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Abstract: Genetically modified plants and crops can contribute to remarkable increase in global food
supply, with improved yield and resistance to plant diseases or insect pests. The development of
biotechnology introducing exogenous nucleic acids in transgenic plants is important for plant health
management. Different genetic engineering methods for DNA delivery, such as biolistic methods,
Agrobacterium tumefaciens-mediated transformation, and other physicochemical methods have been
developed to improve translocation across the plasma membrane and cell wall in plants. Recently,
the peptide-based gene delivery system, mediated by cell-penetrating peptides (CPPs), has been
regarded as a promising non-viral tool for efficient and stable gene transfection into both animal and
plant cells. CPPs are short peptides with diverse sequences and functionalities, capable of agitating
plasma membrane and entering cells. Here, we highlight recent research and ideas on diverse types
of CPPs, which have been applied in DNA delivery in plants. Various basic, amphipathic, cyclic, and
branched CPPs were designed, and modifications of functional groups were performed to enhance
DNA interaction and stabilization in transgenesis. CPPs were able to carry cargoes in either a covalent
or noncovalent manner and to internalize CPP/cargo complexes into cells by either direct membrane
translocation or endocytosis. Importantly, subcellular targets of CPP-mediated nucleic acid delivery
were reviewed. CPPs offer transfection strategies and influence transgene expression at subcellular
localizations, such as in plastids, mitochondria, and the nucleus. In summary, the technology of
CPP-mediated gene delivery provides a potent and useful tool to genetically modified plants and
crops of the future.

Keywords: cell-penetrating peptides; transgenic plants; gene delivery; direct membrane translocation

1. Introduction

The current trends in crop yield fall short of meeting the demand, as the global
requirement for food is projected to double in the next 30 years [1]. Modern agriculture is
facing major global challenges, such as loss of biodiversity, chemical contamination of soils,
plant pests, and diseases [2], all of which can directly affect plant health and productivity.
Genetically modified plants and crops provide one of the solutions to increase global food
production with improved gains in yield and resistance to plant diseases or insect pests.
Several successful cases of genetically modified plants have conferred phytoprotection
against insects, pests, and pathogens, such as overexpression of proteinase inhibitor genes
from legumes [3], recombinant Bt toxic proteins from soil bacteria Bacillus thuringiensis [4],
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α-amylase inhibitors, and plant lectins [5]. In spite of these successful examples, there is a
need to develop alternative strategies of phytoprotection.

Transgenic plants are defined as plants containing gene modifications and expressing
recombinant proteins or products from foreign genes [6]. The success of transgenic plants
depend on favorable methods of gene delivery. The first transgenic plant was reported
in 1983 when an antibiotic-resistant Ti plasmid was delivered into tobacco, mediated by
A. tumefaciens [7]. Subsequently, tremendous gene delivery strategies, such as particle
bombardment (biolistics), were applied in plants. Flourishing developments of biotechnol-
ogy in exogenous nucleic acid delivery have brought a great improvement in transgenic
plants [8,9].

Genetic transformation methods in plants were generally divided into two types:
direct and indirect gene delivery methods [9]. DNAs or RNAs can be introduced into plants
either directly or packaged by specific viruses or bacteria, then transferred into plants via
an indirect method [9]. Additional gene delivery classifications include physical, chemical,
and biological methods (Figure 1) [10]. Physical methods, such as microinjection, biolis-
tics, electroporation, silicon carbide fibers, laser-mediated DNA delivery, sonoporation,
hydrodynamic force, etc., facilitate nucleic acids to penetrate cell membrane directly [11].
The advantages of physical methods for gene delivery are plant- and genome-type inde-
pendence. Large- or small-sized plasmid DNAs can be delivered by these methods, while
DNA transformations in some recalcitrant plants, such as cereals and legumes, are wildly
applied [12]. However, the criticisms of physical methods are irreversible tissue damage
and integration of genes into host genomes [10]. In microinjection and electroporation meth-
ods, plant sample preparations become protoplasts or a single cell, and this complicated
procedure makes the drawback for transgenic plant applications [10].
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Figure 1. Methodologies of gene delivery in plants. Various methods including physical, chemical,
and biological manners were applied in gene delivery. Plant cells were prepared as protoplasts for
gene uptake. Plant tissues (callus) and zygotic embryos also served as the transgenic hosts. PEG:
polyethylene glycol; DEAE: diethylaminoethanol.
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Polyethylene glycol (PEG)-, diethylaminoethanol (DEAE)-dextran-, calcium phosphate-,
dendrimer-, and liposome-mediated gene transfers were categorized as chemical meth-
ods [11,13]. Hygromycin resistance gene was introduced into the protoplasts of rice, and
these transgenic rice plants generated viable seeds [14]. The benefits of liposome-mediated
nucleic acids delivery include DNA protection from nuclease digestion, as well as suitabil-
ity for multiple types of plant cells, such as protoplasts and plasmodesmata [15]. Calcium
phosphate is a cheap and easily handled DNA delivery method that possesses economic
benefits. DNAs are able to interact with positively charged calcium ions via electrostatics,
form precipitates, and enter cells by endocytosis [11]. Endocytosis is the major route for
DNA delivery in chemical method-mediated plant transformation [16]. However, nucleic
acids, which might be digested in lysosomes, and the limitation on plasmid DNA size
reduce the potential of application in transgenic plants [16,17].

A. tumefaciens is the earliest and most common biological method for DNA delivery in
transgenic plants (Figure 1) [7,12]. This bacterium has the ability to deliver genes into the
host genome, leading to the establishment of Agrobacterium-mediated transformation as one
of the standard protocols in transgenic plants [8,12]. However, there are some disadvantages
in Agrobacterium-mediated transformations [18,19]. First of all, low transformation yield
was reported in certain plant species, which might be due to the specificity of hosts [19].
This reduces the enthusiasm in transgenic engineering in plants. Additionally, it took long
tissue culture periods to recover from transformation, and low yield of stably transformed
plants was observed in Agrobacterium-mediated transformation [8,18,19]. Due to these
limitations, virus-based vectors become an alternative (Figure 1). Protein expressions
by virus-based infected genes are able to be produced more quickly and have a greater
yield [20]. However, safety concerns and continuous re-infection are the drawbacks for
this method [7]. Recently, non-viral peptide-based gene delivery systems have become
popular in transgenic engineering. However, not all peptides possess the same abilities
for gene delivery. The membrane-active peptides, cell-penetrating peptides (CPPs), were
reported as a good tool for nucleic acid transfection [21,22]. We devote the sections below
to introduce CPPs and their roles in transgenic plants in detail.

2. Cell-Penetrating Peptides (CPPs)

CPPs are short and membrane-active peptides [21]. In general, macromolecules, such
as DNAs, RNAs, and proteins, are impermeable to cell membranes. The cell membrane is a
natural barrier to prevent harmful exogenous or pathological molecules from entering the
cell freely, and to maintain the osmotic balance within the cell. Some functional proteins
are able to enter cells via specific receptors or channels, while nucleic acids alone are
generally not [23]. Not only can CPPs enter cells by themselves, but also deliver various
cargoes, including nucleic acids, into living cells [24]. However, nucleic acids are not the
only macromolecules that CPPs are able to deliver. CPPs also can serve as a Trojan horse,
while peptides/proteins [25], nanoparticles [26], pharmaceutical molecules, and small
drugs [24,27,28] play the role of Achilles. The selectivity and efficiency of drug/molecules
delivery are significantly improved when CPPs cooperate with liposomes/micelles [29,30].
Most CPPs have been shown to be nontoxic, and do not interfere with functionality of the
delivered biomacromolecule [31].

There are various interactions between CPPs and their cargoes. CPPs and cargoes
can form complexes with covalent bonds [32], noncovalent interactions [21], and covalent-
and noncovalent-synchronous linkages [33]. The potential of bio-membrane penetration
in CPPs is amazing. Until now, studies indicated that CPPs were able to penetrate differ-
ent targets, including mammalian cells [21], plant cells/tissues [32–39], rodent skin and
intestinal mucosa [25], prokaryotes [40,41], fungi [42], insect cells [43], paramecia [44], and
rotifers which were individual organisms containing thick cuticles [45]. Recently, different
modifications on CPPs, such as D-form amino acid applications, branches on backbone
sequences, cyclic structures alterations, and non-standard amino acid substitutions were
designed to increase their internalization efficiency and stability [21,46–48]. Highly cellular
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penetration efficiencies and non-cytotoxic properties make CPPs an ideal delivery system
for therapeutic drugs, gene therapies, and transgenic plants [22,25,49–51].

2.1. Categories of Cell-Penetrating Peptides

Since the first CPP, trans-activator of transcription (Tat) protein of the human im-
munodeficiency virus type 1 (HIV-1), was identified, 1855 CPP entries with sequence
information have been deposited and annotated in a database repository named the CPP-
site 2.0 [52]. In this database, CPPs were categorized according to various characterizations,
such as peptide lengths, chemical and physical properties, and structures [52]. Additionally,
it offered further predicting of CPPs. Taking peptide length as an example, there were
60 CPPs containing five or less residues in this CPPsite 2.0 online database. L5a (Table 1),
the peptide composed of only five amino acid residues, was one of them [53]. Some novel
peptides or protein segments were also predicted as CPPs by the machine learning web-
server of KELM-CPPpred [54]. Classification of CPPs can help identify a suitable CPP for
a specific purpose. Three types of CPPs were categorized based upon their chemical and
physical properties [55].

Table 1. Comprehensive information of major cell-penetrating peptides and others.

CPP/Others Primary Sequence Categories Target
Cells/Tissues/Species Entry Mechanisms Cytotoxicity References

L5a RRWQW Amphipathic A549 cells Direct membrane
translocation

Up to 10 µM is not
toxic [53]

Tat PTD (48–60) GRKKRRQRRRPPQ Cationic
HeLa, HL116, CCL39

cells
Direct membrane

translocation
Up to 100 µM is not

toxic [56]

HeLa, CHO cells
Direct membrane

translocation
(pore formation)

1 µM, 3-day
treatment without

cytotoxicity
[57,58]

R9 RRRRRRRRR * Cationic

Jurkat, murine B, human
PBL cells Endocytosis – [59]

Plant tissues
Energy-independent

pathway (link GFP with
covalent manner)

Up to 2 µg is not
toxic [32]

pAntp RQIKIWFQN
RRMKWKK Cationic

K562, HeLa cells
Direct membrane

translocation
(inverted micelle)

– [60,61]

CHO cells Endocytosis
(macropinocytosis)

Up to 10 µM is not
toxic [62]

VP22
DAATATRGRS

AASRPTERPRAP
ARSASRPRRPVD

Amphipathic CHO-K1, HeLa cells Endocytosis
(macropinocytosis) – [29,63]

C105Y CSIPPEVKF
NKPFVYLI

Hydrophobic HuH7 cells

Energy-independent
pathway

(cell entry) – [55,64]
Energy-dependent

pathway
(nucleolar entry)

MAP KLALKLALK
ALKAALKLA Amphipathic HeLa, endothelial cells

Energy-dependent
pathway

Energy-independent
pathway

Up to 10 µM is not
toxic

–
[29,62,65]

HR9
CHHHHH

RRRRRRRRR
HHHHHC

Cationic
A549, Sf9, plant cells,
paramecia, rotifers,

prokaryotes

Direct membrane
translocation

Up to 60 µM is not
toxic [21,66]

SR9 RRRRRRRRR Cationic

A549 cells
–

(Link protein with
noncovalent manners)

Up to 16 µM is not
toxic [21]

A549 cells

Multiple
energy-dependent

pathways
(Link nanoparticles with

noncovalent manners)

Up to 60 µM is not
toxic [26]
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Table 1. Cont.

CPP/Others Primary Sequence Categories Target
Cells/Tissues/Species Entry Mechanisms Cytotoxicity References

Plant tissues
Macropinocytosis (link

GFP or DNA with
noncovalent manners)

Up to 16.6 µM is
not toxic [32,67]

Prokaryotes
Macropinocytosis

(Link nanoparticles with
noncovalent manners)

Up to 48 µM is not
toxic [68]

PR9 FFLIPKGR
RRRRRRRR Cationic A549 cells

Endocytosis
(Link nanoparticles with

noncovalent manners)

Up to 60 µM is not
toxic [69]

pVEC LLIILRRRIR
KQAHAHSK

Amphipathic HeLa cells Endocytosis Up to 10 µM is not
toxic [62]

Green alga Direct membrane
translocation No toxicity [70]

MPG
GALFLGFLG

AAGSTMGAW
SQPKKKRKV

Amphipathic HS-68, Cos-7, HeLa cells Direct membrane
translocation – [29,71]

KALA
WEAKLAKAL

AKALAKHLAK
ALAKALKACEA

Amphipathic CV-1, Hep G2, C2C12,
K562, CaCo2 cells Endocytosis

Toxic at the
concentration
≥ 25 µM

[29,72]

GALA
WEAALAEALA

AEALAEHLAEAL
AEALEALAA

Amphipathic CV-1, Hep G2, C2C12,
K562, CaCo2 cells Endocytosis – [29,72]

Pep-1
KETWWETW
WTEWSQPKK

KRKV
Amphipathic HeLa cells Direct membrane

translocation – [73,74]

NLS CGYGPKK
KRKVGG

Cationic (or
amphipathic)

MCF-7, KB, HT29,
MIAPACA2, PC3 cells

Energy-independent
pathway – [75,76]

RC2 MQVWPIEGIK
KFETLSYLPPL

Chloroplast
transit peptide

(CTP; not a
CPP)

Rice chloroplasts – – [77]

KH9-AtOEP34
KHKHKHKHKHK
HKHKHKHMFA

FQYLLVM

Cationic CPP
combined with

CTP

Seedlings and leaves of
A. thaliana and Nicotiana

tabacum

Endocytosis or direct
membrane translocation

(for cellular entry)
Unknown (for plastid

targeting)

– [78,79]

BP100 KKLFKKILKYL Amphipathic Leaves of A. thaliana,
BY-2 cells Endocytosis – [35,80,81]

MTP-KH9

MLSLRQSIRF
FKKHKHKHKHK

HKHKHKHKH

Cationic CPP
combined with

MTS
Leaves of A. thaliana

Endocytosis (for cellular
entry)

Unknown (for
mitochondrial targeting)

– [81,82]

(LURL)3 LURLLURLLURL Amphipathic
MTS Onion bulbs

Gold nanoparticle biolistics
(for cellular entry)

Binding to
mitochondrial import
receptors Tom20 and

Tom22 (for
mitochondrial targeting)

Negligible toxicity [83]

* A segment of an E. coli-expressed fusion protein, while SR9 is a synthetic peptide.

2.1.1. Cationic Type

The Tat protein transduction domain (PTD) is the most well-known representative of
a cationic CPP. When Tat protein, consisting of 86 amino acid residues, was first discovered
by two independent groups in 1988 [84,85], researchers found that the Tat PTD (amino acid
residues 48–60) was composed of eight cationic amino acids [56]. These cationic amino
acids were regarded as the key for cellular translocation. Replacing the positively charged
residues with other amino acids decreases cell entry efficiency [59,86]. Later, many deriva-
tives from the Tat PTD were made. Among them, poly-arginines, such as octa-arginine (R8)
and nona-arginine (R9), display more amazing cellular uptake efficiency [21,59,86]. Besides
the Tat PTD and poly-arginines, penetratin, the third helix of the homeodomain of Anten-
napedia protein (pAntp), diatos peptide vector 1047 (DPV1047), PTD-5, and poly-lysines
were among the cationic CPPs [55]. Studies indicated that peptides containing much richer
arginines correspond with higher cellular penetration efficiencies than the peptides with
lysine-rich residues [55,59]. Peptide structures were studied and the guanidinium groups
on arginines were considered as the crucial factor for membrane disturbance and peptide
entry [55].
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2.1.2. Amphipathic Type

Amphipathic CPPs are peptides that contain both polar and nonpolar regions of
amino acids. VP22, KALA, GALA, model amphipathic peptide (MAP), Pep-1, VE-cadherin-
derived peptide (pVEC), alternative reading frame (ARF), and MPG are the examples of
amphipathic CPPs [29,55]. They may contain valine, leucine, isoleucine, and alanine to form
the hydrophobic portions on their secondary structures, and their hydrophilic portions
are composed of charged residues like lysine, arginine, and histidine [55]. Positively
charged portions on amphipathic CPPs increase the solubility and offer high affinity to
cell membrane with electrostatic interaction, while the hydrophobic portions are able to
fuse with lipids easily and allow peptides to enter cells by membrane-inverted fusions [54].
Due to these two portions, α-helix (hydrophilic propensities) and β-sheet (hydrophobic
propensities) are easily observed in amphipathic CPPs [55].

2.1.3. Hydrophobic Type

The number of hydrophobic CPPs is fewer compared to two other types of CPPs.
In this hydrophobic family, peptides contain only non-polar residues and limited net
charges [55]. C105Y, PFVYLI (derived from the c-term of C105Y), and Pep-7 were repre-
sentatives [55]. However, some studies suggested that MAP, which contained both lysine
and non-polar residues and was categorized in the amphipathic group, should belong to
the hydrophobic CPP [22,87]. The reason for this sorting was based upon the lack of cell
selectivity. Hydrophobic CPPs usually display a wide penetrating ability in various tissue
types by membrane disorganization [87]. As shown, there are many pros of hydropho-
bic CPPs and MAP containing these properties. Unfortunately, the cons come from the
same properties. Their entry mechanisms lead to higher hemolysis and membrane pore
formations, resulting in adverse side effects and limitations in applications [87].

2.2. Mechanisms of Cellular Internalization of Cell-Penetrating Peptide/Cargo Complexes

Although mechanisms of cellular internalization of CPPs have been continuously
studied, the discrepancies in understanding their entry routes remain considerable. Many
factors, such as primary sequences of CPPs, modifications on peptides, types of cargoes,
concentrations of CPPs, linkages between CPPs and cargoes, as well as entry targets of
cell lines, can influence penetrating mechanisms [21,22]. Up to date, energy-dependent
endocytic pathway and energy-independent direct membrane translocation seem to be
the major uptake routes [22]. As shown in Figure 2, in direct membrane translocation,
low temperature and endocytic inhibitors cannot stop the entry of CPPs or CPP/cargo
complexes [66]. The process of this mechanism starts with attaching CPPs or CPP/cargo
complexes to lipid membrane utilizing electrostatics or hydrophobic interactions, followed
by membrane destabilization [55,87]. Direct membrane translocation can be further divided
into three different pathways: inverted micelles, carpet model, and pore formation [57,88].
For the inverted micelles pathway, CPPs or CPP/cargo complexes attach to membrane
surface, followed by invagination of lipid bilayers [60]. Liposome-like structure will form
later to package the CPPs or CPP/cargo complexes, and phospholipid inversion flips
CPPs or CPP/cargo complexes to enter the cytoplasm (Figure 2). The carpet model is a
concentration-dependent model, which is usually applied in α-helical cationic CPPs [89].
CPPs remain parallel to the surface without insertion at low concentrations, while changing
the membrane fluidity by redirection of phospholipids and making micelles and pores
at high concentrations. Pore formation, also called the Barrel-Stave model, occurs in
CPPs with strong positive charge [88], such as HR9 (charge: +14 calculated by CellPPD
website [90]) or amphipathic CPPs with an α-helical structure, such as mastoparan [91].
CPPs or CPP/cargo complexes enter cells by direct membrane translocation to avoid the
trap from lysosomes, but this action causes highly disturbed membranes, leading to a high
risk of cellular injury. Energy-dependent endocytosis is also reported in some CPPs or
CPP/cargo complexes [21,22,55].
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Figure 2. Cellular internalization mechanisms of CPP/DNA complexes and their subcellular targets
in plant cells. There are two main routes of cellular internalization: endocytosis and direct membrane
translocation. The internalized CPP/DNA complexes stay in the nucleus, plastids, or mitochondria,
depending on signal sequences on CPPs. With endocytic pathway, CPP/DNA complexes have to
escape from lysosomes eventually.

Endocytosis is a natural process involving at least four subtypes: clathrin-mediated
endocytosis, caveolae-mediated endocytosis, clathrin- and caveolae-independent endo-
cytosis, and macropinocytosis [21,38]. Both clathrin-mediated and caveolae-mediated
endocytic pathways involve receptor absorptions, microtubule and actin rearrangements,
while macropinocytosis (Figure 3), an atypical endocytic route, only involves actin rear-
rangements [21,69,92,93]. It is hard to conclude whether the types of CPPs or CPP/cargo
complexes highly correspond to the types of endocytosis. Studies indicated that CPPs or
CPP/cargo complexes enter cells primarily through endocytosis [22,55]; however, SR9 and
PR9 enter cells by endocytosis as well [21,69]. Furthermore, SR9 carrying nanoparticles
enter cells by multiple endocytic pathways [26].

The relationship between the types of CPPs and their entry mechanisms is unclear.
Most studies indicated that cationic CPPs interact with cell membranes by electrostatics
and cause disruption of lipid bilayer [94]. This process either thins the cell membrane,
according to the membrane thinning model, or makes some pores in cellular membranes,
according to the pore formation model [94]. This led Xie et al. to propose that most cationic
CPPs enter cells by direct membrane translocation [88]. Pore formations easily perturb
the membrane stability, which raises the concern of cytotoxicity. However, not all cationic
CPPs enter cells by direct membrane translocation. For instance, SR9 and PR9, two cationic
CPPs, use endocytosis for cellular entry (Table 1).



Molecules 2023, 28, 3367 8 of 16
Molecules 2023, 28, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 3. Schematic diagram of macropinocytosis. 

The relationship between the types of CPPs and their entry mechanisms is unclear. 

Most studies indicated that cationic CPPs interact with cell membranes by electrostatics 

and cause disruption of lipid bilayer [94]. This process either thins the cell membrane, 

according to the membrane thinning model, or makes some pores in cellular membranes, 

according to the pore formation model [94]. This led Xie et al. to propose that most cationic 

CPPs enter cells by direct membrane translocation [88]. Pore formations easily perturb the 

membrane stability, which raises the concern of cytotoxicity. However, not all cationic 

CPPs enter cells by direct membrane translocation. For instance, SR9 and PR9, two cati-

onic CPPs, use endocytosis for cellular entry (Table 1). 

Amphipathic CPPs possess both hydrophobic and hydrophilic properties, which are 

considered to be a key factor for intracellular internalization [95]. As shown in Table 1, 

most amphipathic CPPs, such as VP22, KALA, and GALA, follow the endocytic pathway. 

However, there are some amphipathic CPPs, like MPG and Pep-1, which use direct mem-

brane translocation. Derakhshankhah and Jafari proposed that the hydrophobic portions 

of amphipathic CPPs insert into cellular membranes by hydrophobic force and polymeri-

zation, while the hydrophilic portions of amphipathic CPPs form pores in cellular mem-

branes [94]. However, this hypothesis cannot fully explain the complexity of cellular in-

ternalization as other factors may also be involved in cellular entry. Target cells/tis-

sues/species are also determinants in cellular internalization. SR9/quantum dot complexes 

entered A549 cells and prokaryotes by using multiple pathways [26] and macropinocyto-

sis [68], respectively. Kauffman et al. indicated that cationic CPPs enter cells by endocyto-

sis at low concentrations (<10 μM), and switch to direct membrane translocation at high 

concentrations [96]. The authors also suggested that high concentrations of cationic CPPs 

might have caused membrane disruption and possibly increased toxicity [96].  

3. Subcellular Targets for Gene Delivery 

CPPs have demonstrated remarkable ability to deliver diverse biomacromolecules 

into various plant species. The plasmid DNA delivery mediated by CPPs displayed a high 

potential and efficiency in plant root cells [67], embryos [97], and leaf cells [82] without 

protoplast preparations. Positively charged CPPs possess the abilities to interact with, 

condense, and package plasmid DNAs. The combination ratio between CPP and nucleic 

Figure 3. Schematic diagram of macropinocytosis.

Amphipathic CPPs possess both hydrophobic and hydrophilic properties, which are
considered to be a key factor for intracellular internalization [95]. As shown in Table 1, most
amphipathic CPPs, such as VP22, KALA, and GALA, follow the endocytic pathway. How-
ever, there are some amphipathic CPPs, like MPG and Pep-1, which use direct membrane
translocation. Derakhshankhah and Jafari proposed that the hydrophobic portions of am-
phipathic CPPs insert into cellular membranes by hydrophobic force and polymerization,
while the hydrophilic portions of amphipathic CPPs form pores in cellular membranes [94].
However, this hypothesis cannot fully explain the complexity of cellular internalization as
other factors may also be involved in cellular entry. Target cells/tissues/species are also
determinants in cellular internalization. SR9/quantum dot complexes entered A549 cells
and prokaryotes by using multiple pathways [26] and macropinocytosis [68], respectively.
Kauffman et al. indicated that cationic CPPs enter cells by endocytosis at low concentra-
tions (<10µM), and switch to direct membrane translocation at high concentrations [96].
The authors also suggested that high concentrations of cationic CPPs might have caused
membrane disruption and possibly increased toxicity [96].

3. Subcellular Targets for Gene Delivery

CPPs have demonstrated remarkable ability to deliver diverse biomacromolecules
into various plant species. The plasmid DNA delivery mediated by CPPs displayed a high
potential and efficiency in plant root cells [67], embryos [97], and leaf cells [82] without
protoplast preparations. Positively charged CPPs possess the abilities to interact with,
condense, and package plasmid DNAs. The combination ratio between CPP and nucleic
acid (Figure 2), also called nitrogen (NH3

+)/phosphate (PO4
−) (N/P) ratio [98], is key

to DNA condensation and packaging. It further affects gene delivery efficiency [53,67].
An optimal N/P ratio makes CPP/DNA complexes more stable and is able to raise gene
delivery efficiency. A good transgenic efficiency also depends on other factors, such
as long-term stability of CPP/DNA complexes in cytosol, evasion from the endosome–
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lysosome system, targeted site of gene expression, and DNA releasing from CPP/DNA
complexes [34,38,81,83,99]. The efficiency of cytoplasmic delivery by the predominant
endosomal pathway is typically very low. A study showed that glutathione-responsive
CPPs are able to escape from endosome entrapment and release DNAs at a higher rate
to achieve gene transfer in plants [34]. Aside from efficiency, targeted delivery is also
crucial in transgenic plant development [100]. Various DNA plasmids were designed
and applied to the genes that were successfully achieved for development of transgenic
plants (Table 2). Here, we discussed three major subcellular targets for CPP/DNA complex
delivery: nucleus, plastids, and mitochondria (Figure 2).

Table 2. List of various genes applied in transgenic plants.

Delivery Methods Genes Targets References

Non-CPP-based
gene delivery

Proteinase inhibitor genes Tobacco [3]
Recombinant Bt toxic proteins Vigna ungiguiculata [4,5]

α-Amylase inhibitors, plant lectins Adzuki bean [5]
Antibiotic-resistant Ti plasmid

(A. tumefaciens mediated transfection) Tobacco [7]

Hygromycin resistance gene Protoplasts of rice [14]

CPP-based gene
delivery

p35S-RLuc-tNOS and p35S-GFP-tNOS plasmids Leaves of A. thaliana [34]
p35S-Nluc-tNOS or p35S-GFP-tNOS plasmid Seedlings of A. thaliana [38]

pHBT-sGFP(S65T)-NOS plasmid Roots of mung bean and soybean [67]
psbAp:GFP:SPECr:psbAt At plastid genome

integration vector, cox2p: GFP:SPECr:cox2t At
mitochondrial genome integration vector, and

cox2t:SPECr:GFP:cox2p Nt mitochondrial genome
integration vector

Seedlings and leaves of A. thaliana
or N. tabacum [78]

PsbA-SPECr-sGFP-psbA, Prrn-aadA-sfGFP-Trps,
PsbA-SPECr-sGFP-psbA, and Prrn-aadA-sfGFP-Trps Leaves of A. thaliana [79]

pDONR-cox2:rluc and pDONR-cox2:gfp plasmids Leaves of A. thaliana [81]
pAct-1GUS plasmid Wheat immature embryos [97]

pPrrn::GFP(S65T)::TpsbA, pPrrn::DsRed::TpsbA,
and pPpsbA::Rluc plasmids Leaves of A. thaliana [99]

psfGN155-MxMT and psfGC155-MxMT plasmids Leaves of N. benthamiana [100]

pBI221, pBI121, and pPpsbA::Rluc plasmids Leaves of Arabidopsis, soybean,
and tomato [101]

3.1. Nucleus

Nuclear localization signal (NLS) is a small and basic peptide containing four lysines,
one arginine, and several nonpolar residues [76] commonly found in CPP sequences
(Table 1). Proteins or peptides containing this short signal are recognized by importin, and
are transported into nucleus through the classical nuclear import pathway [76]. MPG, a
chimeric CPP composed of HIV glycoprotein 41 and SV40 T antigen, is an example of NLS.
NLS enters nucleus not only by itself but also with its cargoes [55]. According to the chemi-
cal and physical properties of NLS, it is considered a cationic peptide [27]. However, many
studies suggested this NLS to be categorized as an amphipathic peptide, because its primary
sequence contains both cationic and hydrophobic residues [22,55]. Fagerlund et al. sug-
gested that lysine/arginine-rich NLS on signal transducers and activators of transcription 1
(STAT1) homodimer proteins and STAT1-STAT2 heterodimer proteins is key to both DNA
binding and importin interaction [102]. Mutations of the conserved arginine/lysine-rich
portions were able to prohibit nuclear import. Furthermore, R9-based CPPs (without NLS)
affirmed the principal role of arginine in nuclear entry [66,69]. Both R9-green fluorescent
protein (GFP) and NLS-R9-GFP displayed nuclear targeting in mung bean roots [67]. SR9
and PR9 entered cells via multiple pathways and classical endocytosis, respectively [21].
However, they all escaped from the endosome–lysosome system and entered nuclei [69].
Recent data studied by Kurnaeva et al. demonstrated that arginine residues are much more
critical than lysines in NLS actions [103]. Therefore, NLS-tagged CPPs or arginine-rich
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CPPs play an important role in the nucleus delivery of nucleic acids, and their nuclear
targeting abilities dramatically increase successful results in transgenic plants.

3.2. Chloroplasts (Plastids)

Chloroplasts (a.k.a., plastids in plants) contain their own genomes and are the core
components for photosynthesis. According to the membrane structure, plastids are divided
into two groups: primary and secondary plastids [104]. Primary plastids are found in most
algae and plants, while plankton typically belongs to the category of secondary plastid
organisms. Plastid genomes are essential, as genes in plastids regulate not only metabolism
of photosynthesis, but also energy transfer and storage [105]. Plastids also influence the
expression of nuclear genes via plastid-to-nucleus signaling pathways, which regulate
plastidic and extraplastidic processes to cope with environmental changes [105].

In recent years, transgenic plastids are gaining more attraction in biotechnology for the
following reasons: (1) the genome in plastids is smaller than chromosomes in nuclei, only
contains about 150 kb in molecular mass, and is easily manufactured by humans [106]; (2) a
mature chloroplast contains a high copy number of circular double-stranded DNA, which
is able to produce large amounts of recombinant proteins, which is very important for
vaccine or economic production [107]; and (3) plastids are the maternal inheritance in most
plant species. Plastid genetic engineering, such as in transplastomic plants, manipulates
organellar DNA without changing the nuclear genes. Extranuclear genetic engineering
prevents genetic pollution from the nucleus and protects wild-type plants or relative wild
species [108].

Macromolecules tagged with a specific signal are essential for organelle-targeted
delivery. Chloroplast transit peptides (CTPs, a.k.a. chloroplast-targeting peptides) are
special peptides containing 33–35% hydrophobic, 22–23% hydroxylated, and 14–15% pos-
itively charged amino acids [109]. Shen et al. indicated that the most efficient CTPs in
rice is RC2, and its sequence also follows the similar percentage of hydrophobic, hydrox-
ylated, and cationic residues [77]. Thagun et al. successfully combined plasmid DNA,
CTP (KH9-AtOEP34) [78], and CPP (BP100) [81] as a complex system to deliver DNAs into
chloroplasts [99]. Further, they used the above complexes as nanocarriers, transfecting the
plasmid DNA into chloroplasts after spraying on leaf surfaces [101]. The CTP/DNA com-
plexes were transported from the extracellular space to the chloroplast stroma in Arabidopsis
leaves [79]. These studies on the CPP(CTP)/DNA complex system dramatically enhanced
the transgenesis without protoplast preparations nor callus formations, and provided a
useful tool for rapid and effective plastids engineering in plants.

3.3. Mitochondria

Mitochondrion is another valuable target in plant genetic modification. Mitochon-
dria are the energy-producing organelles that contain the plasma membrane-like double
membranes, their own genome (i.e., mitochondrial DNA; mtDNA), and a transcription-
translation system [110]. mtDNA is a small and circular double-stranded DNA, similar
to a plasmid DNA. This characteristic challenges scientists studying mtDNA modifica-
tions [110]. However, many factors, such as low transgenic efficiency, poor cytosolic entry,
complicated preparation protocols, high mobility of mitochondria, and a limited number
of cargo types, remain to be resolved before gene delivery into the mitochondria of plant
cells can be widely used [28,83].

Foreign DNAs or cargoes tagged with mitochondrial targeting sequence (MTS) have
a higher chance to be transported to mitochondria [28]. MTS, like CTP, is a short peptide
signal, which is recognized by mitochondrial outer membrane receptor complex and
interacts with components in mitochondrial protein import pathway [111]. The exciting
mitochondrial transgenic results were first published by Chuah et al. [81]. They fused
MTS with cationic lysine/histidine repeat residues ((KH)9), becoming the fused peptide
MTPKH, and this MTPKH formed complexes with CPPs (BP100). CPP/plasmid DNA
complexes penetrated plasma membrane through CPPs, while MTPKH/DNA complexes
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were found to be localized into mitochondria [81]. The Renilla luciferase gene expression
in mitochondria of A. thaliana illustrated that CPP-mediated gene delivery can be applied
in mitochondrial transgenic engineering [81]. Recently, Xiao et al. developed two novel
cell-penetrating mitochondrial-targeting MitoLigand ligands (miniCPM3 and SeSe-TPP)
that contain 2~3 hydrophobic aromatic amino acids and 3~4 arginine residues [28]. This
ligand design included the MTS conserved sequence, a hydrophobic-, and a cationic-rich
amphipathic helix [111]. They found that MitoLigand-delivered cargoes were predominantly
localized inside mitochondria after cellular uptake and endosomal escape [28]. Artificial
peptide (LURL)3 was another novel cell-penetrating MTS that demonstrates the importance
of hydrophobicity and helicity for mitochondrial localization [83]. Together, these effective
peptide-based methods provide a starting point for the development of more sophisticated
plant mitochondrial transfection strategies.

4. Conclusions

Delivery and expression of exogenous genes in plants have economic potential in
biotechnology and industry. Physical, chemical, and biological methods for gene deliveries
have been developed for more than three decades. CPPs-based gene delivery systems
bring a bright prospect for transgenesis in agriculture. In addition, this review sums up the
classification of CPPs, cellular entry mechanisms, cytotoxicity, and various genes applied
for development of transgenic plants. Varying designs on primary sequences of CPPs
result in different cellular entry routes with different transfection efficiencies. CPPs can
be modified for specific organelle-targeted delivery in plant cells. By targeting nuclei,
chloroplasts, and mitochondria, CPPs/DNAs complexes elevate certain gene expressions
of interest, which may increase higher agricultural yields.
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