\qquad

Reactor Postlab for Chem 2 - Spring 2014

For the Reactor data, we will be graphing it by hand. We will also be determining the decay constant (k), the initial counts $\left(\mathrm{A}_{0}\right)$ and half-life $\left(\mathrm{t}_{1 / 2}\right)$ for the data. You will still need to record these values ($\mathrm{k}, \mathrm{A}_{0} \& \mathrm{t}_{1 / 2}$) on page 29 and answer the questions on that page as well.
(Pages 27-32 +4 computer generated graphs for the simulation data + this handout will be due at your class time April 21-24.)

1. On the chart below, graph time (min) vs. counts /min. This should result in an exponential decay curve. Connect the datapoints with a curved line.

2. On the chart below graph time (min) vs. \ln (counts / min). This should result in a reasonably straight line. Connect the datapoints with a straight line.

\qquad
3. Calculate the slope of the line for the linear plot. Where slope is rise over run or

$$
\mathbf{m}=\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right) /\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)
$$

For $x_{1} \& x_{2}$, use the first value $\&$ the last value collected. These are usually at $\mathbf{2}$ minutes and 10 minutes.
For $y_{1} \& y_{2}$, use the actual data that you calculated for $\ln (c t s / m i n)$.
Do not try and determine points from the graph.
4. Determine your initial (zero) values for counts / min, $\mathbf{A}_{\mathbf{0}}$, and \ln (counts $/ \mathrm{min}$), $\ln \mathbf{A}_{\mathbf{0}}$. Since $\ln \mathbf{A}_{\mathbf{o}}$ is equal to the \mathbf{y}-intercept for the linear plot. Then we can use the equation for a line:

$$
\mathbf{y}=\mathbf{m x}+\mathrm{b} \quad b=\mathbf{y}-\mathbf{m x} \quad \ln A_{0}=b
$$

5. Determine the initial number of counts, $\mathbf{A}_{\mathbf{0}}$, where $\mathbf{A}_{\mathbf{0}}=\mathbf{e}^{(\ln \mathbf{A o})}$
6. Determine the specific decay constant, $\mathbf{k}\left(\mathbf{m i n}^{-1}\right)$, where $\mathbf{k}=\mathbf{- m}$.
7. Estimate the half-life, $\mathbf{t}_{1 / 2}$, of the aluminum. On your exponential graph, draw horizontal lines at 10,000 and 5,000 counts / min. Whereever these lines cross the data, drop a vertical line. The distance between these two lines is the half-life. What is your estimated half-life in minutes?
8. Determine the actual half-life, $\mathbf{t}_{1 / 2}$, of the aluminum, where $\mathbf{t}_{1 / 2}=\ln 2 / k \quad \& \quad \ln 2=0.693$.
