MEANS ON CHAINABLE CONTINUA

MIROSŁAW SOBOLEWSKI

ABSTRACT. By a mean on a space X we understand a mapping $\mu: X \times X \to X$ such that $\mu(x, y) = \mu(y, x)$ and $\mu(x, x) = x$ for $x, y \in X$. A chainable continuum is a metric compact connected space which admits an ε - mapping onto the interval [0, 1] for every number $\varepsilon > 0$. We show that every chainable continuum that admits a mean is homeomorphic to the interval. In this way we answer a question by P. Bacon. We answer some other question concerning means as well.

A continuum is a metric compact connected space. A continuum X is chainable if for every number $\varepsilon > 0$ there exists an ε -mapping of X onto an interval. This is equivalent to the existence of a representation of X as an inverse sequence of arcs (the joining mappings may be supposed to be surjective). A mapping f of a continuum X onto a continuum Y is said to be weakly confluent if for every continuum $Z \subset Y$ there exists continuum $W \subset X$ such that f(W) = Z. A mapping $\mu: X \times X \to X$, where X is a space, is called a mean on X if for every $x, y \in X$ we have $\mu(x, y) = \mu(y, x)$, and $\mu(x, x) = x$. Cohomology means here the Alexander-Čech cohomology. P. Bacon in [B] showed that the sin $\frac{1}{n}$ -curve, one of the standard examples of chainable continua, does not admit a mean and asked whether the only chainable continuum with a mean is the arc. Many works give a partial (positive) answer to the problem. A survey of these results can be found in [Ch]. In this note we give a complete answer to this problem. Our argument uses the idea of K. Sigmon, who in [Sig] applied Alexander-Cech cohomology for investigations of compact spaces admitting a mean. On the other hand our proof is similar to the proof that the only psudocontractible (in the sense of W. Kuperberg) chainable continuum is an arc in [So].

These results were presented at the Henryk Toruńczyk's Seminar at Warsaw University in October 2005. Recently I obtained a preprint by Alejandro Illanes and Hugo Villanueva who solved independently the problem of P. Bacon by different methods.

Let us remind the following standard fact (see [Ch]).

Theorem 1. Let X and Y be spaces with means μ_X and μ_Y respectively. Then the formula $\mu((x, y), (x', y')) = (\mu_X(x, x'), \mu_Y(y, y'))$ for $(x, y), (x', y') \in X \times Y$ defines a mean on $X \times Y$.

Proof. We have $\mu((x,y)(x',y')) = (\mu_X(x,x'), \mu_Y(y,y')) = (\mu_X(x',x), \mu_Y(y',y)) = \mu((x',y'), (x,y))$ and $\mu((x,y)(x,y)) = (\mu_X(x,x), \mu_Y(y,y)) = (x,y).$

Definition 1. The mean on $X \times Y$ we described in Theorem 1 will be called a product mean and denoted by $\mu_{X \times Y}$.

Proposition 1. If $\mu_{X \times X}$ is the product mean on the cartesian square $X \times X$ then $\mu_{X \times X}(\Delta \times \Delta) = \Delta$, where $\Delta = \{(x, x) \in X \times X : \text{ for } x \in X\}.$

Proof. Let $(x, x), (y, y) \in \Delta$. Then $\mu_{X \times X}((x, x), (y, y)) = (\mu_X(x, y), \mu_X(x, y)) \in \Delta$.

Definition 2. Let ε be a positive number. The set $\{(x, y) \in X \times X : \rho(x, y) \le \varepsilon\}$ we will denote Δ_{ε} .

The compactness of a continuum X and Proposition 1 imply the following

Proposition 2. If X is a continuum with a mean μ_X , then for every number $\varepsilon > 0$ we can choose a number $\delta > 0$ such that $\mu_{X \times X}(\Delta_{\delta}) \subseteq \Delta_{\varepsilon}$.

We have the following

Lemma 1 (Long fold lemma). Let X be a chainable continuum. If X is not locally connected then there exists a number $\delta > 0$ such that for every number $\varepsilon > 0$ there exist mappings $p: X \to T, r: T \to W$, where T, W are arcs, and a subcontinuum $Y \subset X$ satisfying the following properties:

- (i) diam $Y > \delta$
- (ii) $rp: X \to W$ is an ε -mapping
- (iii) the sets L = p(Y) and J = rp(Y) are arcs
- (iv) the mapping $r \mid L : L \to J$ is open and there exist three different arcs L_1, L_2, L_3 each of which is mapped homeomorphically onto J (Fig.1 is a graph of such a map).

Proof. The non-locally connected continuum X contains a sequence of pairwise disjoint continua K, K_1 , K_2 , K_3 ,..., such that $\lim K_i = K$ ([Ku], 6.§49.VI. Th.1). Put $\delta = \frac{\dim K}{10}$. Now let us consider a representation of X as an inverse sequence of copies of the unit interval $X = \lim_{i \to \infty} \{I_n, f_n^m\}$, where f_n^m are surjections. For a given number $\varepsilon > 0$ let j be such that $f_j : X \twoheadrightarrow I_j$, the projection of the inverse limit is a $\frac{\min(\varepsilon,\delta)}{10}$ -mapping. Let N > 0 be an integer such that $\dim f_j^{-1}([\frac{i}{N}, \frac{i+1}{N}]) \leq \frac{\min(\varepsilon,\delta)}{5}$. Let M be an integer such that for $m \geq M$ the Hausdorff distance between $f_j(K)$ and $f_j(K_m)$ is less than $\frac{1}{4N}$. Now, let $f_k : X \twoheadrightarrow I_k, k > j$ be a projection such that the images $f_k(K_M)$, $f_k(K_{M+1}),\ldots, f_k(K_{M+4N+4})$ are mutually disjoint and let $i_0 < i_1 \leq N$ be indices such that $\inf(\rho(x, y) : x \in f_j^{-1}(\frac{i_0}{N}), y \in f_j^{-1}(\frac{i_1}{N})) > \delta$ and $\{\frac{i_0}{N}, \frac{i_1}{N}\} \subseteq f_j(K_m)$, for every m > M. Now we define a sequence $a_1 \leq b_1 < c_1 \leq d_1 < a_2 \cdots < a_{2N} \leq b_{2N} < c_{2N} \leq d_{2N} < a_{2N+1}$ of points of the segment I_k . We assume that the continua $K_M, K_{M+1}, \ldots, K_{M+4N+4}$ are indexed in accordance with the order in I_k of their images under the mapping f_k . The point a_1 is the first point I_k belonging to $f_k(K_M)$ for which $f_k^i(a_1) = \frac{i_1}{N}$, the point c_1 is the first point following a_1 such

Figure 1

that $f_j^k(c_1) = \frac{i_0}{N}$, b_1 is a point of absolute maximum of f_j^k over $[a_1, c_1]$, a_2 is the first point following c_1 such that $f_j^k(a_2) = \frac{i_1}{N}$, d_1 is the point of absolute minimum of f_j^k over $[c_1, a_2]$, etc. After the *n*-th step of the construction the arc $f_k(K_{M+2n+1})$ lies behind $[a_1, a_n]$ so we can continue the construction. Let n(x) for $x \in I_k$ be the integer fulfilling $f_j^k(x) \in (\frac{n(x)}{N}, \frac{n(x)+1}{N}]$. Each strictly monotone sequence of $n(b_i)$ is shorter than N, hence there is an index l fulfilling $n(b_l) \ge n(b_{l+1}) \le n(b_{l+2})$. We can assume that $f_j^k(d_l) \ge f_j^k(d_{l+1})$ (otherwise we can invert the order of I_k). Let $q_0: I_j \to I_j$ be a nondecreasing surjection, which maps the interval $[\frac{n(b_{l+1})}{N}, \frac{n(b_{l+1})+1}{N}]$, to a point, and this interval is the only fiber of this mapping different from a one-point set. Let $q = q_0 f_j^k$. Let us remark that qf_j is an ε -mapping and that $q(b_l) \ge q(b_{l+1}) \le q(b_{l+2})$ and $q(d_l) \ge q(d_{l+1})$, and $q(b_n) > q(d_m)$ for all indices n, m. Now d_{l+1} is a point of absolute minimum and b_l is a point of absolute maximum of q over $[a_l, a_{l+2}]$. Let us define a nondecreasing sequence of five real numbers: $z_1 = b_l, z_2 = b_l + q(b_l) - q(d_l), z_3 = z_2 + q(b_{l+1}) - q(d_l), z_4 = z_3 + q(b_{l+1}) - q(d_{l+1}), z_5 = z_4 + 1 - d_{l+1}$. We define mappings $p_0: I \to [0, z_5]$ and $r: [0, z_5] \to I$ by the following formulae:

$$p_0(t) = \begin{cases} t, & \text{for } t \in [0, b_l); \\ z_1 + q(b_l) - q(t), & \text{for } t \in [b_l, d_l); \\ z_2 + q(t) - q(d_l), & \text{for } t \in [d_l, b_{l+1}); \\ z_3 + q(b_{l+1}) - q(t), & \text{for } t \in [b_{l+1}, d_{l+1}); \\ z_4 + t - d_{l+1}, & \text{for } t \in [d_{l+1}, 1]. \end{cases}$$

and

$$r(z) = \begin{cases} q(z), & \text{for } z \in [0, z_1); \\ z_1 + q(b_l) - z, & \text{for } z \in [z_1, z_2); \\ z - z_2 + q(d_l), & \text{for } z \in [z_2, z_3); \\ z_3 + q(b_{l+1}) - z, & \text{for } z \in [z_3, z_4); \\ q(z - z_4 + d_{l+1}), & \text{for } z \in [z_4, z_5]. \end{cases}$$

One can easily check that $q = rp_0$. Let $p = p_0 f_k$. We can put $L_1 = [z_1 + q(b_l) - q(b_{l+1}), z_2]$, $L_2 = [z_2, z_3]$, $L_3 = [z_3, z_3 + q(b_{l+1}) - q(d_l)]$, and $L = L_1 \cup L_2 \cup L_3$, $T = [0, z_5]$, $W = I_j$. Each mapping of a continuum onto an arc is weakly confluent [Bi], hence there exists a continuum $Y \subset X$, such that p(Y) = L.

Lemma 2. Let $f: X \to S$ be a mapping between compacta. Assume that there exists a mapping $\nu: X \times X \to S$ fulfilling the following conditions: $\nu(x,y) = \nu(y,x)$ and $\nu(x,x) = f(x)$ for $x, y \in X$. Then the induced homomorphism between cohomology groups $f^*: H^1(Y,\mathbb{Z}_2) \to H^1(X,\mathbb{Z}_2)$ must be zero.

Proof. We have the following commuting diagram

in which $\sigma: X \times X \to X \times X$ denotes the permutation homeomorphism defined by $\sigma((x, y)) = (y, x)$ and $\Delta: X \to X \times X$ is given by $\Delta(x) = (x, x)$. It induces a commuting diagram of cohomology modules of the form

From the Künneth formula, taking into acount that \mathbb{Z}_2 is a field, and hence any module over it is torsion free (cf.[Sig]), we infer that $H^1(X \times X, \mathbb{Z}_2)$ is isomorphic to $H^0(X, \mathbb{Z}_2) \bigotimes H^1(X, \mathbb{Z}_2) \bigoplus H^1(X, \mathbb{Z}_2) \bigotimes H^0(X, \mathbb{Z}_2)$. For convenience we will identify this two objects. For an element $g \in H^1(S^1)$ we have a unique decomposition $\tilde{f}^*(g) = v + w$, where $v \in H^0(X, \mathbb{Z}_2) \bigotimes H^1(X, \mathbb{Z}_2)$ and $w \in H^1(X, \mathbb{Z}_2) \bigotimes H^0(X, \mathbb{Z}_2)$. The components v and w are sums of elements of the form $e_0 \otimes e_1$ and $e'_1 \otimes e'_0$ respectively, where $e_0, e'_0 \in H^0(X, \mathbb{Z}_2)$ and $e_1, e'_1 \in H^1(X, \mathbb{Z}_2)$. We have $\sigma^*(e_0 \otimes e_1) = e_1 \otimes e_0$ and $\sigma^*(e'_1 \otimes e'_0) = e'_0 \otimes e'_1([\text{Sp}])$. This means that $\tilde{f}^*(g) = \sigma^* \tilde{f}^*(g)$ is a sum of elements of the form $e_0 \otimes e_1 + e_1 \otimes e_0$. From the diagram $f^*(g) = \Delta^*(\tilde{f}^*(g))$ and $\Delta^*(e_0 \otimes e_1) + \Delta^*(e_1 \otimes e_0) = \Delta^*(e_0 \otimes e_1) + \Delta^*(\sigma^*(e_1 \otimes e_0)) = \Delta^*(e_0 \otimes e_1) + \Delta^*(e_0 \otimes e_1) = 0$, hence f^* is 0.

Proposition 3. If X is an acyclic continuum, and $a, b \in X$ and $f : X \to [0, 1]$ is a mapping such that f(a) = 0, f(b) = 1 then the homomorphism $(f \times f)^* : H^*(([0,1], \{0,1\}) \times ([0,1], \{0,1\}, \mathbb{Z}_2)) \to H^*((X, \{a,b\}) \times (X, \{a,b\}), \mathbb{Z}_2)$ induced by the mapping $f \times f : (X, \{a,b\}) \times (X, \{a,b\}) \to ([0,1], \{0,1\}) \times ([0,1], \{0,1\})$ is an isomorphism.

Proof. First from the functoriality of the exact sequence for a pair and the Five Isomorphisms Lemma we infer that $f^* : H^*(([0,1], \{0,1\}), \mathbb{Z}_2) \to H^*((X, \{a,b\}), \mathbb{Z}_2)$ is an isomorphism. Then we apply the same reasoning to the Künneth formula for $(f \times f)^*$.

Theorem 2. If a chainable continuum X admits a mean then X is an arc.

Proof. Suppose X is a chainable continuum which is not an arc and $\mu: X \times X \rightarrow X$ X is a mean. Let $\delta > 0$ be such as in the Long Fold Lemma and let $\eta = 0.1\delta$. From the Proposition 2. we have a number $\varepsilon > 0$ and smaller then η such that $\mu_{X \times X}(\Delta_{\varepsilon} \times \Delta_{\varepsilon}) \subset \Delta_{\eta}$. Now let mappings $p: X \to T, r: T \to W$, where T, Ware arcs, and a subcontinuum $Y \subset X$ satisfy conditions (i), (ii), (iii) and (iv) of the thesis of the Long Fold Lemma. Because diam $Y > \delta$ and rp is an ε -mapping there exist points $s, t \in Y$ such that $p(s), p(t) \in L_2$, where L_1, L_2, L_3 are such as in the condition (iv) of the Lemma, and $\rho(s,t) > 0.5\delta$, thus $(p(s), p(t)) \notin p \times p(G_{\eta})$. Let us consider the set $G = \{(x, y) \in L \times L : r(x) = r(y)\}$, (see fig.2). It contains a simple closed curve S surrounding (p(s), p(t)) (in the figure it is drawn with thick line). Let $d: T \times T \setminus \{(p(s), p(t))\} \to S$ be a retraction. Denote $S' = (p \times p)^{-1}(S)$. Of course $S' \subset G_n$. Define $\nu : S' \times S' \to S$ by the formula $\nu(x,y) = d(p \times p(\mu_{X \times X}(x,y))), \text{ for } x, y \in S'.$ We have $\nu(x,y) = \nu(y,x), \text{ and } v(x,y) = \nu(y,x)$ $\nu(x,x) = p \times p(x)$, hence by lemma 2 the induced homomorphism $(p \times p|S')^*$: $H^1(S,\mathbb{Z}_2) \to H^1(S',\mathbb{Z}_2)$ must be zero. But on the other hand consider diagram of homomorphisms induced by appropriate restrictions of the mapping $p \times p$ between two cohomology Mayer-Vietoris sequences. One of them is the sequence for pairs $(D, \emptyset), (E, K), (Q, K) = (D, \emptyset) \cup (E, K)$, where D is the "rectangle" bounded by $S, E = cl(T \times T \setminus D)$, a, b are the ends of $T, K = \{a, b\} \times T \cup T \times \{a, b\}$, and $(Q, K) = (T, \{a, b\}) \times (T, \{a, b\})$. The second is the sequence for pairs

FIGURE 2. The set G.

 $(D', \emptyset), (E', K'), (Q', K') = (D', \emptyset) \cup (E', K')$, where D', E' are inverse images under $p \times p$ of D, E respectively, $a', b' \in X$, are such that p(a') = a, p(b') = b and $(Q', K') = (X, \{a', b'\}) \times (X, \{a', b'\})$. Remark that $S = D \cap E$ and $S' = D' \cap E'$. Let us write down the following fragment of this diagram.

(for brevity we omitted the ring of coefficients, which is \mathbb{Z}_2). From the Proposition 3 the last vertical arrow represents an isomorphism, and the direct sum in the lower row is zero (*D* is contractible and the pair (*E*, *K*) is homotopically

equivalent to the pair (K, K)). From exactness of the lower row and commutavity of the diagram the homomorphism from $H^1(S, \mathbb{Z}_2)$ to $H^1(S', \mathbb{Z}_2)$ must be nonzero. A contradiction.

Example. Another question Bacon asked in [B] is the following one. Is the arc the only continuum containing an open dense ray (i.e, a subspace homeomorphic to the half-line $[0, \infty)$) that admits a mean? As a counterexample to this question may serve the space Σ' described below. The diadic solenoid Σ as a topological group admits a 1-1 homomorphism $\varphi : \mathbb{R} \to \Sigma$ of the group of real numbers onto the composant of the neutral element in Σ . As it was remarked by Sigmon in [Sig] solenoid Σ has the unique division by 2. Let us define $\Sigma' = \Sigma \times \{0\} \cup \{(\varphi(t), \frac{1}{t+1}) : t \in [0, \infty)\} \subset \Sigma \times \mathbb{R}$. Now we can define a mean on Σ' by the following fomulae.

i) $\mu((x, z_1), (y, z_2)) = (\frac{x+y}{2}, 0)$ if $z_1 = 0$ or $z_2 = 0$ and $x, y \in \Sigma$; ii) $\mu((\varphi(t_1), \frac{1}{t_1+1}), (\varphi(t_2), \frac{1}{t_2+1})) = (\varphi(\frac{t_1+t_2}{2}), \frac{1}{\frac{t_1+t_2}{2}+1})$ for $t_1, t_2 \in [0, \infty)$.

Remark. A generalization of means are *n*-means.

Definition 3. Let X be a space and n an integer, $n \ge 2$. A mapping $\mu : X^n \to X$ is called an n-mean if $\mu(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = \mu(x_1, \ldots, x_n)$ for every $x_1, \ldots, x_n \in X$ and each permutation σ of indices $1, \ldots, n$, and $\mu(x, \ldots, x) = x$ for every $x \in X$.

A slight modification of presented argument of Theorem 2 (as a ring of coefficients of cohomology we should use \mathbb{Z}_p instead of \mathbb{Z}_2) allows us to show that for any prime integer p the only chainable continuum admitting a p-mean is the arc. But, as was observed by Sigmon [Sig] if a space admits an n-mean then it admits a p-mean for each prime divisor p of the integer n. Hence we have the following general

Theorem 3. Let $n \ge 2$ be an integer. A chainable continuum X admits an *n*-mean if and only if X is an arc.

References

- [B] P. Bacon, An acyclic continuum that admits no mean, Fund. Math. 67, (1970), pp. 11–13.
- [Bi] R. H. Bing, Snake-like continua, Duke Math. J. 18, (1951), pp. 653–663.
- [Ch] J.J. Charatonik, Means on arc-like continua, an essey in Open problems in Continuum Theory by W.Charatonik and J. Prajs on http://web.umr.edu/ continua/
- [Ku] K. Kuratowski, Topology II, Mir, (1969), (in russian).
- [Sig] K. Sigmon, Acyclicity of compact means, Michigan Math. J. 16., (1969), pp. 111–115.
- [So] M. Sobolewski, *Pseudoarc is not pseudocontractible*, preprint.
- [Sp] E.H. Spanier, Algebraic topology, McGraw-Hill, New York, (1966).