NT	
Name	
Trainc.	

Partners Name: ____ ONLINE

Radioactivity Simulation Data

Group I (your first set of data)		Group II (your second set of data)		
Unknown # <u>900</u>		Unknown #901		
Time(min) Counts/min	ln(cts/min)	Time(min)	Counts/min	ln(cts/min)
0		0		
2		2		
4		4		
6		6		
8		8		
10		10		
12		12		
14		14		
16		16		
18		18		
20		20		
22		22		
24		24		
26		26		
28		28		
30		30		
32		32		

1. Prepare two graphs in Excel for each of the above sets of data (4 total graphs, separately graphed):

a. Make 2 Graphs – Counts/min vs. time (exponential scatterplot graph)

b. Make 2 Graphs – ln (counts/min) vs. time (linear scatterplot graph)

Don't forget to put a title and axis labels on each graph.

c. Add a trendline to each of the graphs. Display both the equation and the regression, R^2 , value.

2. Using the data from the graphs calculate the following values (Hint: Use the trendline equations from the linear graphs).

k =	_ 1/min	k =	1/min
t _{1/2} =	_ min	t _{1/2} =	_ min
t _{3/4} =	_ min	t _{3/4} =	_ min
t _{7/8} =	_min	t _{7/8} =	_ min

*****Here is a hint about some of your calculations for the radioactivity lab.

These are the times required for 3/4 and 7/8 of the material to decay. So you will use the following equation:

$\ln(N_0/N) = kt$

To find $t_{3/4}$, start with $N_0 = 1$ (or 100%). You want to know when 3/4 or the material has decayed, so 1/4 of the material is actually left. Therefore N = 1/4. If you plug in N_o, N, and k (you get k from graphing the data), you can solve for $t_{3/4}$. You will do the calculation the same way for $t_{7/8}$. However when 7/8 of the material has decayed, 1/8 is left over (so N = 1/8).

Name:		Section#:	Desk#:
Partner's Name(s):	ONLINE		

Reactor Data Spring 2012

(This is a replacement datasheet for page 29 in the green book.)

Time(min)) Counts/min	ln(cts/min)
0		
1	<u>xxx</u>	<u>xxx</u>
2	<u> 10508 </u>	
3	<u>7581</u>	
4	<u>5647</u>	
5	4056	
6	3044	
7	2086	
8	<u>1554</u>	
9	1254	

- 1. Prepare two graphs on graph paper provided for the above data (separately graphed):
 - a. Make 1 Graph Counts/min vs. time
 - b. Make 1 Graph ln (counts/min) vs. time

Don't forget to put a title and axis labels on each graph.

- c. Add a trendline to the "ln (counts/min) vs. time" graph.
 - 1. Determine the slope of the trendline: $m = (y_2 y_1) / (x_2 x_1)$.
 - 2. Determine the equation for the line: y = mx + b.

2. Using the data from the trendline equations calculate the following values.

k =	\min^{-1}	t _{1/2} =	min
A_o (where $t = 0$) =	counts/min	t _{3/4} =	min
$\ln A_0$ (where $t = 0$) =	ln(cts/min)	t _{7/8} =	min

3. Calculate the Percent Error for the Half Life of Al-28. Show % Error Calculation here:

% Error Eqn: From the reference listed below the half life of ²⁸Al is 2.2414 minutes. This will be your theoretical (accepted) value. The value that you calculate from your graph will be your experimental value.

- J. K. TULI, Nuclear Wallet Cards, Sixth Edition, National Nuclear Data Center, Brookhaven National Lab., Upton, NY, 2000, 74 pp.
 - 4. List the conditions of the reactor set up (they will be on the white board):

 $^{27}{}_{13}Al + ^{1}{}_{0}n \rightarrow ^{28}{}_{13}Al^{*} \rightarrow ^{28}{}_{14}Si + ^{0}{}_{-1}\beta + \gamma$

Reactor Power: 100 Thermal Watts Neutron flux \sim 1x10⁹ / cm² / sec

Exposure time = 120 seconds 100 mg of Al-27 Foil

Reactor Postlab for Chem 2 – Spring 2012

We will be graphing by hand the Reactor data presented in the video. We will also be determining the decay constant (k), the initial counts (A_o) and half-life ($t_{1/2}$) for the data. (Note: You will still need to record these values on **page 29** and answer the questions on that page.)

Graphing Directions:

1. On the chart below, **graph time (min) vs. counts /min** for the **reactor data**. The graphed data should result in an exponential decay curve. Connect the data points with **a curve**.

2. On the chart below graph time (min) vs. ln (counts / min). This should result in a reasonably straight line. Connect the datapoints with <u>a straight line</u>.

3. Calculate the slope of the line for the linear plot. Where slope is rise over run or $\mathbf{m} = (\mathbf{y}_2 - \mathbf{y}_1) / (\mathbf{x}_2 - \mathbf{x}_1).*$

(*Use the actual data that you calculated for ln (cts/min). Do not try and determine points from the graph.)

4. Determine your initial (zero) values for counts / min, A_0 , and ln (counts / min), $\ln A_0$. Since ln A_0 is equal to the y-intercept for the linear plot. Then we can use the equation for a line: y = mx + b b = y - mx

5. Determine the initial number of counts, A_o , where $\ A_o = e^{\ (ln \ Ao)}$

6. Determine the specific decay constant, $\mathbf{k} (\mathbf{min}^{-1})$, where $\mathbf{k} = -\mathbf{m}$.

7. Estimate the half-life, $t_{1/2}$, of the aluminum. On your exponential graph, draw horizontal lines at <u>10,000 and 5,000 counts / min</u>. Whereever these lines cross the data, drop a vertical line. The distance between these two lines is the half-life. What is your estimated half-life in minutes?

8. Determine the actual half-life, $t_{1/2}$, of the aluminum, where $t_{1/2} = \ln 2 / k$ & $\ln 2 = 0.693$.