
Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Introduction and Implementation for Finite
Element Methods

Chapter 3: Finite elements for 2D second order elliptic equation

Xiaoming He
Department of Mathematics & Statistics

Missouri University of Science & Technology
Email: hex@mst.edu

Homepage: https://web.mst.edu/~hex/

1 / 139

https://web.mst.edu/~hex/


Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Outline

1 Weak/Galerkin formulation

2 FE discretization

3 Dirichlet boundary condition

4 FE Method

5 More Discussion

2 / 139



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Outline

1 Weak/Galerkin formulation

2 FE discretization

3 Dirichlet boundary condition

4 FE Method

5 More Discussion

3 / 139



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Target problem

Consider the 2D second order elliptic equation

−∇ · (c∇u) = f , in Ω

u = g , on ∂Ω.

where Ω is a 2D domain, f (x , y) and c(x , y) are given
functions on Ω, g(x , y) is a given function on ∂Ω and u(x , y)
is the unknown function.

The gradient of a 2D function u is defined by

∇u = (ux , uy ).

The divergence of a 2× 1 vector −→v is defined by

∇ · −→v =
∂v1

∂x
+
∂v2

∂y
.
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Weak formulation

First, multiply a function v(x , y) on both sides of the original
equation,

−∇ · (c∇u) = f in Ω

⇒ −∇ · (c∇u)v = fv in Ω

⇒ −
∫

Ω
∇ · (c∇u)v dxdy =

∫
Ω

fv dxdy .

u(x , y) is called a trail function and v(x , y) is called a test
function.
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Weak formulation

Second, using Green’s formula (divergence theory, integration
by parts in multi-dimension)∫

Ω
∇ · (c∇u)v dxdy =

∫
∂Ω

(c∇u · ~n) v ds −
∫

Ω
c∇u · ∇v dxdy ,

we obtain∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds =

∫
Ω

fv dxdy .
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Weak formulation

Since the solution on the domain boundary ∂Ω are given by
u(x , y) = g(x , y), then we can choose the test function
v(x , y) such that v = 0 on ∂Ω.

Hence ∫
Ω

c∇u · ∇v dxdy =

∫
Ω

fv dxdy .

What spaces should u and v belong to? Sobolev spaces!
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Sobolev spaces

Definition (Support)

If u is a function defined on a domain Ω, then its support supp(u)
is the closure of the set on which u is nonzero.

Definition (Compactly supported)

If u is a function defined on a domain Ω and supp(u) is a compact
subset (that is, a closed and bounded subset), then u is said to be
compactly supported in Ω.

Lemma (I)

A function compactly supported in Ω is zero on and near the
boundary of Ω.
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Sobolev spaces

Definition

C∞0 (Ω) is the set of all functions that are infinitely differentiable
on Ω and compactly supported in Ω.

Recall integration by parts:∫
Ω

∂u

∂x
v dxdy =

∫
∂Ω

uvnx ds −
∫

Ω
u
∂v

∂x
dxdy .

For v ∈ C∞0 (Ω), we have v = 0 on ∂Ω. Then∫
Ω

∂u

∂x
v dxdy = −

∫
Ω

u
∂v

∂x
dxdy .
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Sobolev spaces

Definition (weak derivative with respect to x in 2D)

Suppose u is a real-valued function defined on a domain Ω and
that u is integrable over every compact subset of Ω. If there exists
another locally integrable function w defined on Ω such that∫

Ω
wv dxdy = −

∫
Ω

u
∂v

∂x
dxdy .

for all v ∈ C∞0 (Ω), then u is said to be weakly differentiable with
respect to x and w is called the weak partial derivative of u with
respect to x .
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Sobolev spaces

Definition (general weak derivative in 2D)

Let α = (α1, α2). Suppose u is a real-valued function defined on a
domain Ω and that u is integrable over every compact subset of Ω.
If there exists another locally integrable function w defined on Ω
such that∫

Ω
wv dxdy = (−1)α1+α2

∫
Ω

u
∂α1+α2v

∂xα1∂yα2
dxdy .

for all v ∈ C∞0 (Ω), then u is said to be α weakly differentiable and
w is called the weak partial derivative of order α of u.

11 / 139



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Sobolev spaces

Lemma (II)

If u is differentiable, then u is weakly differentiable and its weak
derivative of order α = (α1, α2) is ∂α1+α2u

∂xα1∂yα2 .

Remark

In the Sobolev spaces, which will be defined below, ∂α1+α2u
∂xα1∂yα2 is

used to represent the weak derivative of order α = (α1, α2).
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Sobolev spaces

Definition (Lp space)

Lp(Ω) = {v : Ω→ R :

∫
Ω

vp dxdy <∞}.

Definition (L2 space)

L2(Ω) = {v : Ω→ R :

∫
Ω

v 2 dxdy <∞}.

Definition (L∞ space)

L∞(Ω) = {v : Ω→ R : sup
(x ,y)∈Ω

|u(x , y)| <∞}.
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Sobolev spaces

Definition (Hm space)

Hm(Ω) = {v ∈ L2(Ω) :
∂α1+α2v

∂xα1∂yα2
∈ L2(Ω), ∀α1 +α2 = 1, · · · ,m}.

Definition (H1 space)

H1(Ω) = {v ∈ L2(Ω) :
∂α1+α2v

∂xα1∂yα2
∈ L2(Ω), ∀α1 + α2 = 1}.

Definition (H1
0 space)

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

14 / 139



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Sobolev spaces

Definition (W m
p space)

W m
p (Ω) = {v : Ω→ R :

∫
Ω

[
∂α1+α2v

∂xα1∂yα2

]p
dxdy <∞,

∀α1 + α2 = 0, · · · ,m}.

Remark

Lp(Ω) = W 0
p (Ω);

L2(Ω) = W 0
2 (Ω);

Hm(Ω) = W m
2 (Ω);

H1(Ω) = W 1
2 (Ω).
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Weak formulation

Weak formulation: find u ∈ H1(Ω) such that∫
Ω

c∇u · ∇v dxdy =

∫
Ω

fv dxdy .

for any v ∈ H1
0 (Ω).

Let a(u, v) =
∫

Ω c∇u · ∇vdxdy and (f , v) =
∫

Ω fvdxdy .

Weak formulation: find u ∈ H1(Ω) such that

a(u, v) = (f , v)

for any v ∈ H1
0 (Ω).
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Galerkin formulation

Assume there is a finite dimensional subspace Uh ⊂ H1(Ω).
Define Uh0 to be the space which consists of the functions of
Uh with value 0 on the Dirichlet boundary.

Then the Galerkin formulation is to find uh ∈ Uh such that

a(uh, vh) = (f , vh)

⇔
∫

Ω
c∇uh · ∇vh dxdy =

∫
Ω

fvh dxdy

for any vh ∈ Uh0.

Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

Here Uh = span{φj}Nb
j=1 is chosen to be a finite element space

where {φj}Nb
j=1 are the global finite element basis functions.
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Galerkin formulation

For an easier implementation, we use the following Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find uh ∈ Uh such that

a(uh, vh) = (f , vh)

⇔
∫

Ω
c∇uh · ∇vh dxdy =

∫
Ω

fvh dxdy

for any vh ∈ Uh.

Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

Here Uh = span{φj}Nb
j=1 is chosen to be a finite element space

where {φj}Nb
j=1 are the global finite element basis functions.
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Discretization formulation

Recall the following definitions from Chapter 2:

N: number of mesh elements.

Nm: number of mesh nodes.

En (n = 1, · · · ,N): mesh elements.

Zk (k = 1, · · · ,Nm): mesh nodes.

Nl : number of local mesh nodes in a mesh element.

P:information matrix consisting of the coordinates of all mesh
nodes.

T : information matrix consisting of the global node indices of
the mesh nodes of all the mesh elements.
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Discretization formulation

We only consider the nodal basis functions (Lagrange type) in
this course.

Nlb: number of local finite element nodes (=number of local
finite element basis functions) in a mesh element.

Nb: number of the finite element nodes (= the number of
unknowns = the total number of the finite element basis
functions).

Xj (j = 1, · · · ,Nb): finite element nodes.

Pb: information matrix consisting of the coordinates of all
finite element nodes.

Tb: information matrix consisting of the global node indices
of the finite element nodes of all the mesh elements.
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Discretization formulation

Recall the Galerkin formulation (without considering the Dirichlet
boundary condition, which will be handled later) : find uh ∈ Uh such
that

a(uh, vh) = (f , vh)

⇔
∫

Ω

c∇uh · ∇vh dxdy =

∫
Ω

fvh dxdy

for any vh ∈ Uh.

Here Uh = span{φj}Nb

j=1 is chosen to be a finite element space where

{φj}Nb

j=1 are the global finite element basis functions defined in
Chapter 2.

Since uh ∈ Uh = span{φj}Nb

j=1, then

uh =

Nb∑
j=1

ujφj

for some coefficients uj (j = 1, · · · ,Nb).
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Discretization formulation

In fact, since

φj(Xk) = δjk =

{
0, if j 6= k,
1, if j = k.

then

uh(Xk) =

Nb∑
j=1

ujφj(Ak) = uk .

Hence the coefficient uj is actually the numerical solution at
the node Xj (j = 1, · · · ,Nb).
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Discretization formulation

If we can set up a linear algebraic system for
uj (j = 1, · · · ,Nb) and solve it, then we can obtain the finite
element solution uh.

Therefore, we choose the test function
vh = φi (i = 1, · · · ,Nb). Then the finite element formulation
gives

∫
Ω

c∇

 Nb∑
j=1

ujφj

 · ∇φi dxdy =

∫
Ω

f φi dxdy ,

⇒
Nb∑
j=1

uj

[∫
Ω

c∇φj · ∇φi dxdy

]
=

∫
Ω

f φi dxdy , i = 1, · · · ,Nb.

24 / 139



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Matrix formulation

Define the stiffness matrix

A = [aij ]
Nb
i ,j=1 =

[∫
Ω

c∇φj · ∇φi dxdy

]Nb

i ,j=1

.

Define the load vector

~b = [bi ]
Nb
i=1 =

[∫
Ω

f φi dxdy

]Nb

i=1

.

Define the unknown vector

~X = [uj ]
Nb
j=1.

Then we obtain the linear algebraic system

A~X = ~b.
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Assembly of the stiffness matrix

Once ~X is obtained, the finite element solution uh and the
numerical solutions at all the mesh nodes are obtained.

From the definition of φj (j = 1, · · · ,Nb), we can see that φj
are non-zero only on the elements adjacent to the node Xj ,
but 0 on all the other elements.

This observation motivates us to think about

aij =

∫
Ω

c∇φj · ∇φi dxdy =
N∑

n=1

∫
En

c∇φj · ∇φi dxdy .

It is easy to see that most of
∫
En

c∇φj · ∇φi dxdy will be 0.

So we only need to use numerical integration to compute
those nonzero integrals.
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Assembly of the stiffness matrix

General local assembly idea for A:

Loop over all the elements;

Compute all non-zero local integrals on each element for A;

Assemble these non-zero local integrals into the corresponding
entries of the stiffness matrix A.

27 / 139



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Assembly of the stiffness matrix

Compute all non-zero local integrals on each element for A:

On the nth element En, we get non-zero local integrals only
when the trial and test basis functions are corresponding to
the finite element nodes of this element.

Let ps = Tb(s, n) (s = 1, · · · ,Nlb).

Then we only consider the trial and test basis functions to be
φps (s = 1, · · · ,Nlb).

There are only N2
lb non-zero local integrals on En with the

global basis functions φps (s = 1, · · · ,Nlb):∫
En

c∇φj · ∇φi dxdy (i , j = p1, · · · , pNlb
).

In fact, we have

ψns = φps |En (s = 1, · · · ,Nlb).
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Assembly of the stiffness matrix

That is, instead of the original non-zero local integrals with
the global basis functions φps (s = 1, · · · ,Nlb), we will
compute the following non-zero local integrals with the local
basis functions ψns (s = 1, · · · ,Nlb):∫

En

c∇ψnα · ∇ψnβ dxdy (α, β = 1, · · · ,Nlb).

Question: how to compute these integrals?

Gauss quadrature. The needed information is stored in the
matrices P and T .
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Assembly of the stiffness matrix

Assemble the non-zero local integrals into A:

When the trial function is φi and the test function is φj , the
corresponding non-zero local integrals should be assembled to
ai j .

Therefore, if we find the global node indices of the trial and
test basis functions, we can easily locate where to assemble a
non-zero local integral.
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Assembly of the stiffness matrix

Question: Since we compute∫
En

c∇ψnα · ∇ψnβ dxdy (α, β = 1, · · · ,Nlb)

instead of ∫
En

c∇φj · ∇φi dxdy (i , j = p1, · · · , pNlb
),

how do we obtain the corresponding global node indices of the
local trial and test basis functions ψnα and
ψnβ (α, β = 1, · · · ,Nlb)?

Information matrix Tb!
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Assembly of the stiffness matrix

Recall that Tb(α, n) and Tb(β, n) give the global node indices
of the local trial and test basis functions ψnα and
ψnβ (α, β = 1, · · · ,Nlb).

That is, for n = 1, · · · ,N,∫
En

c∇ψnα · ∇ψnβ dxdy (α, β = 1, · · · ,Nlb)

should be assembled to aij where i = Tb(β, n) and
j = Tb(α, n).
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Assembly of the stiffness matrix

Algorithm I-1:

Initialize the matrix: A = sparse(Nb,Nb);

Compute the integrals and assemble them into A:

FOR n = 1, · · · ,N:
FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:
Compute r =

∫
En

c∇ψnα · ∇ψnβ dxdy ;
Add r to A(Tb(β, n),Tb(α, n)).

END
END

END
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Assembly of the stiffness matrix

Algorithm I-2:

Initialize the matrix: A = sparse(Nb,Nb) and
S = zeros(Nlb,Nlb);

Compute the integrals and assemble them into A:

FOR n = 1, · · · ,N:
FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:
Compute S(β, α) =

∫
En

c∇ψnα · ∇ψnβ dxdy ;
END

END
A(Tb(:, n),Tb(:, n)) = A(Tb(:, n),Tb(:, n)) + S ;

END
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Assembly of the stiffness matrix

To make a general subroutine for different cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

the coefficient function c ;

the quadrature points and weights for numerical integrals;

the mesh information matrices P and T , which can also
provide the number of mesh elements N = size(T , 2) and the
number of mesh nodes Nm = size(P, 2);

the finite element information matrices Pb and Tb for the trial
and test functions respectively, which can also provide the
number of local basis functions Nlb = size(Tb, 1) and the
number of the global basis functions Nb = size(Pb, 2) (= the
number of unknowns);

the type of the basis function for the trial and test functions
respectively;
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Assembly of the stiffness matrix

Note that∫
En

c∇ψnα·∇ψnβ dxdy =

∫
En

c
∂ψnα

∂x

∂ψnβ

∂x
dxdy+

∫
En

c
∂ψnα

∂y

∂ψnβ

∂y
dxdy .

Hence we can consider to develop an algorithm to assemble
the matrix arising from a more general integral∫

En

c
∂r+sψnα

∂x r∂y s

∂p+qψnβ

∂xp∂yq
dxdy .

with parameters r , s, p, and q.
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Assembly of the stiffness matrix

Algorithm I-3:

Initialize the matrix: A = sparse(Nb,Nb);

Compute the integrals and assemble them into A:

FOR n = 1, · · · ,N:
FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:

Compute r =
∫
En

c ∂
r+sψnα

∂x r∂y s
∂p+qψnβ

∂xp∂yq dxdy ;
Add r to A(Tb(β, n),Tb(α, n)).

END
END

END
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Assembly of the stiffness matrix

Algorithm I-4:

Initialize the matrix: A = sparse(Nb,Nb) and
S = zeros(Nlb,Nlb);

Compute the integrals and assemble them into A:

FOR n = 1, · · · ,N:
FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:

Compute S(β, α) =
∫
En

c ∂
r+sψnα

∂x r∂y s
∂p+qψnβ

∂xp∂yq dxdy ;
END

END
A(Tb(:, n),Tb(:, n)) = A(Tb(:, n),Tb(:, n)) + S ;

END
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Assembly of the stiffness matrix

First, we call Algorithm I-3 with r = p = 1 and s = q = 0 to
obtain A1.

Second, we call Algorithm I-3 with r = p = 0 and s = q = 1
to obtain A2.

Then the stiffness matrix A = A1 + A2.

That is, Algorithm I-1 is equivalent to calling Algorithm I-3
twice with two different groups of parameters
(r = p = 1, s = q = 0 and r = p = 0, s = q = 1) and then
adding the two resulted matrices together.

Algorithm I-2 and Algorithm I-4 have a similar relationship.
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Assembly of the load vector

The idea for the assembly of the load vector is similar. We
have

bi =

∫
Ω

f φi dxdy =
N∑

n=1

∫
En

f φi dxdy , i = 1, · · · ,Nb.

Loop over all the elements;

Compute all non-zero local integrals on each element for the
load vector ~b;

Assemble these non-zero local integrals into the corresponding
entries of the load vector ~b.
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Assembly of the load vector

Compute all non-zero local integrals on each element for ~b:

On the nth element En, we get non-zero local integrals only
when the test basis functions are corresponding to the finite
element nodes of the element.

Let ps = Tb(s, n) (s = 1, · · · ,Nlb).

Then we only consider the test basis functions to be
φps (s = 1, · · · ,Nlb).

There are only Nlb non-zero local integrals on En with the
global basis functions φps (s = 1, · · · ,Nlb):∫

En

f φi dxdy (i = p1, · · · , pNlb
).

In fact, we have

ψns = φps |En (s = 1, · · · ,Nlb).

41 / 139



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Assembly of the load vector

That is, instead of the original non-zero local integrals with
the global basis functions φps (s = 1, · · · ,Nlb), we will
compute the following non-zero local integrals with the local
basis functions ψns (s = 1, · · · ,Nlb):∫

En

f ψnβ dxdy (β = 1, · · · ,Nlb).

Question: how to compute these integrals?

Gauss quadrature. The needed information is stored in the
matrices P and T .
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Assembly of the load vector

Assemble the non-zero local integrals into ~b:

When the test function is φi , the corresponding non-zero local
integrals should be assembled to bi .

Therefore, if we find the global node indices of the test basis
functions, we can easily locate where to assemble a non-zero
local integral.

Question: Since we compute∫
En

f ψnβ dxdy (β = 1, · · · ,Nlb)

instead of ∫
En

f φi dxdy (i = p1, · · · , pNlb
),

how do we obtain the corresponding global node indices of the
local test basis functions ψnβ (β = 1, · · · ,Nlb)?

Information matrix Tb!
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Assembly of the load vector

Recall that Tb(β, n) give the global node indices of the local
test basis functions ψnβ (β = 1, · · · ,Nlb).

That is, for n = 1, · · · ,N,∫
En

f ψnβ dxdy (β = 1, · · · ,Nlb)

should be assembled to bi where i = Tb(β, n).
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Assembly of the load vector

Algorithm II-1:

Initialize the vector: b = sparse(Nb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · ,N:
FOR β = 1, · · · ,Nlb:

Compute r =
∫
En

f ψnβ dxdy ;
b(Tb(β, n), 1) = b(Tb(β, n), 1) + r ;

END
END

45 / 139



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Assembly of the load vector

Algorithm II-2:

Initialize the vector: b = sparse(Nb, 1) and d = zeros(Nlb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · ,N:
FOR β = 1, · · · ,Nlb:

Compute d(β, 1) =
∫
En

f ψnβ dxdy ;
END
b(Tb(:, n), 1) = b(Tb(:, n), 1) + d ;

END
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Assembly of the load vector

To make a general subroutine for different cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

the right hand side function f ;

the quadrature points and weights for numerical integrals;

the mesh information matrices P and T , which can also
provide the number of mesh elements N = size(T , 2) and the
number of mesh nodes Nm = size(P, 2);

the finite element information matrices Pb and Tb for the test
functions, which can also provide the number of local basis
functions Nlb = size(Tb, 1) and the number of the global basis
functions Nb = size(Pb, 2) (= the number of unknowns);

the type of the basis function for the test functions.
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Assembly of the load vector

We can also consider to develop an algorithm to assemble the
vector arising from ∫

En

f
∂p+qψnβ

∂xp∂yq
dxdy .
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Assembly of the load vector

Algorithm II-3:

Initialize the vector: b = sparse(Nb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · ,N:
FOR β = 1, · · · ,Nlb:

Compute r =
∫
En

f
∂p+qψnβ

∂xp∂yq dxdy ;
b(Tb(β, n), 1) = b(Tb(β, n), 1) + r ;

END
END
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Assembly of the load vector

Algorithm II-4:

Initialize the vector: b = sparse(Nb, 1) and d = zeros(Nlb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · ,N:
FOR β = 1, · · · ,Nlb:

Compute d(β, 1) =
∫
En

f
∂p+qψnβ

∂xp∂yq dxdy ;
END
b(Tb(:, n), 1) = b(Tb(:, n), 1) + d ;

END
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Assembly of the load vector

We call Algorithm II-3 with p = q = 0 to obtain b.

That is, Algorithm II-3 is equivalent to Algorithm II-1 with
p = q = 0.

Algorithm II-2 and Algorithm II-4 have a similar relationship.
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Dirichlet boundary condition

Basically, the Dirichlet boundary condition u = g give the
solutions at all boundary finite element nodes.

Since the coefficient uj in the finite element solution

uh =
∑Nb

j=1 ujφj is actually the numerical solution at the finite
element node Xj (j = 1, · · · ,Nb), we actually know those uj

which are corresponding to the boundary finite element nodes.

Recall that boundarynodes(2,:) store the global node indices
of all boundary finite element nodes.

If m ∈ boundarynodes(2, :), then the mth equation is called a
boundary node equation.

Set nbn to be the number of boundary nodes;
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Dirichlet boundary condition

One way to impose the Dirichlet boundary condition is to
replace the boundary node equations in the linear system by
the following equations

um = g(Xm).

for all m ∈ boundarynodes(2, :).

54 / 139



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Dirichlet boundary condition

Algorithm III:

Deal with the Dirichlet boundary conditions:

FOR k = 1, · · · , nbn:
If boundarynodes(1, k) shows Dirichlet condition, then

i = boundarynodes(2, k);
A(i , :) = 0;
A(i , i) = 1;
b(i) = g(Pb(:, i));

ENDIF
END
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Universal framework of the finite element method

Generate the mesh information: matrices P and T ;

Assemble the matrices and vectors: local assembly based on P
and T only;

Deal with the boundary conditions: boundary information
matrix and local assembly;

Solve linear systems: numerical linear algebra (Math 6601:
Numerical Analysis).
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Algorithm

Generate the mesh information matrices P and T .

Assemble the stiffness matrix A by using Algorithm I. (We will
choose Algorithm I-3 in class)

Assemble the load vector ~b by using Algorithm II. (We will
choose Algorithm II-3 in class)

Deal with the Dirichlet boundary condition by using Algorithm
III.

Solve A~X = ~b for ~X by using a direct or iterative method.
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Algorithm

Recall Algorithm I-3:

Initialize the matrix: A = sparse(Nb,Nb);

Compute the integrals and assemble them into A:

FOR n = 1, · · · ,N:
FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:

Compute r =
∫
En

c ∂
r+sψnα

∂x r∂y s
∂p+qψnβ

∂xp∂yq dxdy ;
Add r to A(Tb(β, n),Tb(α, n)).

END
END

END
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Algorithm

Recall

First, we call Algorithm I-3 with r = p = 1 and s = q = 0 to
obtain A1.

Second, we call Algorithm I-3 with r = p = 0 and s = q = 1
to obtain A2.

Then the stiffness matrix A = A1 + A2.
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Algorithm

Recall Algorithm II-3:

Initialize the vector: b = sparse(Nb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · ,N:
FOR β = 1, · · · ,Nlb:

Compute r =
∫
En

f
∂p+qψnβ

∂xp∂yq dxdy ;
b(Tb(β, n), 1) = b(Tb(β, n), 1) + r ;

END
END

Recall: We call Algorithm II-3 with p = q = 0 to obtain b.
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Algorithm

Recall Algorithm III:

Deal with the Dirichlet boundary conditions:

FOR k = 1, · · · , nbn:
If boundarynodes(1, k) shows Dirichlet condition, then

i = boundarynodes(2, k);
A(i , :) = 0;
A(i , i) = 1;
b(i) = g(Pb(:, i));

ENDIF
END
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Measurements for errors

Recall

Definition (L2 space)

L2(Ω) = {v : Ω→ R :

∫
Ω

v 2 dxdy <∞}.

Definition (H1 space)

H1(Ω) = {v ∈ L2(Ω) :
∂α1+α2v

∂xα1∂yα2
∈ L2(Ω), ∀α1 + α2 = 1}.

Definition (L∞ space)

L∞(Ω) = {v : Ω→ R : sup
(x ,y)∈Ω

|u(x , y)| <∞}.
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Measurements for errors

L∞ norm: ‖u‖∞ = sup
(x ,y)∈Ω

|u(x , y)| for u ∈ L∞(Ω).

L∞ norm error: ‖u − uh‖∞ = sup
(x ,y)∈Ω

|u(x , y)− uh(x , y)|.

L2 norm: ‖u‖0 =
√∫

Ω u2dxdy for u ∈ L2(Ω).

L2 norm error: ‖u − uh‖0 =
√∫

Ω(u − uh)2dxdy .

H1 semi-norm: |u|1 =

√∫
Ω

(
∂u
∂x

)2
dxdy +

∫
Ω

(
∂u
∂y

)2
dxdy for

u ∈ H1(Ω).

H1 semi-norm error:

|u − uh|1 =

√∫
Ω

(
∂(u−uh)
∂x

)2
dxdy +

∫
Ω

(
∂(u−uh)
∂y

)2
dxdy .
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Measurements for errors

By using uh =
Nb∑
j=1

ujφj , the definition of Tb, and the definition

of the local basis functions ψnk , we get

‖u − uh‖∞ = sup
(x ,y)∈Ω

|u(x , y)− uh(x , y)|

= max
1≤n≤N

max
(x ,y)∈En

|u(x , y)− uh(x , y)|

= max
1≤n≤N

max
(x ,y)∈En

∣∣∣∣∣∣u(x , y)−
Nb∑
j=1

ujφj

∣∣∣∣∣∣
= max

1≤n≤N
max

(x ,y)∈En

∣∣∣∣∣u(x , y)−
Nlb∑
k=1

uTb(k,n)ψnk(x , y)

∣∣∣∣∣ .
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Measurements for errors

Define

wn(x , y) =

Nlb∑
k=1

uTb(k,n)ψnk(x , y).

Then

‖u − uh‖∞ = max
1≤n≤N

max
(x ,y)∈En

|u(x , y)− wn(x , y)| .

max
(x ,y)∈En

|u(x , y)− wn(x , y)| can be approximated by choosing

the maximum values of |u(x , y)− wn(x , y)| on a group of
chosen points in En, such as some Gauss quadrature nodes in
this element. We denote the approximation by rn.
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Measurements for errors

Algorithm IV:

Initialize the error error = 0;

Approximate the maximum absolute errors on all elements
and then choose the largest one as the final approximation:

FOR n = 1, · · · ,N:
Compute rn ≈ max

(x ,y)∈En

|u(x , y)− wn(x , y)|;

IF rn > error , THEN
error = rn;

END
END
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Measurements for errors

By using uh =
Nb∑
j=1

ujφj , the definition of Tb, and the definition

of the local basis functions ψnk , we get

‖u − uh‖0 =

√∫
Ω

(u − uh)2dxdy

=

√√√√ N∑
n=1

∫
En

(u − uh)2dxdy

=

√√√√√ N∑
n=1

∫
En

u −
Nb∑
j=1

ujφj

2

dxdy

=

√√√√ N∑
n=1

∫
En

(
u −

Nlb∑
k=1

uTb(k,n)ψnk

)2

dxdy .
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Measurements for errors

Define

wn =

Nlb∑
k=1

uTb(k,n)ψnk .

Then

‖u − uh‖0 =

√√√√ N∑
n=1

∫
En

(u − wn)2dxdy .

Each integral
∫
En

(u − wn)2dxdy can be computed by
numerical integration.
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Measurements for errors

By using uh =
Nb∑
j=1

ujφj , the definition of Tb, and the definition

of the local basis functions ψnk , we get

|u − uh|1,x =

√∫
Ω

(
∂(u − uh)

∂x

)2

=

√√√√ N∑
n=1

∫
En

(
∂(u − uh)

∂x

)2

dxdy

=

√√√√√ N∑
n=1

∫
En

∂u

∂x
−

Nb∑
j=1

uj
∂φj
∂x

2

dxdy

=

√√√√ N∑
n=1

∫
En

(
∂u

∂x
−

Nlb∑
k=1

uTb(k,n)
∂ψnk

∂x

)2

dxdy .
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Measurements for errors

Similarly,

|u − uh|1,y =

√∫
Ω

(
∂(u − uh)

∂y

)2

dxdy

=

√√√√ N∑
n=1

∫
En

(
∂(u − uh)

∂y

)2

dxdy

=

√√√√√ N∑
n=1

∫
En

∂u

∂y
−

Nb∑
j=1

uj
∂φj
∂y

2

dxdy

=

√√√√(∂u

∂y
−

Nlb∑
k=1

uTb(k,n)
∂ψnk

∂y

)2

dxdy .
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Measurements for errors

Then

|u − uh|21
= |u − uh|21,x + |u − uh|21,y

=
N∑

n=1

∫
En

(
∂u

∂x
−

Nlb∑
k=1

uTb(k,n)
∂ψnk

∂x

)2

dxdy

+
N∑

n=1

∫
En

(
∂u

∂y
−

Nlb∑
k=1

uTb(k,n)
∂ψnk

∂y

)2

dxdy .
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Measurements for errors

Define

wn1 =

Nlb∑
k=1

uTb(k,n)
∂ψnk

∂x
,

wn2 =

Nlb∑
k=1

uTb(k,n)
∂ψnk

∂y
.

Then

|u − uh|1

=

√√√√ N∑
n=1

∫
En

(
∂u

∂x
− wn1

)2

dxdy +
N∑

n=1

∫
En

(
∂u

∂y
− wn2

)2

dxdy .

Each integral
∫
En

(
∂u
∂x − wn1

)2
dxdy or

∫
En

(
∂u
∂y − wn2

)2
dxdy

can be computed by numerical integration.
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Measurements for errors

Develop a subroutine for a more general formulation√√√√ N∑
n=1

∫
En

(
∂α1+α2u

∂xα1∂yα2
−

Nlb∑
k=1

uTb(k,n)
∂α1+α2ψnk

∂xα1∂yα2

)2

dxdy .

‖u − uh‖0 is equivalent to calling this subroutine with α1 = 0
and α2 = 0.

|u − uh|1,x is equivalent to calling this subroutine with α1 = 1
and α2 = 0.

|u − uh|1,y is equivalent to calling this subroutine with α1 = 0
and α2 = 1.
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Measurements for errors

Algorithm V:

Initialize the error error = 0; input the parameters α1 and α2;

Compute the integrals and add them into the total error:

FOR n = 1, · · · ,N:

error = error+

∫
En

(
∂α1+α2u

∂xα1∂yα2
−

Nlb∑
k=1

uTb(k,n)
∂α1+α2ψnk

∂xα1∂yα2

)2

dxdy ;

END
error =

√
error ;
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Numerical example

Example 1: Use the finite element method to solve the
following equation on the domain Ω = [−1, 1]× [−1, 1]:

−∇ · (∇u) = −y(1− y)(1− x − x2

2
)ex+y

−x(1− x

2
)(−3y − y 2)ex+y ,

u = −1.5y(1− y)e−1+y on x = −1,

u = 0.5y(1− y)e1+y on x = 1,

u = −2x(1− x

2
)ex−1 on y = −1,

u = 0 on y = 1.

The analytic solution of this problem is
u = xy(1− x

2 )(1− y)ex+y , which can be used to compute the
error of the numerical solution.
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Numerical example

Let’s code for the linear and quadratic finite element method
of the 2D second order elliptic equation together!

Open your Matlab!
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Numerical example

h ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/8 2.3620× 10−2 6.8300× 10−3 1.8774× 10−1

1/16 6.3421× 10−3 1.7189× 10−3 9.4167× 10−2

1/32 1.6430× 10−3 4.3049× 10−4 4.7121× 10−2

1/64 4.1810× 10−4 1.0767× 10−4 2.3565× 10−2

1/128 1.0546× 10−4 2.6922× 10−5 1.1783× 10−2

Table: The numerical errors for linear finite element.

Any Observation?

Second order convergence O(h2) in L2/L∞ norm and first
order convergence O(h) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.
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Numerical example

h ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/8 3.3678× 10−4 1.1705× 10−4 8.9192× 10−3

1/16 4.4273× 10−5 1.4637× 10−5 2.2414× 10−3

1/32 5.6752× 10−6 1.8289× 10−6 5.6131× 10−4

1/64 7.1839× 10−7 2.2853× 10−7 1.4042× 10−4

1/128 9.0366× 10−8 2.8560× 10−8 3.5114× 10−5

Table: The numerical errors for quadratic finite element.

Any Observation?

Third order convergence O(h3) in L2/L∞ norm and second
order convergence O(h2) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
quadratic functions.
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Neumann boundary conditions

Consider

−∇ · (c∇u) = f in Ω, ∇u · ~n = p on ∂Ω.

Recall∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds =

∫
Ω

fv dxdy .

Hence ∫
Ω

c∇u · ∇v dxdy =

∫
Ω

fv dxdy +

∫
∂Ω

cpv ds.

Is there anything wrong? The solution is not unique!

If u is a solution, then u + c is also a solution where c is a
constant.
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Neumann boundary condition

Consider

−∇ · (c∇u) = f in Ω,

∇u · ~n = p on ΓN⊂∂Ω,

u = g on ΓD = ∂Ω/ΓN .

Recall∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds =

∫
Ω

fv dxdy .

Since the solution on ΓD = ∂Ω/ΓN is given by u = g , then we
can choose the test function v(x , y) such that v = 0 on
∂Ω/ΓN .
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Neumann boundary condition

Since∫
∂Ω

(c∇u · ~n) v ds =

∫
ΓN

(c∇u · ~n) v ds +

∫
∂Ω/ΓN

(c∇u · ~n) v ds

=

∫
ΓN

cpv ds,

then ∫
Ω

c∇u · ∇v dxdy −
∫

ΓN

cpv ds =

∫
Ω

fv dxdy .

Hence the weak formulation is to find u ∈ H1(Ω) such that∫
Ω

c∇u · ∇v dxdy =

∫
Ω

fv dxdy+

∫
ΓN

cpv ds.

for any v ∈ H1
0D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}.
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Neumann boundary condition

Consider a finite element space Uh ⊂ H1(Ω). Define Uh0 to
be the space which consists of the functions of Uh with value
0 on the Dirichlet boundary.

Then the Galerkin formulation is to find uh ∈ Uh such that∫
Ω

c∇uh · ∇vh dxdy =

∫
Ω

fvh dxdy+

∫
ΓN

cpvh ds

for any vh ∈ Uh0.

For an easier implementation, we consider the Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find uh ∈ Uh such that∫

Ω
c∇uh · ∇vh dxdy =

∫
Ω

fvh dxdy+

∫
ΓN

cpvh ds

for any vh ∈ Uh.
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Neumann boundary condition

Recall: Since uh ∈ Uh = span{φj}Nb
j=1, then

uh =

Nb∑
j=1

ujφj

for some coefficients uj (j = 1, · · · ,Nb).

Recall: Choose vh = φi (i = 1, · · · ,Nb).

Then for i = 1, · · · ,Nb, the finite element formulation gives∫
Ω

c∇(

Nb∑
j=1

ujφj) · ∇φi dxdy =

∫
Ω

f φi dxdy+

∫
ΓN

cpφi ds,

⇒
Nb∑
j=1

uj

[∫
Ω

c∇φj · ∇φi dxdy

]
=

∫
Ω

f φi dxdy+

∫
ΓN

cpφi ds.
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Neumann boundary condition

Recall

Define the stiffness matrix

A = [aij ]
Nb
i ,j=1 =

[∫
Ω

c∇φj · ∇φi dxdy

]Nb

i ,j=1

.

Define the load vector

~b = [bi ]
Nb
i=1 =

[∫
Ω

f φi dxdy

]Nb

i=1

.

Define the unknown vector

~X = [uj ]
Nb
j=1.
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Neumann boundary condition

Define the additional vector from the Neumann boundary
condition

~v = [vi ]
Nb
i=1 =

[∫
ΓN

cpφi ds

]Nb

i=1

.

Define the new vector ~̃b = ~b+~v .

Then we obtain the linear algebraic system

A~X = ~̃b.

Code?

Add one more subroutine for ~v to the existing code!
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Neumann boundary condition

Recall

Matrix boundaryedges:

boundaryedges(1, k) is the type of the kth boundary edge ek :
Dirichlet (-1), Neumann (-2), Robin (-3)......

boundaryedges(2, k) is the index of the element which
contains the kth boundary edge ek .

Each boundary edge has two end nodes. We index them as
the first and the second counterclock wise along the boundary.

boundaryedges(3, k) is the global node index of the first end
node of the kth boundary boundary edge ek .

boundaryedges(4, k) is the global node index of the second
end node of the kth boundary boundary edge ek .

Set nbe = size(boundaryedges, 2) to be the number of
boundary edges;
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Neumann boundary condition

The idea for the assembly of the vector ~v is similar to that of
the load vector. We have

vi =

∫
ΓN

cpφi ds =
∑

ek⊂ΓN
1≤k≤nbe

∫
ek

cpφi ds, i = 1, · · · ,Nb.

Loop over all the boundary edges;

Compute all non-zero local integrals on each Neumann
boundary edge for the vector ~v ;

Assemble these non-zero local integrals into the corresponding
entries of the vector ~v .
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Neumann boundary condition

Compute all non-zero local integrals on each Neumann boundary
edge for ~v :

The index of the element which contains the kth boundary
edge ek is nk = boundaryedges(2, k). Then on ek , we get
non-zero local integrals only when the test basis functions are
corresponding to the finite element nodes of the nth

k element
Enk .

Let ps = Tb(s, nk) (s = 1, · · · ,Nlb).

Then we only consider the test basis functions to be
φps (s = 1, · · · ,Nlb).

There are only Nlb non-zero local integrals on ek with the
global basis functions φps (s = 1, · · · ,Nlb):∫

ek

cpφi ds (i = p1, · · · , pNlb
).
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Neumann boundary condition

In fact, we have

ψnk s = φps |Enk
(s = 1, · · · ,Nlb).

That is, instead of the original non-zero local integrals with
the global basis functions φps (s = 1, · · · ,Nlb), we will
compute the following non-zero local integrals with the local
basis functions ψnk s (s = 1, · · · ,Nlb):∫

ek

cpψnkβ ds (β = 1, · · · ,Nlb).

Question: how to compute these integrals?

Gauss quadrature. The needed information is stored in the
matrices P and boundaryedges.
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Neumann boundary condition

P(:, boundaryedges(3 : 4, k)) provides the coordinates of the
two end points of the kth boundary edge. We discuss three
cases based on these coordinates.

Case 1: If a boundary edge is vertical, then it can be
described as x = c (y1 ≤ y ≤ y2). The y−coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [y1, y2]. And the x−coordinates of the Gauss
quadrature nodes are fixed to be c .
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Neumann boundary condition

Case 2: If a boundary edge is horizontal, then it can be
described as y = c (x1 ≤ x ≤ x2). The x−coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [x1, x2]. And the y−coordinates of the Gauss
quadrature nodes are fixed to be c .

Case 3: Otherwise, a boundary edge can be described as
y = ax + b (x1 ≤ x ≤ x2). The x−coordinates of the Gauss
quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
nodes in [x1, x2]. And the y−coordinates of the Gauss
quadrature nodes are obtained from y = ax + b.

The case 3 with a = 0 and b = c is equivalent to case 2.
Hence case 2 and case 3 can be combined into one case.
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Neumann boundary condition

Assemble the non-zero local integrals into ~v :

When the test function is φi , the corresponding non-zero local
integrals should be assembled to vi .

Therefore, if we find the global node indices of the test basis
functions, we can easily locate where to assemble a non-zero
local integral.

Question: Since we compute∫
ek

cpψnkβ ds (β = 1, · · · ,Nlb)

instead of ∫
ek

cpφi ds (i = p1, · · · , pNlb
),

how do we obtain the corresponding global node indices of the
local test basis functions ψnkβ (β = 1, · · · ,Nlb)?

Information matrix Tb!
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Neumann boundary condition

Recall that Tb(β, nk) give the global node indices of the local
test basis functions ψnkβ (β = 1, · · · ,Nlb).

That is, ∫
ek

cpψnkβ ds (β = 1, · · · ,Nlb)

should be assembled to vi where i = Tb(β, nk).
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Neumann boundary condition

Algorithm VI-1:

Initialize the vector: v = sparse(Nb, 1);

Compute the integrals and assemble them into v :

FOR k = 1, · · · , nbe:
IF boundaryedges(1, k) shows Neumann boundary

condition, THEN
nk = boundaryedges(2, k);
FOR β = 1, · · · ,Nlb:

Compute r =
∫
ek

cpψnkβ ds;
v(Tb(β, nk), 1) = v(Tb(β, nk), 1) + r ;

END
ENDIF

END
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Neumann boundary condition

If we follow Algorithm VI-1 to develop a subroutine to
assemble the vector arising from∫

ek

p̃
∂a+bψnkβ

∂xa∂yb
ds,

then Algorithm VI-1 is equivalent to calling this subroutine
with parameters: a = b = 0 and p̃ = cp.
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Neumann boundary condition

Algorithm VI:

Initialize the vector: v = sparse(Nb, 1);

Compute the integrals and assemble them into v :

FOR k = 1, · · · , nbe:
IF boundaryedges(1, k) shows Neumann boundary

condition, THEN
nk = boundaryedges(2, k);
FOR β = 1, · · · ,Nlb:

Compute r =
∫
ek

p̃
∂a+bψnkβ

∂xa∂yb ds;

v(Tb(β, nk), 1) = v(Tb(β, nk), 1) + r ;
END

ENDIF
END
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Neumann boundary condition

Recall

Matrix boundarynodes:

boundarynodes(1, k) is the type of the kth boundary finite
element node: Dirichlet (-1), Neumann (-2), Robin (-3)......

The intersection nodes of Dirichlet boundary condition and
other boundary conditions usually need to be treated as
Dirichlet boundary nodes.

boundarynodes(2, k) is the global node index of the kth

boundary boundary finite element node.

Set nbn = size(boundarynodes, 2) to be the number of
boundary finite element nodes;
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Neumann boundary condition

Example 2: Use the finite element method to solve the
following equation on the domain Ω = [−1, 1]× [−1, 1]:

−∇ · (∇u) = −2ex+y ,

u = e−1+y on x = −1,

u = e1+y on x = 1,

∇u · ~n = −ex−1 on y = −1,

u = ex+1 on y = 1.

The analytic solution of this problem is u = ex+y , which can
be used to compute the error of the numerical solution.
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Neumann boundary condition

Let’s code for the linear and quadratic finite element method
of the 2D second order elliptic equation with Neumann
boundary condition!

Open your Matlab!
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Neumann boundary condition

h ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/8 1.3358× 10−2 5.1224× 10−3 1.8523× 10−1

1/16 3.4487× 10−3 1.2793× 10−3 9.2559× 10−2

1/32 8.7622× 10−4 3.1973× 10−4 4.6273× 10−2

1/64 2.2084× 10−4 7.9928× 10−5 2.3136× 10−2

1/128 5.5433× 10−5 1.9982× 10−5 1.1568× 10−2

Table: The numerical errors for linear finite element.

Any Observation?

Second order convergence O(h2) in L2/L∞ norm and first
order convergence O(h) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.
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Neumann boundary condition

h ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/8 1.0956× 10−4 3.9285× 10−5 2.9874× 10−3

1/16 1.4074× 10−5 4.9015× 10−6 7.4668× 10−4

1/32 1.7835× 10−6 6.1244× 10−7 1.8667× 10−4

1/64 2.2447× 10−7 7.6549× 10−8 4.6667× 10−5

1/128 2.8155× 10−8 9.5686× 10−9 1.1667× 10−5

Table: The numerical errors for quadratic finite element.

Any Observation?

Third order convergence O(h3) in L2/L∞ norm and second
order convergence O(h2) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
quadratic functions.
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Robin boundary conditions

Consider

−∇ · (c∇u) = f in Ω,

∇u · ~n + ru = q on ΓR⊆∂Ω,

u = g on ΓD = ∂Ω/ΓR .

Recall∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds =

∫
Ω

fv dxdy .

Since the solution on ΓD = ∂Ω/ΓR is given by u = g , then we
can choose the test function v(x , y) such that v = 0 on
∂Ω/ΓR .
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Robin boundary condition

Since∫
∂Ω

(c∇u · ~n) v ds =

∫
ΓR

(c∇u · ~n) v ds +

∫
∂Ω/ΓR

(c∇u · ~n) v ds

=

∫
ΓR

cqv ds −
∫

ΓR

cruv ds,

then∫
Ω

c∇u · ∇v dxdy −
(∫

ΓR

cqv ds −
∫

ΓR

cruv ds

)
=

∫
Ω

fv dxdy .

Hence the weak formulation is to find u ∈ H1(Ω) such that∫
Ω

c∇u · ∇v dxdy+

∫
ΓR

cruv ds =

∫
Ω

fv dxdy+

∫
ΓR

cqv ds.

for any v ∈ H1
0D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}.
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Robin boundary condition

Consider a finite element space Uh ⊂ H1(Ω). Define Uh0 to
be the space which consists of the functions of Uh with value
0 on the Dirichlet boundary.

Then the Galerkin formulation is to find uh ∈ Uh such that∫
Ω

c∇uh · ∇vh dxdy+

∫
ΓR

cruhvh ds =

∫
Ω

fvh dxdy+

∫
ΓR

cqvh ds

for any vh ∈ Uh0.

For an easier implementation, we consider the Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find uh ∈ Uh such that∫

Ω
c∇uh · ∇vh dxdy+

∫
ΓR

cruhvh ds =

∫
Ω

fvh dxdy+

∫
ΓR

cqvh ds

for any vh ∈ Uh.
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Robin boundary condition

Recall: Since uh ∈ Uh = span{φj}Nb
j=1, then

uh =

Nb∑
j=1

ujφj

for some coefficients uj (j = 1, · · · ,Nb).

Recall: Choose vh = φi (i = 1, · · · ,Nb).
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Robin boundary condition

Then for i = 1, · · · ,Nb, the finite element formulation gives∫
Ω

c∇(

Nb∑
j=1

ujφj) · ∇φi dxdy+

∫
ΓR

cr(

Nb∑
j=1

ujφj)φi ds

=

∫
Ω

f φi dxdy+

∫
ΓR

cqφi ds,

⇒
Nb∑
j=1

uj

[∫
Ω

c∇φj · ∇φi dxdy

]
+

Nb∑
j=1

uj

[∫
ΓR

crφjφi ds

]
=

∫
Ω

f φi dxdy+

∫
ΓR

cqφi ds.
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Robin boundary condition

Recall: Define the stiffness matrix

A = [aij ]
Nb
i ,j=1 =

[∫
Ω

c∇φj · ∇φi dxdy

]Nb

i ,j=1

.

Recall: Define the load vector

~b = [bi ]
Nb
i=1 =

[∫
Ω

f φi dxdy

]Nb

i=1

.

Recall: Define the unknown vector

~X = [uj ]
Nb
j=1.

Define the additional vector from the Robin boundary
condition

~w = [wi ]
Nb
i=1 =

[∫
ΓR

cqφi ds

]Nb

i=1

.
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Robin boundary condition

Define the additional matrix from the Robin boundary
condition

R = [rij ]
Nb
i ,j=1 =

[∫
ΓR

crφjφi ds

]Nb

i ,j=1

.

Define the new vector ~̃b = ~b+~w .

Define the new matrix Ã = A+R.

Then we obtain the linear algebraic system

Ã~X = ~̃b.

Code?

Add one more subroutine for ~w and R to the existing code!
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Robin boundary condition

Recall

Matrix boundaryedges:

boundaryedges(1, k) is the type of the kth boundary edge ek :
Dirichlet (-1), Neumann (-2), Robin (-3)......

boundaryedges(2, k) is the index of the element which
contains the kth boundary edge ek .

Each boundary edge has two end nodes. We index them as
the first and the second counterclock wise along the boundary.

boundaryedges(3, k) is the global node index of the first end
node of the kth boundary boundary edge ek .

boundaryedges(4, k) is the global node index of the second
end node of the kth boundary boundary edge ek .

Set nbe = size(boundaryedges, 2) to be the number of
boundary edges;
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Robin boundary condition

The idea for the assembly of the matrix R and the vector ~w is
similar to that of the stiffness matrix and the load vector. We
have

wi =

∫
ΓR

cqφi ds =
∑

ek⊂ΓR
1≤k≤nbe

∫
ek

cqφi ds, i = 1, · · · ,Nb,

rij =

∫
ΓR

crφjφi ds =
∑

ek⊂ΓR
1≤k≤nbe

∫
ek

crφjφi ds, i , j = 1, · · · ,Nb.

Loop over all the boundary edges;

Compute all non-zero local integrals on each Robin boundary
edge for the vector ~w and the matrix R;

Assemble these non-zero local integrals into the corresponding
entries of the vector ~w and the matrix R.
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Robin boundary condition

Compute all non-zero local integrals on each Robin boundary edge
for the vector ~w and the matrix R:

The index of the element which contains the kth boundary
edge ek is nk = boundaryedges(2, k). Then on ek , we get
non-zero local integrals only when the test and trial basis
functions are corresponding to the finite element nodes of the
nth
k element Enk .

Let ps = Tb(s, nk) (s = 1, · · · ,Nlb).

Then we only consider the test basis functions to be
φps (s = 1, · · · ,Nlb).
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Robin boundary condition

There are only Nlb non-zero local integrals on ek with the
global basis functions φps (s = 1, · · · ,Nlb):∫

ek

cqφi ds, i = p1, · · · , pNlb
,∫

ek

crφjφi ds, i , j = p1, · · · , pNlb
.

In fact, we have

ψnk s = φps |Enk
(s = 1, · · · ,Nlb).
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Robin boundary condition

That is, instead of the original non-zero local integrals with
the global basis functions φps (s = 1, · · · ,Nlb), we will
compute the following non-zero local integrals with the local
basis functions ψnk s (s = 1, · · · ,Nlb):∫

ek

cpψnkβ ds, β = 1, · · · ,Nlb,∫
ek

crψnkβψnkα ds, α, β = 1, · · · ,Nlb.

Question: how to compute these integrals?

Gauss quadrature. The needed information is stored in the
matrices P and boundaryedges.
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Robin boundary condition

Recall

P(:, boundaryedges(3 : 4, k)) provides the coordinates of the
two end points of the kth boundary edge. We discuss three
cases based on these coordinates.

Case 1: If a boundary edge is vertical, then it can be
described as x = c (y1 ≤ y ≤ y2). The y−coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [y1, y2]. And the x−coordinates of the Gauss
quadrature nodes are fixed to be c .
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Robin boundary condition

Case 2: If a boundary edge is horizontal, then it can be
described as y = c (x1 ≤ x ≤ x2). The x−coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [x1, x2]. And the y−coordinates of the Gauss
quadrature nodes are fixed to be c .

Case 3: Otherwise, a boundary edge can be described as
y = ax + b (x1 ≤ x ≤ x2). The x−coordinates of the Gauss
quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
nodes in [x1, x2]. And the y−coordinates of the Gauss
quadrature nodes are obtained from y = ax + b.

The case 3 with a = 0 and b = c is equivalent to case 2.
Hence case 2 and case 3 can be combined into one case.
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Robin boundary condition

Assemble the non-zero local integrals into ~w and R:

When the test function is φi , the corresponding non-zero local
integrals should be assembled to wi .

When the trial function is φi and the test function is φj , the
corresponding non-zero local integrals should be assembled to
rij .

Therefore, if we find the global node indices of the trial and
test basis functions, we can easily locate where to assemble a
non-zero local integral.
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Robin boundary condition

Question: Since we compute∫
ek

cqψnkβ ds (β = 1, · · · ,Nlb)

instead of ∫
ek

cqφi ds (i = p1, · · · , pNlb
),

how do we obtain the corresponding global node indices of the
local test basis functions ψnkβ (β = 1, · · · ,Nlb)?
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Robin boundary condition

Question: Since we compute∫
ek

crψnkβψnkα ds (α, β = 1, · · · ,Nlb)

instead of ∫
ek

crφjφi ds (i , j = p1, · · · , pNlb
),

how do we obtain the corresponding global node indices of the
local trial and test basis functions ψnkα and
ψnkβ (α, β = 1, · · · ,Nlb)?

Information matrix Tb!
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Robin boundary condition

Recall that Tb(α, nk) and Tb(β, nk) give the global node
indices of the local trial and test basis functions ψnkα and
ψnkβ (α, β = 1, · · · ,Nlb).

That is, ∫
ek

cqψnkβ ds (β = 1, · · · ,Nlb)

should be assembled to wi where i = Tb(β, nk).

And ∫
ek

crψnkαψnkβ ds (α, β = 1, · · · ,Nlb)

should be assembled to rij where i = Tb(β, nk) and
j = Tb(α, nk).
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Robin boundary condition

Algorithm VII-1:

Initialize R = sparse(Nb,Nb) and w = sparse(Nb, 1);

Compute the integrals and assemble them into R and w :

FOR k = 1, · · · , nbe:
IF boundaryedges(1, k) shows Robin boundary condition, THEN

nk = boundaryedges(2, k);

FOR β = 1, · · · ,Nlb:

Compute r =
∫
ek
cqψnkβ ds;

w(Tb(β, nk), 1) = w(Tb(β, nk), 1) + r ;

END

FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:

Compute r =
∫
ek
crψnkβψnkα ds;

Add r to R(Tb(β, nk),Tb(α, nk));

END

END

ENDIF

END
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Robin boundary condition

Algorithm VII-2:

Initialize R = sparse(Nb,Nb) and w = sparse(Nb, 1);

Compute the integrals and assemble them into R and w :

FOR k = 1, · · · , nbe:
IF boundaryedges(1, k) shows Robin boundary condition, THEN

nk = boundaryedges(2, k);

FOR β = 1, · · · ,Nlb:

Compute r =
∫
ek
cqψnkβ ds;

w(Tb(β, nk), 1) = w(Tb(β, nk), 1) + r ;

FOR α = 1, · · · ,Nlb:

Compute r =
∫
ek
crψnkβψnkα ds;

Add r to R(Tb(β, nk),Tb(α, nk));

END

END

ENDIF

END
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Robin boundary condition

If we follow Algorithm VII-1 to develop a subroutine to
assemble the vector arising from∫

ek

p̃
∂a+bψnkβ

∂xa∂yb
ds,

and the vector arising from∫
ek

r̃
∂m+sψnkα

∂xm∂y s

∂d+lψnkβ

∂xd∂y l
ds,

then Algorithm VII-1 is equivalent to calling this subroutine
with parameters: a = b = r = s = d = l = 0, p̃ = cq, and
r̃ = cr .

Note that the vector part is exactly the same as what we had
for the Neumann boundary condition!
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Robin boundary condition

Algorithm VII:

Initialize R = sparse(Nb,Nb) and w = sparse(Nb, 1);

Compute the integrals and assemble them into R and w :

FOR k = 1, · · · , nbe:
IF boundaryedges(1, k) shows Robin boundary condition, THEN

nk = boundaryedges(2, k);

FOR β = 1, · · · ,Nlb:

Compute r =
∫
ek
p̃
∂a+bψnkβ

∂xa∂yb
ds;

w(Tb(β, nk), 1) = w(Tb(β, nk), 1) + r ;

END

FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:

Compute r =
∫
ek
r̃
∂m+sψnkα

∂xm∂y s
∂d+lψnkβ

∂xd∂y l
ds;

Add r to R(Tb(β, nk),Tb(α, nk));

END

END

ENDIF
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Robin boundary condition

Recall

Matrix boundarynodes:

boundarynodes(1, k) is the type of the kth boundary finite
element node: Dirichlet (-1), Neumann (-2), Robin (-3)......

The intersection nodes of Dirichlet boundary condition and
other boundary conditions usually need to be treated as
Dirichlet boundary nodes.

boundarynodes(2, k) is the global node index of the kth

boundary boundary finite element node.

Set nbn = size(boundarynodes, 2) to be the number of
boundary finite element nodes;
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Robin boundary condition

Example 3: Use the finite element method to solve the
following equation on the domain Ω = [−1, 1]× [−1, 1]:

−∇ · (∇u) = −2ex+y ,

u = e−1+y on x = −1,

u = e1+y on x = 1,

∇u · ~n + u = 0 on y = −1,

u = ex+1 on y = 1.

The analytic solution of this problem is u = ex+y , which can
be used to compute the error of the numerical solution.
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Robin boundary condition

Let’s code for the linear and quadratic finite element method
of the 2D second order elliptic equation with Neumann
boundary condition!

Open your Matlab!
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Robin boundary condition

h ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/8 1.3358× 10−2 5.1094× 10−3 1.8523× 10−1

1/16 3.4487× 10−3 1.2760× 10−3 9.2559× 10−2

1/32 8.7622× 10−4 3.1893× 10−4 4.6273× 10−2

1/64 2.2084× 10−4 7.9727× 10−5 2.3136× 10−2

1/128 5.5433× 10−5 1.9932× 10−5 1.1568× 10−2

Table: The numerical errors for linear finite element.

Any Observation?

Second order convergence O(h2) in L2/L∞ norm and first
order convergence O(h) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.
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Robin boundary condition

h ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/8 1.0956× 10−4 3.9278× 10−5 2.9874× 10−3

1/16 1.4074× 10−5 4.9012× 10−6 7.4668× 10−4

1/32 1.7835× 10−6 6.1243× 10−7 1.8667× 10−4

1/64 2.2447× 10−7 7.6549× 10−8 4.6667× 10−5

1/128 2.8155× 10−8 9.5686× 10−9 1.1667× 10−5

Table: The numerical errors for quadratic finite element.

Any Observation?

Third order convergence iO(h3) in L2/L∞ norm and second
order convergence O(h2) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
quadratic functions.
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Dirichlet/Neumann/Robin mixed boundary condition

Consider

−∇ · (c∇u) = f in Ω,

∇u · ~n = p on ΓN ⊂ ∂Ω,

∇u · ~n + ru = q on ΓR ⊆ ∂Ω,

u = g on ΓD = ∂Ω/(ΓN ∪ ΓR).

Recall∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds =

∫
Ω

fv dxdy .

Since the solution on ΓD = ∂Ω/(ΓN ∪ ΓR) is given by u = g ,
then we can choose the test function v such that v = 0 on
∂Ω/(ΓN ∪ ΓR).
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Dirichlet/Neumann/Robin mixed boundary condition

Combining the derivation above for the Neumann and Robin
boundary conditions, the weak formulation is to find
u ∈ H1(Ω) such that∫

Ω
c∇u · ∇v dxdy+

∫
ΓR

cruv ds

=

∫
Ω

fv dxdy+

∫
ΓN

cpv ds +

∫
ΓR

cqv ds.

for any v ∈ H1
0D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}.

Code?

Combine all of the subroutines for Dirichlet/Neumann/Robin
boundary conditions.
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Non-isotropic equation

Consider

−∇ · (c∇u) = f in Ω,

c∇u · ~n = p on ΓN ⊂ ∂Ω,

c∇u · ~n + ru = q on ΓR ⊆ ∂Ω,

u = g on ΓD = ∂Ω/(ΓN ∪ ΓR),

where

c =

(
c11 c12

c21 c22

)
.

Recall ∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds =

∫
Ω

fv dxdy .

Since the solution on ΓD = ∂Ω/(ΓN ∪ ΓR) is given by u = g , then
we can choose the test function v such that v = 0 on
∂Ω/(ΓN ∪ ΓR).
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Non-isotropic equation

Similar to the previous derivation, the weak formulation is to
find u ∈ H1(Ω) such that∫

Ω
c∇u · ∇v dxdy +

∫
ΓR

ruv ds

=

∫
Ω

fv dxdy +

∫
ΓN

pv ds +

∫
ΓR

qv ds.

for any v ∈ H1
0D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}. Here

c∇u · ∇v =

(
c11 c12

c21 c22

)(
ux

uy

)
·
(

vx
vy

)
=

(
c11ux + c12uy

c21ux + c22uy

)
·
(

vx
vy

)
= c11uxvx + c12uyvx + c21uxvy + c22uyvy .
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Non-isotropic equation

Code? Just call Algorithm I-3 four times! Everything else is
the same as before!

Call Algorithm I-3 with r = 1, s = 0, p = 1, q = 0, and
c = c11 to obtain A1;

Call Algorithm I-3 with r = 0, s = 1, p = 1, q = 0, and
c = c11 to obtain A2;

Call Algorithm I-3 with r = 1, s = 0, p = 0, q = 1, and
c = c21 to obtain A3;

Call Algorithm I-3 with r = 0, s = 1, p = 0, q = 1, and
c = c22 to obtain A4.

Then the stiffness matrix is A = A1 + A2 + A3 + A4.
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A more general second order equation

Consider

−∇ · (c∇u)+au = f in Ω,

c∇u · ~n = p on ΓN ⊂ ∂Ω,

c∇u · ~n + ru = q on ΓR ⊆ ∂Ω,

u = g on ΓD = ∂Ω/(ΓN ∪ ΓR),

where

c =

(
c11 c12

c21 c22

)
.

Then similar to the previous derivation, we have∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds+

∫
Ω

auv dxdy =

∫
Ω

fv dxdy .
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A more general second order equation

Since the solution on ΓD = ∂Ω/(ΓN ∪ ΓR) is given by u = g ,
then we can choose the test function v such that v = 0 on
∂Ω/(ΓN ∪ ΓR).

Similar to the previous derivation, the weak formulation is to
find u ∈ H1(Ω) such that∫

Ω
c∇u · ∇v dxdy +

∫
Ω

auv dxdy +

∫
ΓR

ruv ds

=

∫
Ω

fv dxdy +

∫
ΓN

pv ds +

∫
ΓR

qv ds.

for any v ∈ H1
0D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}. Here

c∇u · ∇v = c11uxvx + c12uyvx + c21uxvy + c22uyvy .
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A more general second order equation

Code? Just call Algorithm I-3 five times! Everything else is
the same as before!

Call Algorithm I-3 with r = 0, s = 0, p = 0, q = 0, and c = a
to obtain A0;

Call Algorithm I-3 with r = 1, s = 0, p = 1, q = 0, and
c = c11 to obtain A1;

Call Algorithm I-3 with r = 0, s = 1, p = 1, q = 0, and
c = c11 to obtain A2;

Call Algorithm I-3 with r = 1, s = 0, p = 0, q = 1, and
c = c21 to obtain A3;

Call Algorithm I-3 with r = 0, s = 1, p = 0, q = 1, and
c = c22 to obtain A4.

Then the stiffness matrix is A = A0+A1 + A2 + A3 + A4.
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Linear regression for the convergence order

Consider ‖u − uh‖ = Chr .

The goal is to design a linear regression to obtain the C and r
based on the h and errors given in the table.

First,

log (‖u − uh‖) = log(Chr )

= log(C ) + log(hr )

= log(C ) + r log(h).

Let y = log (‖u − uh‖) , x = log(h), a = r , b = log(C ).

Then y = ax + b.

For different h, we can obtain the corresponding x and y .

Then by the regular linear regression, we can obtain a and b,
which give us the C = eb and r = a.
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