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Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-
penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review,
we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the
nature of versatile CPPs and their interactions with various types of cargoes. We then discuss in vivo and in vitro delivery of nucleic
acids and nanomaterials by CPPs. Studies on the mechanisms of cellular entry and limitations in the methods used are detailed.

1. Introduction

1.1. Cell-Penetrating Peptides. The plasma membrane plays
essential roles in selective permeability, osmotic balance,
compartmentalization, and cellular uptake. Small polarmole-
cules such as ions, amino acids, and sugars enter cells through
specific carriers and channels in the membrane. Larger
macromolecules, such as proteins, DNAs, and RNAs, are gen-
erally unable to use this mode of entry. Consequently, deliv-
ery tools have been developed to facilitate cellular uptake
of large molecules for basic research and biomedical appli-
cations (Figure 1). These include mechanical and electrical
transfection techniques such as microinjection, bioballis-
tics, hydrodynamic force, ultrasonic nebulization, electro-
poration, chemical/biochemical methods such as calcium
phosphate coprecipitation, membrane fusion catalyzed by
artificial lipids, peptides/proteins, dendrimers, adenovirus-
associated virus vectors, and lentiviral vectors [1]. Some of
these methods are suitable for in vitro or in vivo use, while
others are suitable for both. These delivery methods can
also be categorized as involving viral or nonviral carrier
systems. Due to safety reasons, nonviral delivery methods
such as peptide- and lipid-based systems have received
more attention over the past 20 years than viral methods.

Advantages of nonviral systems are ease and flexibility of
assembly, minimal toxicity, and low levels of immunogenicity
and insertional mutagenesis.

Among nonviral delivery methods, cell-penetrating pep-
tides (CPPs) have become increasingly popular.The first CPP
was discovered by two independent groups and is comprised
of a protein transduction domain (PTD) derived from the
transactivator of transcription (Tat) of the human immun-
odeficiency virus type 1 (HIV-1) [2, 3]. This domain contains
eleven amino acids (YGRKKRRQRRR) that are responsible
for cellular entry of Tat [4]. Later, a variety of CPPs are derived
from natural, chimeric, and synthetic sources (Table 1) [5, 6].
In general, CPPs are (1) less than 30 amino acids, (2) rich in
arginine and lysine, (3) positively charged or amphipathic, (4)
easy to prepare, and (5) nontoxic [7].

In general, the efficiency of a CPP in mediating cellular
uptake is a function of its total electric charge and amino
acid sequence insofar as these properties determine its 3-
D structures and potential interactions with membranes
molecules [8–10]. In particular, secondary amphipathicity is
a critical determinant of cellular uptake [9, 11–13]. Data bases
and predictive simulationmodels are available for identifying
biomimetic cell-penetrating peptides based upon an array of
protein characteristics [14–16].
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Figure 1: Cell-penetrating peptides as a tool to deliver biologically active molecules.

Table 1: A variety of cell-penetrating peptides mentioned in this paper.

CPP Amino acid sequence References
Viral or natural CPPs

HIV Tat YGRKKRRQRRR [31–35]
HIV Rev TRQARRNRRRRWRERQR [35]
FHV coat RRRRNRTRRNRRRVR [35]
HSV-1 protein VP22 DAATATRGRSAASRPTERPRAPARSASRPRRPVD [34]
Penetratin RQIKIWFQNRRMKWKK [31, 33, 36, 37]
EB1 (penetratin analog) LIRLWSHLIHIWFQNRRLKWKKK [31]
MPG GALFLGFLGAAGSTMGAWSQPKKKRKV [31, 34, 38–40]

Polyarginines
PR9 FFLIPKGRRRRRRRRR [41–44]
SR9 RRRRRRRRR [31, 34, 41, 42, 45]
IR9 GLFEAIEGFIENGWEGMIDGWYGRRRRRRRRR [46–48]
HR9 CHHHHHRRRRRRRRRHHHHHC [41–44, 46]

Engineered CPPs
Transportan CLIKKALAALAKLNIKLLYGASNLTWG [31, 36]
CADY GLWRALWRLLRSLWRLLWRA [31, 49]
C6 RLLRLLLRLWRRLLRLLR [13]
C6M1 RLWRLLWRLWRRLWRLLR [13]
PF20 (and variants, see [9]) LLKLLKKLLKLLKKLLKLL [9]
NAP KALKLKLALALLAKLKLA [9]
Steryl-NAP Stearyl-KALKLKLALALLAKLKLA [9]
POD GGG[ARKKAAKA]4 [25]
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Figure 2: Reaction scheme for linking CPPs to cargoes.The cargoes can be linked to the CPPs through a covalent linkage method such as (a)
bissulfosuccinimidyl suberate, (b) carbodiimide, or (c) Sulfo-SMCC with a cysteine-modified CPP, or through a noncovalent method such
as (d) biotin-streptavidin interaction.

1.2. Versatile CPPs andTheir Interactions with Cargoes. CPPs
have been used as carriers of DNA, RNA, protein, nano-
materials, and pharmaceuticals. Association between CPP
and cargo can be either covalent or noncovalent. Covalent
interactions have been achieved by sulfosuccinimidyl suber-
ate linkage, carbodiimide conjugation, and thiol-amine cou-
pling. Noncovalent interactions include biotin-streptavidin
interactions, electrostatic interactions, and metal-affinity
interactions [18–20] (Figure 2). Covalent strategies have been
used to conjugate antibody fragments, drugs, and fluorescent
labels. Covalent linking ensures strong association between

CPP and cargo and high transduction efficiency. However,
the covalent-linking procedure may be labor-intensive, time-
consuming, and costly. The yield of the CPP-cargo covalent
complex also decreases during separation from the unbound
CPPs and cargoes. Further, to achieve covalent linking,
cargoes are chemically modified, which may compromise
functionality. Schwarze et al. first demonstrated the delivery
of CPP-fusion proteins into various tissues in mice [21].
Subsequently, others showed that CPPs can carry covalently
linked nucleic acids and nanomaterials into cells of a variety
cell lines [22–24]. Johnson et al. used the cell-penetrating
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peptide POD (peptide for ocular delivery) to deliver POD-
GFP fusion protein to retina, cornea, and skin [25]. Chang
et al. first described a CPP-mediated covalent protein trans-
duction in plants [26].

The advantages of noncovalent binding between CPP and
cargo are ease of use, ease of production, versatility with
respect to cargo composition, and preservation of cargo func-
tionality [27]. Noncovalent strategies have been used to
deliver siRNA, plasmids, and splice correcting oligonucleoti-
des.Noncovalent bondingwas applied to the delivery of green
fluorescent protein (GFP), collagen and insulin, into mouse
skin tissues [28, 29].We and others have successfully used the
noncovalent delivery in several representative organisms of
prokaryotes and unicellular yeasts, including cyanobacteria,
bacteria, archaea, algae, fungi, and yeasts. However, nonco-
valent delivery was not successful in multicellular fungi and
green algae [30].

2. CPPs Delivery of Nucleic Acids

2.1. siRNA Delivery. RNA interference (RNAi) is an evolu-
tionarily conservedmechanism of gene expression regulation
in animals and plants [84]. Endogenous pre-microRNAs
(pre-miRNAs) are synthesized and processed in the nucleus
and then transported to cytoplasm.The pre-miRNA is short-
ened and processed in the cytoplasm by an RNAse III enzyme
(Dicer) to become mature microRNA. A multienzyme com-
plex that includes argonaute 2 and theRNA-induced silencing
complex (RISC) binds to the microRNA and eliminates one
strand. This activated complex then binds to an mRNA
strand that possesses a complementary sequence, thereby
inactivating its expression [85–87]. Utilizing this principle,
synthetic RNA molecules (small interfering RNA, siRNA) of
20–25 base pairs in length have been developed tomanipulate
the expression of specific genes (Figure 3). This technique
represents a new treatmentmodality in cancer, infectious dis-
eases, and genetic disorders. Currently there aremore than 20
siRNAs undergoing clinical trials in various stages [88]. The
biggest challenge of this technique is delivery of siRNA across
the cytoplasmic membrane. Carriers are needed to overcome
this barrier and CPPs represent an obvious attractive means
for siRNA internalization.

The CPPs transportan, penetratin, amphipathic peptides,
and polyarginine have been extensively used to covalently
or noncovalently deliver siRNA into animal and plant cells
[31–33, 36–40, 45, 49, 89, 90]. Target gene products of
siRNAs include Luciferase, SOD1, EGFP, p38 MAP kinase,
CDK9, VEGF, p53, and Oct-3/4. Stable noncovalent CPP and
siRNA complexes can be formed by CPP/siRNA electrostatic
interactions. Alternately, CPPs can be covalently linked to
siRNA duplexes through disulfide bond formation in which
CPPs containing N-terminal cysteines are conjugated to
siRNAmoleculeswith a 5-thiolmodified siRNA sense strand
[31, 34]. It is critical to purify the CPP/siRNA complex in
order to investigate transduction efficiency of the covalent
CPP-siRNA complexes. Otherwise, it is difficult to discern
the contribution of noncovalentCPP-siRNAcomplexes to the
transduction response.

Potential drawbacks of direct conjugation of cationic
CPPs with anionic siRNAs are charge neutralization, inacti-
vation of the CPP, and aggregation/precipitation, which may
limit siRNA entry into the cells [33, 91, 92]. Eguchi and
Dowdy invented an elegant design that fused a Tat PTD with
a double-stranded RNA-binding domain (dsRBD) [93]. This
design allowed siRNA to bind to dsRBD while leaving PTD
to induce cellular uptake in primary and transformed cells.
This tactic was applied in a mouse model of glioblastoma
to deliver two siRNAs for simultaneous silencing of EGFR
and Akt2. The result was selective destruction of tumor cells
and improved longevity of cancerousmice [94]. Clearly, CPP-
mediated siRNA delivery has a promising future in disease
treatment.

2.2. DNA Delivery. The delivery of functional exogenous
DNA into organisms is important for transgenic research and
gene therapy. Most studies have focused on CPP-mediated
delivery into mammalian cells, although our research team
has demonstrated that CPPs can deliver biologically active
molecules into a variety of species, including rotifers [46],
cyanobacteria [95], insects [41], plants [96], and parame-
cium [42]. Internalization of CPP-mediated DNA transduc-
tion involves a combination of pathways including classical
endocytosis, caveolin- and clathrin-dependent endocytosis,
macropinocytosis, and direct membrane penetration [46, 96,
97]. Various strategies have been developed to enhance trans-
duction efficiency. For instance, stearylation of arginine-rich
CPPs drastically increases transduction efficiency of plasmid
DNA [35, 98], while hemagglutinin-2 (HA2) analogues or
chemicals such as chloroquine and polyethylenimine (PEI)
enhance transduction efficiency by catalyzing cargo release
from endosomes (see Section 4.3).

There have been attempts to deliver biologically active
molecules into the nucleus [99]. Molecules can enter the
nucleus from the cytoplasm by either passive diffusion or
active transport mechanisms. Small molecules less than
10 nm in diameter or 50–60 kDa in size can diffuse directly
through nuclear pore complexes. Most protein molecules
are transported by energy-dependent transport mechanisms
initiated by nuclear localization signals (NLS). These signals
are recognized by importin family proteins that mediate the
transport across the nuclear envelope with the participation
of Ran proteins [100]. An N-stearylated NLS was found to
improve CPP-mediated transfection activity by overcoming
cell membrane and nuclear pore barriers [98]. In contrast,
we have found that constructs with NLS tag interact with the
HA2 sequence thereby limiting delivery. The detailed reason
of this NLS interference remained to be elucidated [78].

In addition to penetrating cytoplasmic membrane and
nucleus, we demonstrated that a CPP-piggyBac transposase
(CPP-PBase) plasmid system could accomplish both protein
transduction and transposition [101]. The system was able to
synchronously deliver covalently linked PBase and noncova-
lently linked cis plasmid into human cells. This one-plasmid
“transposoduction” has tremendous potential for safe and
efficient cell line transformation, gene therapy, and functional
genomics.
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Figure 3: Simplified conceptual diagram (not drawn proportionally in size) of exogenous siRNA-mediated gene silencing. (a) The siRNA
(usually small hairpin RNA, shRNA) can be modified to covalently interact with CPPs and then be transported through the cell membrane.
(b) shRNA binds to the double-strand RNA binding domain (dsRBD) of the enzyme Dicer and then is processed. (c) The processed RNA is
incorporated into the RNA-induced silencing complex (RISC).The passenger strand RNA is degraded. (d)The guide strand RNA along with
the RISC binds to a complementary sequence of a targeted mRNA. (e) The targeted mRNA is degraded and translation disrupted.

3. CPPs Delivery of Nanomaterials

The improved sensitivity, resolution, and versatility of fluo-
rescent microscopy and the discovery of fluorescent proteins
have revolutionized imaging in basic science and biomedical
applications [102, 103]. These fluorescent proteins have been
extensively used for visualizing and tracking molecules in
dynamic cellular processes.Theymay also be useful in disease
diagnosis and therapeutic planning. Recently Nguyen et al.
advanced the possibility of utilizing fluorescent proteins
to improve surgical precision [104]. However, the broad
emission spectra of current organic fluorophores impede
multiplex imaging, while photobleaching limits their use in
long-term imaging [105, 106]. Furthermore, cell autofluores-
cence in the visible spectrum and a need of probes that emit
in the near-infrared (NIR) region drive the need to develop
new imaging probes.

Nanomaterials are materials that have at least one dimen-
sion in the range of 1–100 nm. The development of nanoma-
terials has revolutionizedmany industries such as computing
and semiconductor, optics, energy, and cosmetics [107]. Sem-
iconductor nanocrystals (a.k.a. quantum dots, QDs) possess

high optical extinction coefficient, a narrow range of emission
wavelength, exceptional resistance to photo- and chemical
degradation, and high quantum yield [108, 109]. These
properties make QDs particularly attractive for long-term
observation of molecules in live cells and multiplex imaging,
as well as tumor targeting and diagnostics in vivo. However,
inorganic QDs are not permeable to cytoplasmic membrane
and agglomerate easily. Thus, surface modifications of QDs,
such as complexing with polyethylene glycol, are required
to achieve stable suspension (Figure 4(a)). Even so, QDs are
poorly taken up by cells (Figure 4(b)). Josephson et al. first
reported increased uptake of iron oxide nanoparticles cova-
lently conjugated with Tat-PTD [110]. These Tat-iron oxide
nanoparticle complexes were internalized into lymphocytes
and yielded magnetic labeling of cells.This technology opens
up the possibility for simultaneous diagnosis and treatment
of diseases (i.e., theranostics) when drugs are included in the
imaging system.

Stroh et al. successfully labeled primary bone marrow
cells with Tat-QD micelles ex vivo and observed the recruit-
ment of the labeled bone marrow-derived precursor cells to
the tumor vasculature [111]. This methodology may advance
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Figure 4: (a) Synthesis of water-soluble carboxylated CdSe/ZnS quantum dots. Upon addition of ZnS as a shell to protect Cd core, the
surface wasmodified with 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethyleneglycol)-2000] (DSPE-PEG 2000) and
1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (PEG-2 PE).The amount and ratio of PEG2-PE
and DSPE-PEG(200) determine suspension stability in water. (b) Fluorescence of CdSe/ZnS quantum dot in live cells with (left) and without
(right) nona-arginine after a 1-hour exposure [17].

our understanding of stem cell proliferation and differenti-
ation. Many other studies have investigated CPP-mediated
delivery of QDs into living cells for basic science and biomed-
ical application purposes [17, 24, 43, 44, 46–48, 112–117]. In
general, cellular uptake of the CPP/QD complexes includes
classical endocytosis, macropinocytosis, and direct mem-
brane penetration. Factors that influence uptake efficiency of
CPP/QD complexes include the size and the overall surface
charge of the complexes. For instance, our data suggest that
electropositive charges of CPP/QD complexes (measured as
zeta-potential) increase higher transduction efficiency [118].

Although Cd-based QDs at nontoxic levels can be useful
in research applications [119], they are not ideal agents

for therapeutic purposes. Biocompatible, fluorescent nan-
odiamonds represent an attractive alternative. Defect center
(color center) of nanodiamonds can be created by irradi-
ation with a high power laser beam followed by thermal
annealing at 800∘C [120]. Nanodiamonds thus have been
modified producing strong and stable fluorescence with no
photoblinking (within 1ms) and no photobleaching [121].
We found that histidine-modified arginine-rich CPP (HR9)
can facilitate the cellular uptake of these fluorescent nan-
odiamonds (Figure 5). Collectively, a combined use of CPPs
and nanoscaled materials (with or without fluorescence)
may greatly enhance payload and efficiency for imaging and
therapeutic uses.
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Table 2: Examples of cellular uptake markers and organelle markers for green fluorescent CdSe/ZnS quantum dots in live cell imaging.

Marker Function Color (Ex/Em) Incubation time Conc.
FM4-64 Endocytosis marker Red (506/750) 15min 2𝜇M
Alexa Fluor 568-Transferrin Clathrin-dependent endocytosis marker Red (580/630) 5min 25 𝜇g/mL
Alexa Fluor 568-Cholera toxin B Caveolae-dependent endocytosis marker Red (580/630) 10min 5 𝜇g/mL
Texas red-Neural Dextran 70 Macropinocytosis marker Red (595/615) 30min 5 𝜇M
TMR-Dextran Early endosome marker Red (555/580) 5min 10mg/mL
Lyso Tracker Red DND 99 Lysosome marker Red (577/590) 10min 0.5 𝜇M
EEA1-Alexa Fluor 568 Early endosome marker Red (580/630) 5min 10 𝜇g/mL
Lamp-1-Alexa Fluor 568 Late endosome marker Red (578/603) 5min 10 𝜇g/mL
Mito Tracker Deep 633 Mitochondria marker Red (640/662) 10min 1 𝜇M
Hoechst 33342 Nuclei marker Blue (352/461) 30min 5 𝜇M

Figure 5: HR9 CPP facilitates cellular uptake of green fluorescent
nanodiamonds.

4. Mechanisms of CPP-Mediated
Cellular Uptake

4.1. Complementary Methods to Study Mechanisms of Cellu-
lar Uptake. Fixed cell imaging was utilized to study CPP-
mediated cellular uptake. However, the fixation procedure
introduced artifacts and yielded inaccurate data. Live cell
imaging has supplanted fixed cell imaging and become a
powerful tool to study dynamic cellular process in CPP-
mediated uptake. Coupled with cellular uptake markers
and organelle markers, the subcellular localization of the
CPP/cargo complex can be identified (Table 2). Figure 6
presents a comprehensive workflow of experiments on cellu-
lar uptake, intracellular uptake, and subcellular localization.
There are some discrepancies among publications regarding
the identity of CPP uptake mechanisms due to the limited
use of cellular process inhibitors. Although pharmacological
inhibitors (Table 3) can be used to inhibit internalization
processes, these inhibitors are not completely specific and
may suppress more than one cellular uptake pathway. For
instance, cytochalasin D (CytoD) and N-ethylmaleimide

(NEM) inhibit both clathrin- and caveolin-mediated path-
ways. CytoD also inhibits macropinocytosis. This makes it
difficult to evaluate the contributions of different pathways to
transduction and complicates the analysis of CPP-mediated
uptakemechanisms. To overcome this problem, we suggested
that RNAi be used as a complementarymethod to thoroughly
elucidate CPP-mediated uptake mechanism. For instance, in
our study with CPP-mediated cellular uptake of CdSe/ZnS
quantum dots, pharmacological inhibitors reduced cellular
uptake of the noncovalent CPP/QD complex. However,
uptake efficiency of the CPP/QD complex was not reduced by
siRNAs introduced to knockdown clathrin HC and caveolin
1 (Figure 7). It is also worth noting that although the effective
dose of an inhibitor may be specified by commercial vendors
or literature, a pilot study should be conducted to optimize
the concentration of an inhibitor for a specific cell line since
too high concentration of an inhibitor may be toxic to cells
and compromise cellular processes.

4.2. Diverse Cellular Uptake Routes. Understanding the
mechanisms underlying CPP-mediated cellular uptake and
subcellular localization of the carrier system is needed to
improve transduction efficiency and cargo functionality. Our
understanding of uptake is still incomplete. Proposed routes
of entry include direct membrane penetration and various
types of endocytic pathways. Empirical modeling evidence
from several studies supports a directmembrane penetration.
Initially CPPs bind to the phosphate groups of the phospho-
lipids on the bilayer surface. As the concentrations of CPPs
on cell surface increase, the lipid molecules rearrange. Side
chains of arginines translocate through the distal layer and
form a water pore. Finally, a few CPPs diffuse through the
pore, followed by pore closure [122–125].

Most studies of CPP-mediated cellular uptake of nucleic
acids and QDs have focused on endocytosis. Endocytosis
is an active process whereby cells internalize extracellular
material through cytoplasmic membranes. This process is
required by certain cells to obtain essential nutrition and
excrete cellular waste. At least 10 different types of endocytic
pathways involving various molecules have been delineated
[126]. Studies of cellular uptake of CPP/cargo complexes have
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Figure 6: Diagram illustrating a comprehensive workflow of experiments designed to characterize the cellular uptake, intracellular uptake,
and subcellular localization of CPPs and their cargoes.

focused on three pathways: clathrin-mediated endocytosis,
caveolin-dependent endocytosis, and macropinocytosis [17,
34, 43, 44, 97, 127, 128]. Future studies should consider other
endocytic pathways: CLIC/GEEC, IL2R𝛽, Arf6-dependent,
flotillin-dependent, circular dorsal ruffles, and entosis.

In endocytosis, CPP/cargo complexes might initially
interact with heparan sulfate proteoglycans (a pool of anionic
charge on the cell surface). However, Gump et al. recently
revised the role of glycosaminoglycans in Tat PTD-mediated
induction of macropinocytosis [129]. They found that trans-
duction occurs efficiently in the absence of glycosamino-
glycans and sialic acid and that the removal of cell surface
proteins totally abolishes transduction. They suggested that
additional cell surface protein(s) are necessary for Tat PTD
transduction. More studies are needed to identify these
proteins are and appreciate their roles in CPP membrane
transduction.

Collectively, current data suggest that the routes of the
cellular uptake for CPP/cargo complexes are diverse, reflect-
ing the varied chemical and physical natures of the CPPs and
cargoes: entry may simultaneously involve multiple routes.

4.3. Release from Lysosomal Entrapment. A particular prob-
lem associated with most of the CPP delivery systems is
entrapment in lysosome, which may lead to cargo degrada-
tion and, thus, loss of intended functionality. Multiple strate-
gies have been developed to circumvent this problem. One
method is to add to the CPP a section of the hemagglutinin

(HA) sequence from the human influenza virus (Table 4). HA
is composed of two subunits: hemagglutinin-1 responsible
for binding to cells and hemagglutinin-2 (HA2) responsible
for lysosomal escape [130]. The N-terminal domain of the
HA2 subunit possesses 23 amino acids in a hydrophobic
region referred to as fusion peptide [131]. This fusion peptide
domain is buried inside the HA trimer in its resting confor-
mation. Upon acidification in the lysosome, an irreversible
conformational change of HA2 occurs, exposing the fusion
peptide and allowing it to insert into lysosomal membranes.
Subsequently a fusion pore is in the membrane is formed,
leading to transport of lysosomal contents into the cytosol.

The sequence of CPP-HA2 can be chemically synthesized
or the HA2 sequence can be inserted into a CPP-containing
plasmid. The advantages of using a peptide synthesizer
to produce a CPP-HA2 sequence are high purity, ease of
programming the sequence, and flexibility of residue mod-
ification as well as molecular conjugation. Disadvantages
include limited length of the sequence, loss of yield during
purification process, and possible loss of native configuration.
The advantages of using a CPP-HA2 plasmid are low cost,
time saving for production, and the flexibility to include other
desired functional sequences such as imaging molecules.
Disadvantages are low purity and considerable time and
labor investments. In addition to HA2 and its analogues, the
sequences of CPPs can be modified for lysosomal escape.
Collectively, these HA2 analogues and sequence variations
of CPPs exhibit different degrees of enhanced transduction
efficiency, ranging from 0.2- to 7000-fold (Table 4). Factors
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Figure 7: Comparisons of clathrin- and caveolin-dependent cellular uptake pathways using pharmacological inhibitors and RNAi technique
[17].

influencing efficiency include the nature of CPPs and HA2,
types of cargoes, and sequence orientation of CPP and HA2.

In addition to fusogenic amino acid sequences, chemicals
such as chloroquine and polycationic polyethylenimine (PEI)
are commonly used to promote lysosomal escape. Chloro-
quine, a weak base, can enter the cell and accumulate in
vesicular compartments following protonation. At low con-
centrations, chloroquine inhibits endosome acidification and
maturation by preventing the accumulation of free protons.
As its concentration increases, it starts to accumulate counte-
rions to protons (e.g., chloride ion) in endosomes, leading to
endosomal swelling and rupture [132, 133]. Endosomal release
by chloroquine enhances of transduction efficiency [78, 134,
135]. The secondary and tertiary amines of low molecular
weight PEI can be protonated in the acidic environment of
the endosome, leading to endosomal swelling and rupture.
PEI has been used to deliver DNA plasmids with improved
transduction efficiency [81, 136–139].Thedrawback of the PEI
polymer is that it is not biodegradable and is highly charged.
Thus interaction of this polymer with genetic materials in the
cell nucleus might alter gene expression [140–142].

5. Conclusions

CPPs are capable of carrying nucleic acids and nanoma-
terials into cells. CPPs can interact with cargoes in cova-
lent or noncovalent manners. Complementary tools such
as pharmacological inhibitors and siRNA are being used
to decipher mechanisms of cellular uptake. Depending on
the physiochemical natures of the CPP/cargo complex, the
mechanism of cellular entry may include classical endocy-
tosis, macropinocytosis, clathrin- and caveolon-dependent
pathways, and direct membrane penetration. A variety of
chemical and molecular methods have been introduced to
overcome lysosomal entrapment in order to achieve higher
functional yields. As studies continue to advance our under-
standing about CPPs, this delivery modality will find consid-
erable usage in clinical setting and basic science research.

Abbreviations

CPP: Cell-penetrating peptide
CDK9: Cyclin-dependent kinase 9
dsRBD: Double-stranded RNA binding domain
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GFP: Green fluorescent protein
EGFP: Enhanced green fluorescent protein
HA: Hemagglutinin
MAP kinase: Mitogen-activated protein kinase
NLS: Nuclear Localization Signal
POD: Peptide for ocular delivery
PTD: Protein transduction domain
PEI: Polyethylenimine
QD: Quantum dot
RISC: RNA-induced silencing complex
RNAi: RNA interference
RNAse: Ribonuclease
siRNA: Small interfering RNA
SOD1: Superoxide dismutase 1
VEGF: Vascular endothelial growth factor.
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