Sample Questions for Chem 1319 Final WS16

1. MSDS (the rest listed on review):

a. Proper attire -
b. Acid Spill -
c. Bunsen Burners -
d. Phenolphthalein -
2. Studies of Light - Atomic Spectra Portion: Using the Rydberg equation (where $\mathrm{R}=3.29 \times 10^{15} \mathrm{~Hz}$) and the speed of light ($\mathrm{C}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$):
a. Calculate the expected frequencies in Hertz $\left(\mathrm{s}^{-1}\right)$ of the radiation emitted by a hydrogen atom for the following electronic transitions.

$$
v=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

b. Calculate the expected wavelengths in nanometers (nm) of the radiation emitted by a hydrogen atom for the same electronic transitions.

$$
C=\lambda v
$$

c. Label which wavelengths correspond to the Balmer series and which wavelengths correspond to the Lyman series.

Transitions	Frequency (s \mathbf{s}^{-1})	Wavelength (nm)	Balmer / Lyman
$\mathrm{n}_{2}=3 \& \mathrm{n}_{1}=1$			
$\mathrm{n}_{2}=2 \& \mathrm{n}_{1}=1$			
$\mathrm{n}_{2}=5 \& \mathrm{n}_{1}=2$			
$\mathrm{n}_{2}=4 \& \mathrm{n}_{1}=2$			
$\mathrm{n}_{2}=3 \& \mathrm{n}_{1}=2$			

d. Why did the Hydrogen spectrum have the fewest lines?
e. For the Hydrogen spectra, why was the red line more intense (brighter) than the other lines?
3. Studies of Light - Colorimetry Portion: The student was using a blue dye standard solution $(5.05 \mathbf{p p m})$ and diluted it. The student used 3 drops of dye and added 5 drops of distilled water to it.
a. Using $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$, what is the approximate concentration in ppm for the unknown?
$\mathrm{C}_{1}=$ original volume of dye \& $\mathrm{C}_{2}=$ total volume
b. Using the equation, $\mathrm{A}=\mathrm{abc}$ determine the concentration of an unknown solution when $\% \mathrm{~T}=61.1$. ($\mathrm{b}=1.00$)

4. Radioactive Decay:

a. Safety precautions: Types of radiation (listed below) are stopped by what type of material?

$$
\begin{aligned}
& \text { alpha - } \\
& \text { beta - } \\
& \text { gamma - } \\
& \text { neutron - }
\end{aligned}
$$

b. Determine if alpha or beta, then balance the following radioactive decay equations:
(alpha / beta)

(alpha / beta)

c. Determine the specific decay constant, initial activity and half-life of a radioactive isotope. Given the equations:
$A=A_{0} \mathbf{e}^{-k t} \quad \ln A=-k t+\ln A_{0} \quad \ln 2=0.693 \quad t / 2=\ln 2 / k \quad y=m x+b \quad m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$
and the data:

Time, minutes	Counts/Min	ln (Counts/Min)
0		
2	14472	
3	14328	
4	14248	
5	14095	
6	13920	
10	13359	

1. Determine the specific decay constant, k , for this radioactive decay.
2. Determine the initial activity, A_{0}.
3. Determine the half-life.
4. Antacids: You are given 1.12 M HCl and 1.48 M NaOH . The antacid you use contains 300 mg of CaCO_{3} and 100 mg of $\mathrm{Al}(\mathrm{OH})_{3}$. If the antacid dissolved in 35.0 ml of HCl and was then back titrated with 21.8 ml of NaOH , find the following:
a. The original number mmoles of $\mathbf{H C l}$ used to dissolve the antacid and neutralize the base.
b. The number of mmoles of $\mathbf{N a O H}$ used to back titrate the acid.
c. The number of mmoles of acid used to neutralize only the antacid (a.k.a. the excess HCl).
d. Write the balanced equations for the neutralization of the antacid (Both $^{\mathrm{CaCO}_{3}}$ and $\left.\mathrm{Al}(\mathrm{OH})_{3}\right)$.
e. Using the number of $\mathbf{m g}$ in the tablet, calculate the mmoles of each component
(Both CaCO_{3} and $\mathrm{Al}(\mathrm{OH})_{3}$).
f. Based on the mmoles of each component, calculate the theoretical number of mmoles of HCl that should have been needed to neutralize the antacid. (Hint: Use the mole ratios.)
g. What was the total number of theoretical mmoles of HCI that should have been neturalized?
h. Calculate the percent error in order to compare the theoretical (g.) to the actual (c.). What are possible reasons this discrepancy could have occurred?
5. Ternary Mixture: A mixture is known to contain the four compounds in the table.
A.) Draw a flow chart to show the steps that you would use to separate the following compounds.

	Cold water	Hot water	3M HCl	3M NaOH
benzoic acid	no	yes	no	yes
$\mathrm{Mg}(\mathrm{OH})_{2}$	no	no	yes	no
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	yes	yes	yes	yes
$\mathrm{Zn}(\mathrm{OH})_{2}$	no	no	yes	yes

B.) The initial mass was 5.025 g . The resulting masses were benzoic acid $=1.760 \mathrm{~g}$, $\mathrm{Mg}(\mathrm{OH})_{2}=0.754 \mathrm{~g}, \mathrm{Na}_{2} \mathrm{SO}_{4}=1.005 \mathrm{~g}$, and $\mathrm{Zn}(\mathrm{OH})_{2} 1.256 \mathrm{~g}$. Calculate the percent recovery of each component and the total percent recovery.

7. Millikan Drop:

a. For the following data, reorder it by descending masses, then take the mass difference ($1^{s t}$ value minus $2^{\text {nd }}$ value, $2^{\text {nd }}$ value minus $3^{\text {rd }}$ value, etc.)

Number	Mass (\mathbf{g})	Masses in Descending Order	Mass Differences
1	19.624		
2	30.852		
3	14.812		
4	42.080		
5	18.020		
6	27.644		
7	37.268		

b. Determine the mass value of a single "electron."

8. Statistics:

a. For the following data set ($2.10,3.20,3.50,4.90,4.30,2.90$) find the mean (average).
b. For the average of the data set above, calculate the \% Error if the expected answer was 3.500 .
c. For this data set would you calculate the standard deviation or the standard deviation estimate? Explain why.

9. Dimensional Analysis:

a. Choose problems from sets $1,2,4$ or 5 and work them.
b. Dimensional analysis problems are generally incorporated within the other problems. For example:

1. Converting from mg to mmole in the antacid problem.
2. Converting from mmHg to torr or atm in the gas laws problem.
3. Converting from ${ }^{\circ} \mathrm{C}$ to K in the gas laws problem.

11. Scientific Notation \& Significant Figures:

a. Choose problems from sets $1 \& 2$ and work them.
b. Review problems similar to those on the midterm exams.
24. What is the numerical value of 5.000×10^{2} ?
a. 0.05
b. 0.05000
c. 500.0
d. 500
\qquad 25. How many significant figures are there in the number 0.030170 ?
a. 4
b. 5
c. 6
d. 7
\qquad 26. Which of the following numbers has $\underline{\mathbf{3}}$ significant figures?
a. 0.0290
b. 0.4160
c. 508.0
d. 29.10
\qquad 27. Using the correct number of significant figures, what is the answer to $1453.2-6.58 \mathrm{~g}$?
a. 1450 g
b. 1447 g
c. 1446.6 g
d. 1446.62 g
\qquad 28. Using the correct number of significant figures, what is the answer when 6.5 is multiplied by 0.0341 ?
a. 0.222
b. 0.2217
c. 0.2
d. 0.22
\qquad 29. Find the number of moles in 50.00 g of carbon dioxide, CO_{2}.
a. 6.840×10^{23}
b. 44.01
c. 1.136
d. 0.8802
10. Glassware and equipment: Identify the equipment below.

12. Nomenclature: List the chemical names for the chemicals below.
a. HCl
b. NaOH
c. $\mathrm{Al}(\mathrm{OH})_{3}$
d. MgCO_{3}
e. CaCO_{3}
f. NaHCO_{3}
g. NaCl
h. SiO_{2}
i. $\mathrm{K}_{2} \mathrm{CO}_{3}$
13. People - How did these people contribute to the experiments we did in Chem 1319 ?
(All powerpoints are available at http://web.mst.edu/~tbone)
a. Henri Becquerel (Nuclear)
b. Svante Arrhenius (Antacid)
c. Johannes Nicolaus Brønsted and Thomas Martin Lowry (Antacid)
d. Gilbert N. Lewis (Antacid)
e. Joseph von Fraunhofer (Atomic Spectra)
f. Bunsen \& Kirchhoff (Atomic Spectra)
g. Johann Balmer (Atomic Spectra)
h. Max Planck (Atomic Spectra)
i. Albert Einstein (Nuclear)
j. Neils Bohr (Atomic Spectra)
k. My TA's name is...
C1 - Umanga De Silva
C2 - Prashanth Sandineni B1, F1 - Peng Geng
A1, E1 - Sharen Wang
B2 - Hasan Golpour
D1, F1 - Brad Welch A2, E2 - Ke Li
**Note: Most of the questions on the final will be similar to those on review and/or on quizzes.

