+1 is a point of absolute
minimum and bl is a point of absolute maximum of q over [al, al+2]. Let us define
a nondecreasing sequence of five real numbers: z1 = bl, z2 = bl +q(bl)−q(dl), z3 =
z2 + q(bl+1) − q(dl), z4 = z3 + q(bl+1) − q(dl+1), z5 = z4 + 1 − dl+1. We define
mappings p0 : I → [0, z5] and r : [0, z5] → I by the following formulae:
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p0(t) =





t, for t ∈ [0, bl);

z1 + q(bl)− q(t), for t ∈ [bl, dl);

z2 + q(t)− q(dl), for t ∈ [dl, bl+1);

z3 + q(bl+1)− q(t), for t ∈ [bl+1, dl+1);

z4 + t− dl+1, for t ∈ [dl+1, 1].

and

r(z) =





q(z), for z ∈ [0, z1);

z1 + q(bl)− z, for z ∈ [z1, z2);

z − z2 + q(dl), for z ∈ [z2, z3);

z3 + q(bl+1)− z, for z ∈ [z3, z4);

q(z − z4 + dl+1), for z ∈ [z4, z5].

One can easily check that q = rp0. Let p = p0fk . We can put L1 = [z1 + q(bl)−
q(bl+1), z2], L2 = [z2, z3], L3 = [z3, z3 + q(bl+1) − q(dl)], and L = L1 ∪ L2 ∪ L3,
T = [0, z5], W = Ij. Each mapping of a continuum onto an arc is weakly confluent
[Bi], hence there exists a continuum Y ⊂ X, such that p(Y ) = L. ¤
Lemma 2. Let f : X → S be a mapping between compacta . Assume that there
exists a mapping ν : X × X → S fulfilling the following conditions: ν(x, y) =
ν(y, x) and ν(x, x) = f(x) for x, y ∈ X. Then the induced homomorphism be-
tween cohomology groups f ∗ : H1(Y,Z2) → H1(X,Z2) must be zero.

Proof. We have the following commuting diagram

X ×X

σ

²²

f̃

((RRRRRRRRRRRRRRR

X
R2

∆

ddHHHHHHHHH

lL
∆

{{vvvvvvvvv
f // S

X ×X,
f̃

66lllllllllllllll

in which σ : X ×X → X ×X denotes the permutation homeomorphism defined
by σ((x, y)) = (y, x) and ∆ : X → X ×X is given by ∆(x) = (x, x). It induces
a commuting diagram of cohomology modules of the form

H1(X ×X,Z2)OO

σ∗

kk
f̃∗

WWWWWWWWWWWWWWWWWWWWWWW

H1(X,Z2)
((∆∗

QQQQQQQQQQQQ

66
∆∗

mmmmmmmmmmmm
oo f∗ H1(S,Z2)

H1(X ×X,Z2),
ss f̃∗

ggggggggggggggggggggggg

.
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From the Künneth formula, taking into acount that Z2 is a field, and hence
any module over it is torsion free (cf.[Sig]), we infer that H1(X × X,Z2) is
isomorphic to H0(X,Z2)

⊗
H1(X,Z2)

⊕
H1(X,Z2)

⊗
H0(X,Z2). For conve-

nience we will identify this two objects. For an element g ∈ H1(S1) we have
a unique decomposition f̃ ∗(g) = v + w, where v ∈ H0(X,Z2)

⊗
H1(X,Z2)

and w ∈ H1(X,Z2)
⊗

H0(X,Z2). The components v and w are sums of ele-
ments of the form e0 ⊗ e1 and e′1 ⊗ e′0 respectively, where e0, e

′
0 ∈ H0(X,Z2) and

e1, e
′
1 ∈ H1(X,Z2). We have σ∗(e0⊗ e1) = e1⊗ e0 and σ∗(e′1⊗ e′0) = e′0⊗ e′1([Sp]).

This means that f̃ ∗(g) = σ∗f̃ ∗(g) is a sum of elements of the form e0⊗e1+e1⊗e0.
From the diagram f ∗(g) = ∆∗(f̃ ∗(g)) and ∆∗(e0 ⊗ e1) + ∆∗(e1 ⊗ e0) = ∆∗(e0 ⊗
e1) + ∆∗(σ∗(e1 ⊗ e0)) = ∆∗(e0 ⊗ e1) + ∆∗(e0 ⊗ e1) = 0, hence f ∗ is 0. ¤
Proposition 3. If X is an acyclic continuum, and a, b ∈ X and f : X → [0, 1]
is a mapping such that f(a) = 0, f(b) = 1 then the homomorphism (f × f)∗ :
H∗(([0, 1], {0, 1})× ([0, 1], {0, 1},Z2)) → H∗((X, {a, b})× (X, {a, b}),Z2) induced
by the mapping f × f : (X, {a, b}) × (X, {a, b}) → ([0, 1], {0, 1}) × ([0, 1], {0, 1})
is an isomorphism.

Proof. First from the functoriality of the exact sequence for a pair and the Five
Isomorphisms Lemma we infer that f ∗ : H∗(([0, 1], {0, 1}),Z2) → H∗((X, {a, b}),Z2)
is an isomorphism. Then we apply the same reasoning to the Künneth formula
for (f × f)∗. ¤
Theorem 2. If a chainable continuum X admits a mean then X is an arc.

Proof. Suppose X is a chainable continuum which is not an arc and µ : X×X →
X is a mean. Let δ > 0 be such as in the Long Fold Lemma and let η = 0.1δ.
From the Proposition 2. we have a number ε > 0 and smaller then η such that
µX×X(∆ε ×∆ε) ⊂ ∆η. Now let mappings p : X → T , r : T → W , where T, W
are arcs, and a subcontinuum Y ⊂ X satisfy conditions (i), (ii), (iii) and (iv) of
the thesis of the Long Fold Lemma. Because diam Y > δ and rp is an ε-mapping
there exist points s, t ∈ Y such that p(s), p(t) ∈ L2, where L1, L2, L3 are such as in
the condition (iv) of the Lemma, and ρ(s, t) > 0.5δ, thus (p(s), p(t)) /∈ p×p(Gη).
Let us consider the set G = {(x, y) ∈ L × L : r(x) = r(y)},(see fig.2). It
contains a simple closed curve S surrounding (p(s), p(t)) (in the figure it is drawn
with thick line). Let d : T × T \ {(p(s), p(t))} → S be a retraction. Denote
S ′ = (p × p)−1(S). Of course S ′ ⊂ Gη. Define ν : S ′ × S ′ → S by the formula
ν(x, y) = d(p × p(µX×X(x, y))), for x, y ∈ S ′. We have ν(x, y) = ν(y, x), and
ν(x, x) = p × p(x), hence by lemma 2 the induced homomorphism (p × p|S ′)∗ :
H1(S,Z2) → H1(S ′,Z2) must be zero. But on the other hand consider diagram of
homomorphisms induced by appropriate restrictions of the mapping p×p between
two cohomology Mayer-Vietoris sequences. One of them is the sequence for pairs
(D, ∅), (E, K), (Q,K) = (D, ∅)∪ (E, K), where D is the "rectangle" bounded by
S, E = cl(T × T \ D) , a, b are the ends of T , K = {a, b} × T ∪ T × {a, b},
and (Q, K) = (T, {a, b}) × (T, {a, b}). The second is the sequence for pairs
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Figure 2. The set G.

(D′, ∅), (E ′, K ′), (Q′, K ′) = (D′, ∅) ∪ (E ′, K ′), where D′, E ′ are inverse images
under p× p of D,E respectively, a′, b′ ∈ X, are such that p(a′) = a, p(b′) = b and
(Q′, K ′) = (X, {a′, b′})× (X, {a′, b′}). Remark that S = D∩E and S ′ = D′ ∩E ′.
Let us write down the following fragment of this diagram.

H1(Q′, K ′) −−−→ H1(D′, ∅) ⊕
H1(E ′, K ′) −−−→ H1(S ′, ∅) −−−→ H2(Q′, K ′)x

x
x

x
H1(Q,K) −−−→ H1(D, ∅) ⊕

H1(E, K) −−−→ H1(S, ∅) −−−→ H2(Q,K)

(for brevity we omitted the ring of coefficients, which is Z2). From the Propo-
sition 3 the last vertical arrow represents an isomorphism, and the direct sum
in the lower row is zero (D is contractible and the pair (E, K) is homotopically
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equivalent to the pair (K, K)). From exactness of the lower row and commu-
tavity of the diagram the homomorphism from H1(S,Z2) to H1(S ′,Z2) must be
nonzero. A contradiction.

¤
Example. Another question Bacon asked in [B] is the following one. Is the arc

the only continuum containing an open dense ray (i.e, a subspace homeomorphic
to the half-line [0,∞)) that admits a mean? As a counterexample to this question
may serve the space Σ′ described below. The diadic solenoid Σ as a topological
group admits a 1−1 homomorphism ϕ : R→ Σ of the group of real numbers onto
the composant of the neutral element in Σ. As it was remarked by Sigmon in [Sig]
solenoid Σ has the unique division by 2. Let us define Σ′ = Σ×{0}∪{(ϕ(t), 1

t+1
) :

t ∈ [0,∞)} ⊂ Σ×R. Now we can define a mean on Σ′ by the following fomulae.
i) µ((x, z1), (y, z2)) = (x+y

2
, 0) if z1 = 0 or z2 = 0 and x, y ∈ Σ;

ii) µ((ϕ(t1),
1

t1+1
), (ϕ(t2),

1
t2+1

)) = (ϕ( t1+t2
2

), 1
t1+t2

2
+1

) for t1, t2 ∈ [0,∞).
Remark. A generalization of means are n-means.

Definition 3. Let X be a space and n an integer, n ≥ 2. A mapping µ : Xn → X
is called an n-mean if µ(xσ(1), . . . , xσ(n)) = µ(x1, . . . , xn) for every x1, . . . , xn ∈ X
and each permutation σ of indices 1, . . . , n, and µ(x, . . . , x) = x for every x ∈ X.

A slight modification of presented argument of Theorem 2 (as a ring of coeffi-
cients of cohomology we should use Zp instead of Z2) allows us to show that for
any prime integer p the only chainable continuum admitting a p-mean is the arc.
But, as was observed by Sigmon [Sig] if a space admits an n-mean then it admits
a p-mean for each prime divisor p of the integer n. Hence we have the following
general

Theorem 3. Let n ≥ 2 be an integer. A chainable continuum X admits an
n-mean if and only if X is an arc.
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