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Abstract: Nanotechnology has evolved to play a prominent role in our economy. Increased 

use of nanomaterials poses potential human health risk. It is therefore critical to understand 

the nature and origin of the toxicity imposed by nanomaterials (nanotoxicity). In this article 

we review the toxicity of the transition metal oxides in the 4th period that are widely used 

in industry and biotechnology. Nanoparticle toxicity is compellingly related to oxidative 

stress and alteration of calcium homeostasis, gene expression, pro-inflammatory responses, 

and cellular signaling events. The precise physicochemical properties that dictate the 

toxicity of nanoparticles have yet to be defined, but may include element-specific surface 

catalytic activity (e.g., metallic, semiconducting properties), nanoparticle uptake, or 

nanoparticle dissolution. These in vitro studies substantially advance our understanding in 

mechanisms of toxicity, which may lead to safer design of nanomaterials. 

Keywords: nanoparticle; toxicity; metal oxide; oxidative stress; calcium homeostasis; 

signal transduction 

 

1. Overview 

Nanotechnology involves the study of the control of matter on atomic and molecular scales. 

Nanomaterials have at least one dimension in the range of 1–100 nm [1]. Nanotechnology is being 

applied in diverse fields, including extensions of conventional device physics, new approaches based 
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upon molecular self-assembly, the development of novel materials with dimensions on the nanoscale, 

and even the direct control of matter on the atomic scale. The application of nanotechnology in biology 

(nanobiotechnology) encompasses development of nanomaterials for delivering and monitoring 

biologically active molecules, disease staging, therapeutical planning, surgical guidance,  

neuro-electronic interfaces, and electronic biosensors.  

In 2000 the U.S. National Science Foundation estimated that the market for nanotechnology 

products will be over one trillion US dollars by 2015. This increase in use will likely lead to 

unintended exposures to nanomaterials by occupational workers and end product users via inhalation, 

dermal absorption, or gastrointestinal tract absorption. In particular, the direct use of nanomaterials in 

humans for medical and cosmetic purposes dictates vigorous safety assessment of toxicity. Presently, 

the adverse effects of such exposure on human health and the environment are incompletely 

understood [2]. 

Nanotoxicology is an emerging field that builds upon previous work on airborne particle toxicity. 

Given (1) fixed particle mass, (2) unitary density, and (3) particle surface bioreactivity, nanoparticles 

possess better tissue penetration and higher biological potency than coarse (2.5–10 µm) and fine  

(<2.5 µm) particles, reflecting their small sizes and large reactive surfaces (Figure 1). Inhaled particles 

and fibers generate oxidants including reactive oxygen species (ROS) and reactive nitrogen species  

(RNS) [3-5]. Knaapen et al. characterized the generation of cellular ROS/RNS as ―primary source‖ if 

arising from the target cells themselves or ―secondary source‖ if arising from inflammatory cells [6]. 

Oxidative stress (OS) plays important roles in cellular signaling, inflammatory, and genotoxic and 

proliferative responses [5–11]. A three-tiered response to oxidative stress model has been  

outlined [12]: The first tier involves the induction of antioxidant enzymes such as HO-1, NQO1, 

superoxide dismutase, catalases and glutathione peroxidases. If tier 1 protection fails to restore cellular 

redox equilibrium, tier 2 responses involving activation of pro-inflammatory signaling pathways such 

as the JNK and NF-κB cascades are triggered. At higher and more prolonged oxidative stress levels, 

cellular perturbation and disarray result in a decrease in mitochondrial membrane potential, leading to  

cell death. 

Figure 1. Assuming an equal particle mass, as particle sizes decrease, surface areas 

increase. (Yue-wern Huang and Hannah Huang, unpublished data). 
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2. Transition Metal Oxide Nanoparticles and their Applications 

Transition metal oxides are used in catalysis [13], magnetocooling [14], optical and recording 

devices [15–16], purification of enzymes and other biological materials [17], water purification  

devices [18], magnetic field assisted radionuclide therapy [19], embolics [20–22], and targeted drug 

delivery [23]. Among the transition metal oxides, titanium dioxide (TiO2), cupric oxide (CuO), and 

zinc oxide (ZnO) have received the most attention due to their unique physical and  

chemical properties.  

TiO2 allows osseointegration of artificial medical implants and bone. TiO2 is also extensively used 

as a pigment, a thickener, and a UV absorber in cosmetic and skin care products. TiO2, particularly in 

the anatase form, is a photocatalyst under ultraviolet light. It can be employed for solar energy 

conversion: Dye, polymer, or quantum dot sensitized nanocrystalline TiO2 solar cells can be 

manufactured using conjugated polymers as solid electrolytes. TiO2 is also used as a material in the 

memristor, a new electronic circuit element. 

Nanostructures of ZnO, including particles, rods, wires, belts, tubes, cages, walls, and rings, have 

found utility due to their unique nanoscaled electronic and optoelectronic properties [24–30]. ZnO has 

wide direct band gap (3.37 eV or 375 nm at room temperature), making it suitable for use in laser 

diodes and light emitting diodes. ZnO has high biocompatibility and fast electron transfer kinetics; 

these features enable the use of this material as a biomimic membrane to immobilize and modify 

biomolecules [31]. Other applications are in catalysis, paints, abrasives, wave filters, UV detectors, 

transparent conductive films, varistors, gas sensing, solar cells, sunscreens, and cosmetic products. 

Cupric oxide (CuO) is used as a pigment in ceramics to produce blue, red, and green (and 

sometimes gray, pink, or black) glazes. CuO is a p-type semiconductor due to its narrow band gap of 

1.2 eV. CuO can be used to produce dry cell batteries as well as wet cell batteries as the cathode. CuO 

is used as an abrasive to polish optical equipment, and it can be used to dispose of hazardous materials 

such as cyanide, hydrocarbons, halogenated hydrocarbons and dioxins via oxidation processes. 

3. Methodologies to Study Toxicity of Transition Metal Oxides 

Both in vitro and in vivo methods provide valuable tools to investigate nanotoxicity. In this article, 

we review in vitro studies. In vitro toxicity testing is a cost effective tool to evaluate the toxicity of 

nanomaterials; there are too many nanomaterials to evaluate each in vivo. Some advantages of in vitro 

studies using various cell lines are that they: (1) reveal effects of target cells in the absence of 

secondary effects caused by inflammation; (2) permit the identification of primary mechanisms of 

toxicity in the absence of the physiological and compensatory factors that confound the interpretation 

of whole animal studies; and (3) are efficient, rapid and cost-effective; and 4) can be used to improve 

design of subsequent expensive whole animal studies. For instance, we and others have used A549 

(human bronchoalveolar carcinoma-derived cells), U87 (astrocytoma cells), U937 (human 

monoblastoid cells), mouse Leydig TM3 cells, human V79 and L929 fibroblasts, human SCCVII, 

B16F10 and FsaR tumor cells, and RAW264.7 (mouse peritoneal macrophage) cell lines to 

characterize oxidative stress-related signaling pathways [32–42]. A nontransformed human lung cell 

line (BEAS-2B) has been used to decipher expression of alteration of genes pertaining to oxidative 
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stress and cell death pathways [43–44]. Co-culture of cell lines is another valuable technique to 

manipulate environmental influences in vitro studies [45]. 

A limitation of in vitro testing is that cells in culture do not experience the range of pathogenic 

effects observed in vivo, partly related to issues of translocation, toxicokinetics and coordinated tissue 

responses. A detail discussion of the limitations of in vitro studies can be found in Donaldson et al. [46]. 

4. Mechanisms of Cellular Uptake and Intracellular Interactions 

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) have been the 

most widely used techniques to visualize agglomerated nanoparticles in cells [35,40–41,47]. To 

understand mechanisms of cellular uptake of nanoparticles, we recommend live cell imaging 

techniques, as cell fixation process can alter membrane properties leading to artificial uptake of 

nanoparticles [48]. Fluorescent probes such as Texas Red and FITC can be conjugated to nanoparticles 

to ascertain bioavailability. Studies on uptake mechanisms of transition metal oxide nanoparticles are 

limited; however, the following findings on the uptake of quantum dots, carbon nanotubes, gold 

nanoparticles, and silicon nanoparticles are likely to be relevant to transition metal oxides. 

Cationic nanoparticles may enter cells more easily than anionic nanoparticles since cationic 

nanoparticles can interact with heparin sulfate proteoglycans on the membrane surface [49–50]. This 

increased bioavailability may explain why cationic silicon nanoparticles are more toxic than neutral 

and anionic silicon nanoparticles [51]. This electrostatic interaction is a prelude for a subsequent 

endocytic process. Exogenous materials can be internalized via multiple pathways, including  

clathrin-mediated endocytosis, caveolar-mediated endocytosis, macropinocytosis, phagocytosis, 

flotillin-dependent endocytosis, arf6-dependent endocytosis, IL2Rβ endocytic pathway, CLIC/GEEC 

endocytic pathway, circular doral ruffles, and trans-endocytosis. A few studies have suggested that the 

uptake of nanomaterials involves energy-, lipid raft- and actin-dependent macropinocytosis. 

Phagocytosis is an alternate proposed venue of entry. For instance, single wall carbon nanotubes 

conjugated with proteins as cargoes enter cells via energy-dependent pathways and become entrapped 

inside endosome/lysosomes [52]. We have observed that CdSe/ZnS quantum dots non-covalently 

conjugated with nona-arginines are internalized via lipid raft dependent macropinocytosis, and the 

complex is confined in lysosomes [53–54]. One study has demonstrated that Tat peptide-conjugated 

quantum dots (Tat-QD) are internalized via actin-dependent endocytosis, transported by microtubules, 

and aggregated around microtubule-organizing center; the Tat-QD vesicle are shed from  

filopodia [55]. On the other hand, gold nanoparticles conjugated with biomolecules are internalized via 

phagocytosis by mouse macrophages [56], and organic monolayer-coated silicon nanoparticles are 

phagocytosed by rat alveolar macrophage cells (NR8383) [51]. Clearly, studies on uptake mechanisms 

of transition metal oxides are needed. 

5. Toxicity of Transition Metal Oxide Particles 

Using commercially available raw nanoparticles to test toxicity is essential to understand human 

health risk and environmental impact, as this addresses unintended exposure. It is equally important to 

test surface modified-nanoparticles, as these modified nanoparticles have different kinetics and 
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bioavailability than the native nanoparticles, and they are frequently applied directly on human body 

for purposes such as disease diagnostics, treatment, and prognostics. 

The toxicological literature reveals a trend among these transition metal oxides: TiO2 is less toxic 

than CuO and ZnO in human cell lines [33,35,43,57–58]. A similar trend was observed in  

E. Coli [59] and yeast [60]. Using BEAS-2B cells, we investigated the toxicity of oxides of Cr, Mn, 

Fe, Co, Ni, Cu, and Zn, each of which is widely used in industry and is in the same period as Ti (V2O3 

particles were excluded from this analysis because they are not commercially available in the same 

size range and morphology as the other compounds). Toxicity increased with atomic number (Figure 2), 

with the exceptions of Fe2O3 (lower toxicity than expected) and CoO (higher toxicity than expected). 

Fahmy and Cormier also identified a similar relationship of CuO and Fe2O3 toxicity in airway 

epithelial cells (HEp-2) [39]. It is difficult to compare the toxicity of TiO2 and V2O5, as synthesis 

methods, particle characteristics, and cell lines (Leydig TM3 cells, human V79 and L929 fibroblasts, 

human SCCVII, B16F10 and FsaR tumor cells) differ among the few published studies; however, it is 

quite clear that TiO2 is minimally toxic while V2O5 is toxic [40–42]. Data from these studies are 

consistent with our findings presented in Figure 2. 

Figure 2. Cytotoxicity of eight transition metal oxides in BEAS-2B cells exposed for 24 h. 

(adapted from [43], with additional data). 

 

 

While the factors underlying this trend have not been established, several physicochemical 

properties have been considered, including element-specific catalytic activity on the particle surface, 

released ions (particle dissolution), and differential cellular uptake. In a study with A549 cells, 

Limbach et al. [61] demonstrated that 1) among titanium-, manganese-, iron-, or cobalt-doped silica, 
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the addition of Ti or Fe has a much smaller effect on ROS generation than Mn due in part to surface 

catalytic activity; and 2) particles of Co3O4 and Mn3O4, but not TiO2 and Fe2O3, can significantly 

dissolve in a cell-free culture system leading to elevated ROS levels. They further demonstrated that 

much less ROS is formed when an aqueous iron solution contains A549 cells than when the solution 

contains no cells. The authors attributed this difference to a barrier function of the cell membrane for 

ions. It is also likely that that adsorption and binding of the metal oxide particles to the matrix of the 

cell medium may also be involved [62]. 

The potential role of dissolved ions in toxicity was also highlighted in a study by George et al. [63]. 

They found remarkably high levels of Zn
2+

 released into aqueous solutions from pure and Fe-doped 

ZnO nanoparticles. In one study, we suspended transition metal oxides in an aqueous solution for a 

period of 6 hours, and utilized a dialysis membrane with a molecular weight cutoff 500–1,000 to 

separate ionic species. We observed a trend of increased ion dissolution of metal oxides from TiO2 

(0.0017%–0.0065%, wt based) to ZnO (1.25%–1.67%, wt based) (Huang et al. unpublished data), 

corresponding to the toxicity trend (Figure 2). While initial attempts to measure ion dissolution from 

metal oxide nanoparticles have been made by us and others, it would be desirable to assess ion 

dissolution in a cell medium relevant setting using a standardized protocol to separate dissolved ions. 

Moreover, pH maintenance during the experimental protocol is essential to allow comparisons with the 

cellular environment, and adsorption effects by culture medium can complicate the subsequent  

ICP-MS analysis and must be taken into consideration. 

While Limbach’s findings [61] may explain the relatively low toxicity of Fe2O3, it is not obvious 

why CoO is more toxic than NiO. We suspect involvement of a variety of factors: surface catalytic 

activity, released ion, cell membrane as a barrier, adsorption to the matrix of the cell medium, cellular 

uptake, and possibly point of zero charge. Experiments using oxides of different oxidation states (CoO, 

Co3O4, NiO, Ni2O3) may be revealing in this regard. 

Although we and others have contributed to the understanding of the physico-chemical properties 

governing cytotoxicity of transition metal oxides, there are still gaps in our knowledge. While studies 

on nanoparticles of industrial origin have contributed to risk assessment and management, these 

materials possess considerable heterogeneity in size, morphology, surface defects, etc. This makes it 

difficult to relate toxicity to specific particle characteristics. Thus, it is desirable to synthesize highly 

defined and uniform nanoparticles to identify the toxicity-contributing properties of nanoparticles for 

comparative and predictive nanotoxicology. Not only would this type of particles enrich our 

knowledge of particle physics, chemistry and biology, it would also assist in the design and production 

of safer alternative particles. 

6. Mechanisms of Action of Toxicity 

6.1. Exposure to Metal Oxides Tips Off Cellular Redox State—Elevated Oxidative Stress 

Oxidative stress is a normal cellular process involved in many aspects of cellular signaling, though 

excessive oxidative stress can be harmful. Many studies have shown that exposure to nanoparticles 

elevates cellular oxidative stress [34–35,37–39,61]. To cope with elevated oxidative stress, cells mount 

protective or injurious responses. For instance, cells activate enzymatic and non-enzymatic antioxidant 

defense mechanisms. Glutathione peroxidases, catalases, superoxide dismutases, and phase II enzymes 
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play essential roles in returning cells to a normal redox state (Figure 3). The transcription factor Nrf-2 

has been shown to play an essential role in the antioxidant response element (ARE)-mediated 

expression of phase II detoxifying and antioxidant enzymes, as well as other stress-inducible genes, in 

response to oxidative stress [64–66]. A recent study with CeO2 nanoparticles has demonstrated that 

Nrf-2 can be activated and translocated into nucleus with subsequent induction of heme oxygenase-1 

(HO-1) in CeO2-exposed BEAS-2B cells [67]. Nrf-2 can therefore be considered as a master switch for 

antioxidation defense, serving as a functional indicator of oxidative insult caused by nanomaterials.  

In our pathway-specific microarray study involving 84 oxidative stress responsive genes [20], 

exposure of BEAS-2B cells to a ROS-elevated but sublethal concentration of ZnO nanoparticles 

elevates the expression of genes pertaining to oxidative stress (PRDX3, PRNP, and TXNRD1 genes) 

and apoptosis (a pro-apoptotic BNIP3 gene). This is consistent with our biochemical and cytotoxicity 

findings. One caution in assessing gene regulation under oxidative stress is that the response is quite 

dynamic and dependent on somewhat arbitrary cutoff criteria relative to control levels. For instance, 

we did not find elevated expressions of several common antioxidant genes, including catalase, 

glutathione peroxidase, glutathione reductase, glutathione transferase, and superoxide dismutase in 

cells exposed to ZnO at the ROS-elevated but sublethal level [20]. This finding is consistent with 

results reported by Sarkar et al. [44] with toxic single-walled carbon nanotubes in BJ Foreskin cells. 

At different time points or concentrations (i.e., stress levels), gene expression may be alternately  

up-regulated or down-regulated. 

Figure 3. An example of metabolism of nanoparticle-induced oxidative stress and resulting toxicity. 

 

 

Understanding the regulation of enzymatic and non-enzymatic antioxidant defense mechanisms 

may suggest strategies to mitigate elevated oxidative stress. For example, Gilliland et al. used 
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knockout and genetic polymorphisms of genes that encode phase II enzymes to characterize a 

susceptibility mechanism that may explain why only some people develop PM-induced injury [68]. 

Catalase and glutathione peroxidase are two other examples: Catalase has a relatively low constitutive 

level in cardiomyocytes which predisposes cardiac muscle to oxidative stress damage. Cardiac muscle 

is also very susceptible to oxidative damage due in part to the rapid inactivation of glutathione 

peroxidase [69]. Overexpression of glutathione peroxidase in endothelial cells and myocytes 

significantly decreases oxidative stress-induced NF-kB activation, which leads to apoptosis [70]. Thus, 

tissue-specific responses to nanoparticle exposure should be considered when risk assessment  

is performed. 

The fundamental factor that governs initiation of cellular oxidative stress by transition metal oxides 

is still unknown. Oxygen vacancies on metal-oxide surfaces are electrically and chemically active. 

Once entering circulatory systems or cells, charge accepting molecules, such as NO2 and O2, may be in 

close proximity at the vacancy sites; de-coupling of charged NO2 or O2 is possible and could be 

sources of initiation of oxidative stress. Interestingly, non-metal nanomaterials such as carbon 

nanotubes behave like (transition) metal oxides in inducing cellular oxidative stress. We hypothesize 

that oxidative stress initiated by metal or non-metal nanoparticles may be related to their metallic or 

semiconducting properties at nano-scale sizes. It remains to be determined how the metallic or 

semiconducting behaviors and metal dissolution differentially contribute to initiation of cellular 

oxidative stress and subsequent pathologic outcome. 

When oxidative stress overwhelms defense mechanisms, cellular macromolecules such as proteins, 

lipids, and DNA are subject to damage. DNA damages include deletions, mutations, single- and 

double-strand breakages, adduct formation, and cross-linking with proteins. Studies have confirmed 

DNA adducts and oxidation-induced DNA fragmentation following exposure to metal oxide 

nanoparticles [35,58,71–73]. In response to DNA insult, cells attempt to repair the damaged DNA. 

Repair failure may lead to cell death (e.g., apoptosis) or cell transformation. It is important to identify 

types of DNA damages and repair mechanisms involved in nanotoxicity (e.g., nucleotide excision 

repair, base excision repair, mismatch repair, double strand repair, direct reversal), as this 

understanding may suggest measures for prevention or intervention, such as the over-expression of 

DNA repair genes. 

In the case of severe damage to DNA, cells may die by either necrosis or apoptosis. Apoptosis is a 

complex and highly regulated process that is invoked to eliminate irreparably damaged cells. In 

contrast, necrosis has long been thought of as a disorderly event (although new evidence suggests 

otherwise), and is considered to be a consequence of extreme physiochemical stress. Although studies 

have shown that exposure to certain metal oxide nanoparticles induces apoptosis [74], it is unclear 

which pathways are involved. There are at least four major apoptotic pathways: extrinsic apoptotic 

(receptor mediated pathway), intrinsic apoptotic (mitochondrial pathway), caspase-2 dependent, and 

caspase-independent. Again, an understanding of which pathway(s) is involved in nanoparticle 

induced cell death may suggest measures for prevention or mitigation. 

Insofar as multiple genes have been demonstrated to be involved in responses to oxidative stress, 

DNA damage, and cell death (apoptosis and necrosis), a custom, pathway-specific genetic approach 

could serve to decipher toxicity mechanisms of nanoparticles. On the other hand, whole genome 

approaches may serve as a discovery tool to identify unanticipated signaling pathways.  
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6.2. Oxidative Stress and Perturbation of Intracellular Calcium Homeostasis 

The intracellular calcium concentration ([Ca
2+

]in) plays major regulatory roles in cellular 

metabolism, signal transduction, and gene expression. For instance, calcium can influence cell cycle 

by activating protein kinase C (PKC), Ca
2+

/calmodulin-dependent protein kinases (CaMK), and 

mitogen-activated protein kinase (MAPK). Accordingly, [Ca
2+

]in is tightly regulated, and alterations of 

[Ca
2+

]in are associated with cellular dysfunction, metabolic and energetic imbalance, disease states, and 

cell death. A host of environmental toxicants elevate [Ca
2+

]in directly or indirectly by promoting Ca
2+

 

influx, releasing Ca
2+ 

from intracellular stores, inhibiting Ca
2+

 sequestration, or blocking Ca
2+

 efflux 

from the cell [75]. A study with ultrafine particles demonstrated that calmodulin-dependent signaling 

pathways are crucial for cytotoxicity and cytoskeletal dysfunctions [76]. In our studies, ZnO caused a 

concentration-dependent elevation of [Ca
2+

]in, that could be partially attenuated by the antioxidant  

N-acetylcysteine (NAC), indicating an effect of oxidative stress on calcium  

homeostasis [43]. The inverse correlation between [Ca
2+

]in and cell viability suggests a role for 

calcium in cell death. The moderation of this increase by nifedipine suggests that a portion of this 

increase reflects the influx of extracellular calcium. Membrane disruption (e.g., oxidative  

stress-induced lipid peroxidation) may also play a role in this influx. The involvement of Ca
2+

 release 

from intracellular stores has yet to be evaluated. 

In another study, the effects of ZnO nanoparticles on store operated calcium entry was studied in 

Chinese hamster ovary (CHO) cells stably transfected with a M3 muscarinic receptor. M3 receptors 

activate Gαq transducer proteins that stimulate phospholipase Cβ (PLCβ) [77]. PLCβ hydrolyzes 

phosphatidylinositol 4.5-bisphosphate, releasing two second messengers, diacylglycerol and inositol 

trisphosphate (IP3). IP3 binds to the IP3 receptor on the endoplasmic reticulum (ER) to release 

calcium into the cytosol. Sensors in STIM1 proteins that are components of ER membranes detect the 

depletion of calcium in the ER. STIM1 proteins thus activated interact with Orai channel proteins in 

the plasma membrane to stimulate the entry of extracellular calcium, i.e., the store operated calcium 

entry (SOCE) (Figure 4) [78–79]. At a non-cytotoxic concentration (10 µg/mL), ZnO increased 

resting [Ca
2+

]in of Chinese hamster ovary (CHO) cells expressing M3 muscarinic receptors from 40 to 

130 nm without compromising calcium homeostatic mechanisms and the CHO cells had no store 

operated calcium entry response in the presence of 10 µg/ml ZnO. Hence, ZnO particles had minimal 

effects on IP3- or thapsigargin-mediated release of intracellular calcium from the endoplasmic 

reticulum, but strongly inhibited store operated calcium entry. This effect was seen a decrease in Ca
2+

 

entry upon introduction of calcium to the extracellular medium following thapsigargin-induced 

depletion of calcium from the endoplasmic reticulum (EC50’s ≈ 2 µg/ml). Thus, ZnO nanoparticles 

interfere the M3 signaling pathway (at least) via disruption of store operated calcium entry. 
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Figure 4. Store-operated Ca
2+

 entry (SOCE). Ligand binding to certain G protein coupled 

receptors leads to activation of phospholipase Cβ. The IP3 thus released increases Ca
2+

 

release from the lumen of the endoplasmic reticulum. Depletion of ER calcium leads to a 

Stim1 (Ca
2+

 sensor)—Orai (Ca
2+

 channel) interaction and the entry of extracellular Ca
2+

. 

ZnO nanoparticles inhibit this pathway by blocking the SOCE without affecting proximal 

receptor signaling events [67]. 

 

 

Figure 5. Relationships between ZnO nanoparticles, production of reactive oxygen species 

(OS), and intracellular Ca
2+

 concentrations. (modified from [43]) 

 

 

Nanoparticle-induced cell death by various means is summarized in Figure 5 [34–35,37–38,43]. 

The increases in intracellular content OS may have multiple sources. We postulate that the elevated 
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OS is a consequence of ZnO surface reactivity and/or defects interacting with intracellular reductants 

in combination with the effects of dissolved metal ions that catalyze redox reactions. Synergistic 

interactions between intracellular [Ca
2+

] and OS are a likely contributing factor. While [Ca
2+

]in and OS 

affect the activity of each other, they both induce cell death by distinct pathways. Finally, though 

calcium-dependent kinase activation pathways leading to cell cycle regulation or cell death have been 

well documented, studies in this area with transition metal oxides are lacking. 

6.3. Pro-Inflammatory Response 

Inflammation is clinically defined as the presence of redness, swelling and pain. Histologically, it is 

defined as the presence of edema fluid and the infiltration of tissues by phagocytic cells. Chronic 

inflammation can lead to diseases such as atherosclerosis, pulmonary diseases, and cancer. Oxidative 

stress is closely related to inflammatory response by activating the nuclear factor-kappaB (NF-κB) 

signaling pathway that controls the transcription of pro-inflammatory genes such as IL-1, IL-8, and 

tumor necrosis factor- (TNF-) (Figure 6). 

Figure 6. A model shows the simplified NF-kB signaling pathway that is activated by 

oxidative stress. Persistent activation leads to chronic inflammation. 
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Exposure to nanoparticles has been found to result in oxidative stress-induced activation of  

pro-inflammatory factors such as IL-1, IL-6, IL-8, and macrophage inflammatory proteins (MIP) at 

both mRNA and protein levels in vitro [45,80–86]. Additional effects such as activation of IL-2, IL-4, 

IL-5, IL-6, IL-12, TNF-α, increased number of polymorphonuclear leukocyte (PMN) and lymphocyte, 

increased B cell distribution, and T cell diminish have been observed in vivo (Table 1). These factors 

along with histopathological evidence can be included in the assessment of the risks associated with 

nanoparticle exposure. 

Table 1. Pro-inflammatory responses induced by nanoparticles. 

Nanoparticle Size (nm, diameter) Cell type/animal Effect Ref. 

TiO2  N/A A549 cells mRNA and protein of IL-8 ↑ [81]  

TiO2  20–80 A549 cells IL-8 mRNA ↑ [80]  

TiO2 N/A Human neutrophils IL-6, IL-8, MIP-1α, MIP-1β ↑ [86]  

ZnO 24–70 
Lung lavage;  

BEAS-2B cells 
IL-8 mRNA ↑ in both cell types [82] 

Al2O3, Al 
Al2O3 (33);  

Al (48) 

U937 & A549  

(co-cultured) 

Phagocytosis activity ↓ (Al); 

suppress immune response (Al & 

Al2O3) 

[45]  

Au-NPs 50 

Bovine retinal 

pigment epithelial 

cells 

Inhibit VEGF and IL-1β induced 

proliferation and migration 
[83] 

Silica 20 

HUVEC (human 

umbilical vein 

endothelial cells) 

IL-6, IL-8, monocyte chemotactic 

protein-1 α (MIP-1α) ↑ 
[85] 

Fe 20–50 
HL1-NB cells 

(mouse cardiac cells) 
IL-8 & MCP-1 not changed [84] 

Fe3O4 5.3 ICR mouse (♂) 

IL-1, IL-2, IL-4, IL-5, IL-6, IL-12, 

TNF-α, TGF-β, IgE, & B cell 

distribution ↑. T cell 

(CD4+/CD8+) diminished. 

[87] 

Fe3O4 

(superpara 

magnetic)  

36 BALB/c mouse (♂) 
PMN & lymphocyte ↑; IL-1β,  

IL-6, TNF-α, MIP-1α mRNA ↑ 
[88] 

SWCNT; 

MWCNT 

SWCNT:  

4(W) x 1E5(L) 

MWCNT: 

30(W) x 2E5(L)  

BALB/c mouse (♀) TNF-α & MIP-1 ↑ [89]  

 

7. Conclusions 

Recent studies have increased our understanding of the nanotoxicity of metal oxide particles, 

particularly with respect to oxidative stress-induced cascade pathways that lead to inflammatory 

responses. Several important challenges remain. First, inter-laboratory discrepancies contribute to 

uncertainties in risk assessment. Second, as new nanomaterials continue to emerge, a systematic 
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approach to identifying the physicochemical properties of nanomaterials that determine toxicity is 

required. This is problematic using nanomaterials of industrial origin since they 1) vary in multiple 

physical characteristics, 2) are synthesized using different methods, and 3) vary widely in purity. 

Third, to attribute toxicity to a particular factor, one needs to consider the extent to which the test 

design is relevant to the cellular environment. It is likely that toxicity is a non-linear function of  

multi-variables, which highlights the necessity of developing a theoretical computing model for 

predictive nanotoxicity.  
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