Sample Questions for Chem 1319 Final WS16

1. MSDS (the rest listed on review):

- a. Proper attire -
- b. Acid Spill-
- c. Bunsen Burners -
- d. Phenolphthalein -

2. Studies of Light - Atomic Spectra Portion: Using the Rydberg equation (where $R = 3.29 \times 10^{15} \text{ Hz}$) and the speed of light ($C = 2.998 \times 10^8 \text{ m/s}$):

a. Calculate the expected frequencies in Hertz (s^{-1}) of the radiation emitted by a hydrogen atom for the following electronic transitions.

$$v = R(\frac{1}{n_1^2} - \frac{1}{n_2^2})$$

b. Calculate the expected wavelengths in nanometers (nm) of the radiation emitted by a hydrogen atom for the same electronic transitions.

$$C = \lambda v$$

c. Label which wavelengths correspond to the Balmer series and which wavelengths correspond to the Lyman series.

Transitions	Frequency (s ⁻¹)	Wavelength (nm)	Balmer / Lyman
$n_2 = 3 \& n_1 = 1$			
$n_2 = 2 \& n_1 = 1$			
$n_2 = 5 \& n_1 = 2$			
$n_2 = 4 \& n_1 = 2$			
$n_2 = 3 \& n_1 = 2$			

d. Why did the Hydrogen spectrum have the fewest lines?

e. For the Hydrogen spectra, why was the red line more intense (brighter) than the other lines?

3. Studies of Light – Colorimetry Portion: The student was using a blue dye standard solution (5.05 ppm) and diluted it. The student used 3 drops of dye and added 5 drops of distilled water to it.

- a. Using $C_1V_1 = C_2V_2$, what is the approximate concentration in ppm for the unknown? C_1 = original volume of dye & C_2 = total volume
- b. Using the equation, A=abc determine the concentration of an unknown solution when %T = 61.1. (b = 1.00)

4. Radioactive Decay:

a. Safety precautions: Types of radiation (listed below) are stopped by what type of material?

alpha – beta – gamma – neutron –

b. Determine if alpha or beta, then balance the following radioactive decay equations:

(alpha/beta)
$$^{222}_{86} Rn \rightarrow __+ ^4_2 He$$

(alpha / beta)
$$^{234}_{90}$$
Th $\rightarrow ___ + ^{0}_{-1}e + anti-v$

c. Determine the specific decay constant, initial activity and half-life of a radioactive isotope. Given the equations:

 $A = A_0 e^{-kt} \qquad lnA = -kt + lnA_0 \qquad ln 2 = 0.693 \qquad t_{\frac{1}{2}} = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (x_2 - x_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (x_2 - x_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (x_2 - x_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (x_2 - x_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (x_2 - x_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (x_2 - x_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (x_2 - x_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad y = mx + b \qquad m = (y_2 - y_1) / (y_2 - y_1) = ln2 / k \qquad (y_$

and the data:

Time, minutes	Counts/Min	ln (Counts/Min)
0		
2	14472	
3	14328	
4	14248	
5	14095	
6	13920	
10	13359	

1. Determine the specific decay constant, k, for this radioactive decay.

2. Determine the initial activity, A_o.

3. Determine the half-life.

5. Antacids: You are given 1.12 M HCl and 1.48 M NaOH. The antacid you use contains 300 mg of CaCO₃ and 100 mg of Al(OH)₃. If the antacid dissolved in 35.0 ml of HCl and was then back titrated with 21.8 ml of NaOH, find the following:

- a. The original number **mmoles of HCl** used to dissolve the antacid and neutralize the base.
- b. The number of **mmoles of NaOH** used to back titrate the acid.
- c. The number of **mmoles of acid** used to neutralize <u>only</u> the antacid (a.k.a. the excess HCl).
- d. Write the **balanced equations** for the neutralization of the antacid (Both CaCO₃ and Al(OH)₃).
- e. Using the **number of mg in the tablet**, calculate the mmoles of each component (Both CaCO₃ and Al(OH)₃).

f. Based on the **mmoles of each component**, calculate the theoretical number of mmoles of HCl that should have been needed to neutralize the antacid. (*Hint: Use the mole ratios.*)

g. What was the total number of theoretical mmoles of HCl that should have been neturalized?

h. Calculate the **percent error** in order to compare the theoretical (g.) to the actual (c.). What are possible reasons this discrepancy could have occurred?

6. Ternary Mixture: A mixture is known to contain the four compounds in the table.

A.) Draw a flow chart to show the steps that you would use to separate the following compounds.

	Cold water	Hot water	3M HCl	3M NaOH
benzoic acid	no	yes	no	yes
$Mg(OH)_2$	no	no	yes	no
Na_2SO_4	yes	yes	yes	yes
Zn(OH) ₂	no	no	yes	yes

B.) The initial mass was 5.025g. The resulting masses were benzoic acid = 1.760g, Mg(OH)₂ = 0.754g, Na₂SO₄ = 1.005g, and Zn(OH)₂ 1.256g. Calculate the percent recovery of each component and the total percent recovery.

7. Millikan Drop:

a. For the following data, reorder it by descending masses, then take the mass difference $(1^{st} value minus 2^{nd} value, 2^{nd} value minus 3^{rd} value, etc.)$

		Masses in	Mass
Number	Mass (g)	Descending Order	Differences
1	19.624	_	
2	30.852		
3	14.812		
4	42.080		
5	18.020		
6	27.644		
7	37.268		

b. Determine the mass value of a single "electron."

8. Statistics:

a. For the following data set (2.10, 3.20, 3.50, 4.90, 4.30, 2.90) find the mean (average).

b. For the average of the data set above, calculate the % Error if the expected answer was 3.500.

c. For this data set would you calculate the standard deviation or the standard deviation estimate? Explain why.

9. Dimensional Analysis:

a. Choose problems from sets 1, 2, 4 or 5 and work them.

b. Dimensional analysis problems are generally incorporated within the other problems. For example:

- 1. Converting from mg to mmole in the antacid problem.
- 2. Converting from mmHg to torr or atm in the gas laws problem.
- 3. Converting from °C to K in the gas laws problem.

11. Scientifi a. C b. R	ic Notation & Significant hoose problems from sets eview problems similar to	Figures: 1 & 2 and work them those on the midterm	exams.		
24. V	What is the numerical value a. 0.05	of 5.000 x 10 ² ? b. 0.05000	c. 500.0		d. 500
25. I	How many significant figure a. 4	s are there in the numbe b. 5	er 0.030170 ? c. 6		d. 7
26. V	Which of the following number a. 0.0290	ers has <u>3</u> significant fig b. 0.4160	gures? c. 508.0		d. 29.10
27. U	Using the correct number of a. 1450 g	significant figures , wh b. 1447 g	tat is the answer to c. 1446.6 g	1453.2-6.58 g	g? d. 1446.62 g
28. U	Using the correct number of a. 0.222	significant figures , wh b. 0.2217	nat is the answer wh c. 0.2	ien 6.5 is mul	tiplied by 0.0341? d. 0.22
29. I	Find the number of moles in a. 6.840 x 10 ²³	50.00g of carbon dioxid b. 44.01	de, CO ₂ . c. 1.136		d. 0.8802
10. Glasswa	are and equipment: Ident	ify the equipment bel	ow.		
		Contraction of the second seco			
- China					
are still (1944)					

12. Nomenclature: List the chemical names for the chemicals below.

a.	HCI	b.	NaOH
c.	Al(OH) ₃	d.	MgCO ₃
e.	CaCO ₃	f.	NaHCO ₃
g.	NaCl	h.	SiO ₂
i. 1	K ₂ CO ₃		

13. People – How did these people contribute to the experiments we did in Chem 1319? (*All powerpoints are available at* http://web.mst.edu/~tbone)

- a. Henri Becquerel (Nuclear)
- b. Svante Arrhenius (Antacid)
- c. Johannes Nicolaus Brønsted and Thomas Martin Lowry (Antacid)
- d. Gilbert N. Lewis (Antacid)
- e. Joseph von Fraunhofer (Atomic Spectra)
- f. Bunsen & Kirchhoff (Atomic Spectra)
- g. Johann Balmer (Atomic Spectra)
- h. Max Planck (Atomic Spectra)
- i. Albert Einstein (Nuclear)
- j. Neils Bohr (Atomic Spectra)
- k. My TA's name is...
 - C1 Umanga De Silva B1, F1 – Peng Geng B2 – Hasan Golpour A2, E2 – Ke Li

C2 – Prashanth Sandineni A1, E1 – Sharen Wang D1, F1 – Brad Welch

**Note: Most of the questions on the final will be similar to those on review and/or on quizzes.