Introduction and Implementation for Finite
Element Methods

Chapter 3: Finite elements for 2D second order elliptic equation

Xiaoming He
Department of Mathematics & Statistics
Missouri University of Science & Technology
Email: hex@mst.edu
Homepage: https://web.mst.edu/~hex/

1/139

https://web.mst.edu/~hex/

Outline

@ Weak/Galerkin formulation
@ FE discretization

© Dirichlet boundary condition
@ FE Method

© More Discussion

2 /139

Weak/Galerkin formulation

Outline

@ Weak/Galerkin formulation

3/139

Weak/Galerkin formulation
Target problem

@ Consider the 2D second order elliptic equation

V- (cVu)=f, inQ
u=g, on 0f.

where Q is a 2D domain, f(x,y) and c(x,y) are given
functions on Q, g(x,y) is a given function on 9Q and u(x, y)
is the unknown function.

@ The gradient of a 2D function u is defined by
Vu = (uy, uy).
@ The divergence of a 2 x 1 vector V is defined by

8v ov
7 1 2
8y

4/139

Weak/Galerkin formulation

Weak formulation

e First, multiply a function v(x,y) on both sides of the original
equation,

-V (cVu)=1f inQ
= -V (cVu)v=1fr inQ

= —/ V - (cVu)v dxdy :/ fv dxdy.
Q Q

@ u(x,y) is called a trail function and v(x,y) is called a test
function.

5/139

Weak/Galerkin formulation

Weak formulation

@ Second, using Green's formula (divergence theory, integration
by parts in multi-dimension)

/ V - (cVu)v dxdy = / (cVu-n)vds —/ cVu- Vv dxdy,
Q o0 Q

we obtain

/ cVu - Vv dxdy —/ (cVu-n)v ds = / fv dxdy.
Q o Q

6 /139

Weak/Galerkin formulation

Weak formulation

@ Since the solution on the domain boundary 9f2 are given by
u(x,y) = g(x,y), then we can choose the test function
v(x, y) such that v =0 on 0.

@ Hence

/ cVu - Vv dxdy :/ fv dxdy.
Q Q

@ What spaces should v and v belong to? Sobolev spaces!

7/139

Weak/Galerkin formulation

Sobolev spaces

Definition (Support)

If uis a function defined on a domain €, then its support supp(u)
is the closure of the set on which u is nonzero.

Definition (Compactly supported)

If uis a function defined on a domain Q and supp(u) is a compact
subset (that is, a closed and bounded subset), then v is said to be
compactly supported in Q.

Lemma (1)

A function compactly supported in 2 is zero on and near the
boundary of Q.

8/139

Weak/Galerkin formulation
Sobolev spaces

Definition
C5°(2) is the set of all functions that are infinitely differentiable
on Q and compactly supported in 2.

@ Recall integration by parts:

/ —v dxdy = / uvny ds — u@ dxdy.
Elo} o Ox

e For v € (§°(f2), we have v =0 on 9. Then
ou ov
/anv dxdy = _/Quc?x dxdy.

9/139

Weak/Galerkin formulation

Sobolev spaces

Definition (weak derivative with respect to x in 2D)

Suppose u is a real-valued function defined on a domain €2 and
that u is integrable over every compact subset of €2. If there exists
another locally integrable function w defined on € such that

/ wv dxdy = / u— dxdy.

for all v € C§°(Q2), then u is said to be weakly differentiable with
respect to x and w is called the weak partial derivative of u with
respect to x.

10/139

Weak/Galerkin formulation

Sobolev spaces

Definition (general weak derivative in 2D)

Let & = (a1, 2). Suppose u is a real-valued function defined on a
domain Q and that v is integrable over every compact subset of Q.
If there exists another locally integrable function w defined on Q
such that

aa1+azv

_ a1t
/Qwv dxdy = (—1)“ 72 A UW dxdy.

for all v € C5°(R2), then u is said to be a weakly differentiable and
w is called the weak partial derivative of order « of wu.

11/139

Weak/Galerkin formulation

Sobolev spaces

Lemma (II)

If u is differentiable, then u is weakly differentiable and its weak
o%1 +ap u

derivative of order oo = (a1, a2) IS Fiargas -
Remark

a o o aq+a
In the Sobolev spaces, which will be defined below, 8(2(0‘11%

used to represent the weak derivative of order o = (a1, a2).

12 /139

Weak/Galerkin formulation
Sobolev spaces

Definition (LP space)

LP(Q)={v:Q—R: /v”dxdy<oo}.
Q

Definition (L2 space)

[2(Q)={v:Q—R: /vzdxdy<oo}.
Q

Definition (L*° space)

L*(Q)={v:Q—=R: sup |u(x,y)| < oo}
(x,y)e

13/139

Weak/Galerkin formulation
Sobolev spaces

Definition (H™ space)

HP(Q) = {v € 12(Q) : TV € 12(Q), Vagtap =1, -+ , m}
-V - Oxe0y 2) SRR = ot il
Definition (H' space)

a1+a2V

HY(Q) = {v e [3Q): aa € [3(Q), Va1 +ap = 1}.

X1y 2

Definition (Hg space)

H3(Q) = {v e HY(Q) : v =0 on 0Q}.

14 /139

Weak/Galerkin formulation
Sobolev spaces

Definition (W, space)

m aa1+azv P
Wp (Q) = {V:§2—>R:/g2 |:8Xalaya2:| dXdy<OO,

Vo1 +ap =0, -, m}.

Remark

o LP(Q) = W2(Q),
° L2(Q) = WP(Q);
o HM() = Wi(Q);

o HY(Q) = Wi(Q).

15/139

Weak/Galerkin formulation

Weak formulation

e Weak formulation: find u € H(Q) such that

/ cVu- Vv dxdy :/ fv dxdy.
Q Q
for any v € H}(Q).
o Let a(u,v) = [cVu- Vvdxdy and (f,v) = [, fvdxdy.

@ Weak formulation: find u € H*(Q) such that
a(u,v) = (f,v)

for any v € H}(Q).

16 /139

Weak/Galerkin formulation

Galerkin formulation

o Assume there is a finite dimensional subspace U, C HY(2Q).
Define Upg to be the space which consists of the functions of
Up with value 0 on the Dirichlet boundary.

@ Then the Galerkin formulation is to find u, € Uy such that

a(uh, Vh) = (f, Vh)

& / cVup - Vv, dxdy :/ fvy dxdy
Q Q

for any v, € Upo.

@ Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

e Here Uy = span{cbj}J’-V:bl is chosen to be a finite element space

where {gbj}Jl-V:bl are the global finite element basis functions.

17 /139

Weak/Galerkin formulation

Galerkin formulation

@ For an easier implementation, we use the following Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find uj, € Uy, such that

a(uh, Vh) = (f, Vh)

& / cVup - Vv, dxdy —/ fvy, dxdy
Q Q

for any v, € U,.

@ Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

@ Here U, = span{qﬁj}}\’:"l is chosen to be a finite element space

where {¢; J’.Vbl are the global finite element basis functions.

18 /139

FE discretization

Outline

@ FE discretization

19 /139

FE discretization

Discretization formulation

Recall the following definitions from Chapter 2:

@ N: number of mesh elements.

@ N,,: number of mesh nodes.

@ E,(n=1,---,N): mesh elements.

 Z (k=1,---,Np): mesh nodes.

@ N;: number of local mesh nodes in a mesh element.

@ P:information matrix consisting of the coordinates of all mesh
nodes.

@ T: information matrix consisting of the global node indices of
the mesh nodes of all the mesh elements.

20 /139

FE discretization

Discretization formulation

@ We only consider the nodal basis functions (Lagrange type) in
this course.

@ Njp: number of local finite element nodes (=number of local
finite element basis functions) in a mesh element.

@ Np: number of the finite element nodes (= the number of
unknowns = the total number of the finite element basis
functions).

e X; (j=1,---,Np): finite element nodes.

@ Py information matrix consisting of the coordinates of all
finite element nodes.

@ Tp: information matrix consisting of the global node indices
of the finite element nodes of all the mesh elements.

21 /139

FE discretization

Discretization formulation

@ Recall the Galerkin formulation (without considering the Dirichlet
boundary condition, which will be handled later) : find up € Uy such
that

a(u;” Vh) = (f, Vh)

= / cVup - Vv, dxdy = / fvy dxdy
Q Q

for any v, € Uy.

@ Here Uy = span{@-}ll-\’:”1 is chosen to be a finite element space where

{o; J/-V:"I are the global finite element basis functions defined in

Chapter 2.
@ Since up € Uy = span{¢j}Jl-V:bl, then
Ny
up = Z uj(bj
j=1
for some coefficients u; (j =1,---, Np).

22 /139

FE discretization

Discretization formulation

@ In fact, since

xy—gs. 0 ifjFk
¢J(Xk)_fk_{1, if j = k.

then

Np
Uh(Xk) = Z UJ'(;Sj(Ak) = Ug.

Jj=1

@ Hence the coefficient u; is actually the numerical solution at
the node X; (j =1,---, Np).

23 /139

FE discretization

Discretization formulation

@ If we can set up a linear algebraic system for
ui (j=1,---,Np) and solve it, then we can obtain the finite

element solution up.

@ Therefore, we choose the test function

vh =i (i=1,---,Np). Then the finite element formulation
gives
Np
/ V[D uej | - Vi dxdy = / fo; dxdy,
Q = Q

Ny,

= >y U cVo; - Vi dxdy} :/f¢,~ dxdy, i=1,---, Np.
- Q Q
j=1

24 /139

FE discretization

Matrix formulation

@ Define the stiffness matrix
Np

—[ag), = [/Q Vo, - Vo, dxdy}

ij=1

@ Define the load vector

b_wa—Lmeww]

@ Define the unknown vector

Np

i=1

Y, N,

X =[uy];2;.

@ Then we obtain the linear algebraic system
AX = b.

25 /139

FE discretization

Assembly of the stiffness matrix

e Once X is obtained, the finite element solution uy and the
numerical solutions at all the mesh nodes are obtained.

o From the definition of ¢; (j =1,---, Np), we can see that ¢;
are non-zero only on the elements adjacent to the node X;,
but 0 on all the other elements.

@ This observation motivates us to think about
aj = / cV@;-Vo; dxdy = / cVo;- Vo, dxdy.
Q E,

@ It is easy to see that most of fEn cV¢; - Vo; dxdy will be 0.

@ So we only need to use numerical integration to compute
those nonzero integrals.

26 /139

FE discretization

Assembly of the stiffness matrix

General local assembly idea for A:
@ Loop over all the elements;
@ Compute all non-zero local integrals on each element for A;

@ Assemble these non-zero local integrals into the corresponding
entries of the stiffness matrix A.

27 /139

FE discretization

Assembly of the stiffness matrix

Compute all non-zero local integrals on each element for A:

@ On the n'" element E,, we get non-zero local integrals only
when the trial and test basis functions are corresponding to
the finite element nodes of this element.

o Let ps = Tp(s,n) (s=1,---, Np).

@ Then we only consider the trial and test basis functions to be
¢Ps (5 =1, 7N/b)'

@ There are only N,2b non-zero local integrals on E, with the
global basis functions ¢, (s =1,---, Np):

/E Yy - Vi dxdy (i = pro--- . pay)-

@ In fact, we have

Q;Z)nS = ¢Ps|En (5 = 1) T 7N/b)'

28 /139

FE discretization

Assembly of the stiffness matrix

@ That is, instead of the original non-zero local integrals with

the global basis functions ¢p, (s =1,---, Njp), we will
compute the following non-zero local integrals with the local
basis functions ¥ps (s =1,---, Njp):

/ Vbne - Vg dicdy (0,8 =1, -+ , Nip).

@ Question: how to compute these integrals?

@ Gauss quadrature. The needed information is stored in the
matrices P and T.

29 /139

FE discretization

Assembly of the stiffness matrix

Assemble the non-zero local integrals into A:

@ When the trial function is ¢; and the test function is ¢;, the
corresponding non-zero local integrals should be assembled to
aj.

J

@ Therefore, if we find the global node indices of the trial and
test basis functions, we can easily locate where to assemble a
non-zero local integral.

30/139

FE discretization

Assembly of the stiffness matrix

@ Question: Since we compute

/ cVna - Vg dxdy (a,=1,---, Njp)
instead of
/ cVo;- Vo dxdy (i,j = p1,- -, PN);

how do we obtain the corresponding global node indices of the
local trial and test basis functions ,, and

Yng (, B=1,---, Np)?

@ Information matrix Tp!

31/139

FE discretization
Assembly of the stiffness matrix

o Recall that Tp(c, n) and Tp(3, n) give the global node indices
of the local trial and test basis functions ,, and

wnﬂ (aaﬁ -]-7 R N/b)-
@ That is, for ,

/ CVina - Ving dxdy (a, f=1,--- , Nip)

n

should be assembled to a;; where and
j: Tb(aa n)'

32 /139

FE discretization
Assembly of the stiffness matrix

Algorithm I-1:
o Initialize the matrix: A = sparse(Np, Np);

@ Compute the integrals and assemble them into A:

FORO[Z].,'”,N/b:

Compute r = [cVihna - Vibng dxdy;
Add r to A(, Tp(cv, n)).

END

33 /139

FE discretization
Assembly of the stiffness matrix

Algorithm [-2:

e Initialize the matrix: A = sparse(Np, Np) and
S = zeros(N,b, Nlb);
@ Compute the integrals and assemble them into A:
FORn=1,---,N:
FORCM:].,'” ,N/b:
FOR B =1,---, Np:
Compute S(3,a) = fEn cVna - Vipps dxdy;
END
END
A(Tp(:, n), Tp(:,n)) = A(Tp(:, n), Tp(:,n)) + S;
END

34 /139

FE discretization

Assembly of the stiffness matrix

To make a general subroutine for different cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

@ the coefficient function c;
@ the quadrature points and weights for numerical integrals;

@ the mesh information matrices P and T, which can also
provide the number of mesh elements N = size(T,2) and the
number of mesh nodes N, = size(P, 2);

@ the finite element information matrices P, and Tj for the trial
and test functions respectively, which can also provide the
number of local basis functions Ny, = size(Tp, 1) and the
number of the global basis functions N}, = size(Pp,2) (= the
number of unknowns);

@ the type of the basis function for the trial and test functions
respectively;

35/139

FE discretization

Assembly of the stiffness matrix

@ Note that

_ awnoc 8wnﬁ / a"pnoc 8'¢Jnﬁ
/En cVthna-Vipng dxdy = /En . Ox dxdy+ n c 9y dy

@ Hence we can consider to develop an algorithm to assemble
the matrix arising from a more general integral

with parameters r, s, p, and q.

dxdy.

36 /139

FE discretization
Assembly of the stiffness matrix

Algorithm 1-3:
o Initialize the matrix: A = sparse(Np, Np);
@ Compute the integrals and assemble them into A:
FORn=1,--- N:
FOROJZ].,”- 7IV/bZ

FORB=1,--- Ny
r+s +
Compute r = fEn c%:,g}',’;" %Dx:gy"f dxdy;
Add r to A(Tp(B, n), Tp(a, n)).
END
END

END

37 /139

FE discretization
Assembly of the stiffness matrix

Algorithm 1-4:
o Initialize the matrix: A = sparse(Np, Np) and
S= zeros(N/b, N/b);
@ Compute the integrals and assemble them into A:
FORn=1,--- ,N:
FOROJZI,“- 7I\//bZ
FORB=1,--- Ny
r+s gpPtaq,
Compute S(3,a) = fEn c%ﬂig}'/’? BXP(;py‘? dxdy;
END
END
A(Tp(:, n), Tp(:, n)) = A(Tp(:, n), Tp(:,n)) + S;
END

38 /139

FE discretization

Assembly of the stiffness matrix

o First, we call Algorithm [-3 with r = p=1and s=g =0 to
obtain AL.

@ Second, we call Algorithm -3 with r=p=0ands=qg=1
to obtain A2.

@ Then the stiffness matrix A = Al + A2.

@ That is, Algorithm I-1 is equivalent to calling Algorithm [-3
twice with two different groups of parameters
(r=p=1s=qg=0and r=p=0,s=qg=1) and then
adding the two resulted matrices together.

@ Algorithm I-2 and Algorithm -4 have a similar relationship.

39 /139

FE discretization

Assembly of the load vector

@ The idea for the assembly of the load vector is similar. We

have
b,-—/f¢,-dxdy = /fqﬁ dxdy, i=1,---, Np.
Q E,
@ Loop over all the elements;
@ Compute all non-zero local integrals on each element for the
load vector b;
@ Assemble these non-zero local integrals into the corresponding

entries of the load vector b.

40 /139

FE discretization

Assembly of the load vector

Compute all non-zero local integrals on each element for b:

@ On the n'" element E,, we get non-zero local integrals only
when the test basis functions are corresponding to the finite
element nodes of the element.

o Let ps = Tp(s,n) (s=1,---, Np).

@ Then we only consider the test basis functions to be
¢Ps (5 =1, 7N/b)'

@ There are only Ny, non-zero local integrals on E, with the
global basis functions ¢, (s =1,---, Np):

| for ady (= pr o)
@ In fact, we have

Q;Z)nS = ¢Ps|En (5 = 1) T 7N/b)'

41 /139

FE discretization

Assembly of the load vector

@ That is, instead of the original non-zero local integrals with

the global basis functions ¢p, (s =1,---, Njp), we will
compute the following non-zero local integrals with the local
basis functions ¥ps (s =1,---, Njp):

/ Fibng ddy (8 =1,--- , Nip).

@ Question: how to compute these integrals?

@ Gauss quadrature. The needed information is stored in the
matrices P and T.

42 /139

FE discretization

Assembly of the load vector

Assemble the non-zero local integrals into b:

@ When the test function is ¢;, the corresponding non-zero local
integrals should be assembled to b;.

@ Therefore, if we find the global node indices of the test basis
functions, we can easily locate where to assemble a non-zero
local integral.

@ Question: Since we compute

/ f‘bnd dXdy (ﬁ = 1, e -/Nlb)

. n

instead of

c f¢l dXdy (I = p1, 7pN/b)7
how do we obtain the corresponding global node indices of the
local test basis functions 1,3 (6 =1,---, Njp)?

@ Information matrix Tp!
43 /139

FE discretization
Assembly of the load vector

@ Recall that Tp(3, n) give the global node indices of the local
test basis functions g (6 =1,---, Njp).

@ That is, for

/ fihng dxdy (B8 =1,---, Npp)

n

should be assembled to b; where

44 /139

FE discretization

Assembly of the load vector

Algorithm 1l-1:
o Initialize the vector: b = sparse(Np,1);

@ Compute the integrals and assemble them into b:

Compute r = [fihns dxdy;
b(, 1) = b(1)+ r;

45 /139

FE discretization
Assembly of the load vector

Algorithm 11-2:
o Initialize the vector: b = sparse(Np,1) and d = zeros(Njp, 1);
@ Compute the integrals and assemble them into b:
FORn=1,---,N:
FOR B =1,---,Np:
Compute d(3,1) = fEn fibng dxdy;
END
b(Tb(:a n)? 1) = b(Tb(:v n): 1) +d;
END

46 /139

FE discretization

Assembly of the load vector

To make a general subroutine for different cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

@ the right hand side function f;
@ the quadrature points and weights for numerical integrals;

@ the mesh information matrices P and T, which can also
provide the number of mesh elements N = size(T,2) and the
number of mesh nodes N, = size(P, 2);

@ the finite element information matrices P, and Tj for the test
functions, which can also provide the number of local basis
functions Nj, = size(Tp, 1) and the number of the global basis
functions N}, = size(Pp,2) (= the number of unknowns);

@ the type of the basis function for the test functions.

47 /139

FE discretization

Assembly of the load vector

@ We can also consider to develop an algorithm to assemble the
vector arising from

48 /139

FE discretization
Assembly of the load vector

Algorithm 11-3:
o Initialize the vector: b = sparse(Np, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- ,N:
FOR ﬂ =]. N/b'
Compute r = [%F]X:g”f dxdy;
b(To(8,). 1) = b(To(B,m). 1) + r;
END
END

49 /139

FE discretization
Assembly of the load vector

Algorithm 11-4:
o Initialize the vector: b = sparse(Np,1) and d = zeros(Njy, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- ,N:
FOR B =1,---, Np:
+qwnﬂ
Compute d(3,1) = [f axraye axdy;
END
b(Ts(:,). 1) = b(Tp(:,), 1) + d;
END

50 /139

FE discretization

Assembly of the load vector

o We call Algorithm 1I-3 with p = g = 0 to obtain b.

@ That is, Algorithm 1I-3 is equivalent to Algorithm Il-1 with
p=gq=0.

@ Algorithm [1-2 and Algorithm [1-4 have a similar relationship.

51/139

Dirichlet boundary condition

Outline

© Dirichlet boundary condition

52 /139

Dirichlet boundary condition

Dirichlet boundary condition

@ Basically, the Dirichlet boundary condition u = g give the
solutions at all boundary finite element nodes.

@ Since the coefficient u; in the finite element solution
up = ZJN:b1 uj¢; is actually the numerical solution at the finite
element node X; (j =1,---, Np), we actually know those u;
which are corresponding to the boundary finite element nodes.

@ Recall that boundarynodes(2,:) store the global node indices
of all boundary finite element nodes.

o If m € boundarynodes(2,:), then the m'" equation is called a
boundary node equation.

@ Set nbn to be the number of boundary nodes;

53 /139

Dirichlet boundary condition

Dirichlet boundary condition

@ One way to impose the Dirichlet boundary condition is to
replace the boundary node equations in the linear system by
the following equations

Un = g(Xm)'

for all m € boundarynodes(2,:).

54 /139

Dirichlet boundary condition

Dirichlet boundary condition

Algorithm 111
@ Deal with the Dirichlet boundary conditions:

FOR k=1,--- nbn:
If boundarynodes(1, k) shows Dirichlet condition, then
i = boundarynodes(2, k);

A(i,:) =0;

A, i) =1;

b(i) = g(Ps(:,1));
ENDIF

END

55 /139

FE Method

Outline

@ FE Method

56 /139

FE Method

Universal framework of the finite element method

@ Generate the mesh information: matrices P and T;

@ Assemble the matrices and vectors: local assembly based on P
and T only;

@ Deal with the boundary conditions: boundary information
matrix and local assembly;

@ Solve linear systems: numerical linear algebra (Math 6601:
Numerical Analysis).

57 /139

FE Method

Algorithm

@ Generate the mesh information matrices P and T.

Assemble the stiffness matrix A by using Algorithm I. (We will
choose Algorithm 1-3 in class)

o Assemble the load vector b by using Algorithm II. (We will
choose Algorithm 11-3 in class)

Deal with the Dirichlet boundary condition by using Algorithm
M.

Solve AX = b for X by using a direct or iterative method.

58 /139

FE Method
Algorithm

Recall Algorithm |-3:
o Initialize the matrix: A = sparse(Np, Np);
@ Compute the integrals and assemble them into A:
FORn=1,--- N:
FOROJZ].,”- 7IV/bZ

FORB=1,--- Ny
r+s +
Compute r = fEn c%:,g}',’;" %Dx:gy"f dxdy;
Add r to A(Tp(B, n), Tp(a, n)).
END
END

END

59 /139

FE Method

Algorithm

Recall
o First, we call Algorithm -3 with r=p=1and s=¢g =0 to
obtain Al.

@ Second, we call Algorithm -3 with r=p=0ands=qg=1
to obtain A2.

@ Then the stiffness matrix A = Al + A2,

60 /139

FE Method
Algorithm

Recall Algorithm 11-3:
o Initialize the vector: b = sparse(Np, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- ,N:
FOR B =1,---, Np:
Compute r = [f{gx:g”f dxdy;

b(Tp(B,n),1)—b(Tb(57 n),1)+r;
END

END
@ Recall: We call Algorithm 1I-3 with p = g = 0 to obtain b.

61 /139

FE Method
Algorithm

Recall Algorithm 1lI:
@ Deal with the Dirichlet boundary conditions:

FOR k=1,--- nbn:
If boundarynodes(1, k) shows Dirichlet condition, then
i = boundarynodes(2, k);

A(i,:) =0;

A, i) =1;

b(i) = g(Ps(:,1));
ENDIF

END

62 /139

FE Method
Measurements for errors

Recall

Definition (L2 space)

2(Q)={v:Q—=R: /Qv2dxdy<oo}.

Definition (H* space)

6a1+a2 v

1 _ 2 .
HHQ) = (v e (@) 5o

€ L%(Q), Yoq + ap = 1}.

Definition (L* space)

LY(Q)={v:Q—=R: sup |u(x,y)|] < oo}
(x,y)eQ

63 /139

FE Method
Measurements for errors

o L% norm: ||ullo = sup |u(x,y)| for ue L>(Q).
(x,y)EQ

L* norm error: ||u— upll,, = sup |u(x,y) — un(x,y)]|.
(x.y)eQ

L2 norm: ||ully = 1/ [q uPdxdy for u € L?(Q).

o L2 norm error: |lu — uplly = \/fﬂ(u — up)?dxdy.
e H! semi-norm: lul; = \/fQ dxdy+ fQ (U) dxdy for
u € HY(Q).

e H! semi-norm error:
2 2
|u— upl; = \/fQ <W) dxdy + [q (8(%7;””)> dxdy.

64 /139

FE Method

Measurements for errors

Ny
@ By using up = > uj¢j, the definition of T}, and the definition
j=1
of the local basis functions ,x, we get

||u_uh||oo = sup |U(X7y)_uh(xa}/)|
(x,y)eQ

= M, e lu(x,y) = un(x, y)|

Np
= max max uxy—E uid;
1<n<N (x,y)€En (x:¥) — I
J_

Nip

= max max |u(x —gu Ynk(X, .
1<n<N (x,y)EEn 2 s " Tellor) k(% ¥)

65 /139

FE Method

Measurements for errors

@ Define
Ny,
Wn(x,y) = Z UT, (kyn) ik (X, ¥)-
k=1
Then
lu—uple = max max lu(x,y) — walx.y)|.

1<n<N (x,y)€En

e max_ |u(x,y)— wp(x,y)| can be approximated by choosing
(Xv}’)eEn
the maximum values of |u(x,y) — wp(x, y)| on a group of
chosen points in E,, such as some Gauss quadrature nodes in

this element. We denote the approximation by r,.

66 /139

FE Method

Measurements for errors

Algorithm 1V:
@ Initialize the error error = 0;
@ Approximate the maximum absolute errors on all elements
and then choose the largest one as the final approximation:
FORn=1,--- N:

Compute r, = max_ |u(x,y) — wa(x,y)|;
(X7Y)6En
IF r, > error, THEN

error = rp;
END
END

67 /139

FE Method

Measurements for errors

Np
e By using up = > uj¢j, the definition of T}, and the definition

Jj=1
of the local basis functions ¥,, we get

lu—uwlly = /(u — up)?dxdy
Q
N
= Z/ (u — up)?dxdy
\ n=1"En
2
N N
= Z/ u— Z uig; | dxdy
n=1 n j=1
N Nip 2
= Z <U — Z uﬂ,(k,n)ﬂ’nk) dXdy
n=1"En k=1

68 /139

FE Method

Measurements for errors

@ Define
Nip
Wnp = Z uTb(k,n)¢nk
k=1
Then

N
lo—ull, = Z/ (u — wy)2dxdy.
n=1 n

o Each integral [(u— w,)?dxdy can be computed by
numerical integration.

69 /139

FE Method
Measurements for errors

Np
e By using up =) uj¢j, the definition of T}, and the definition
j=1
of the local basis functions ,x, we get

- - WQ (Wy

70 /139

FE Method
Measurements for errors

@ Similarly,

Y 2
lu—uply, = \//Q ((uayuh)) dxdy

_ Z [(W)dedy

71/139

FE Method

Measurements for errors

@ Then

72 /139

FE Method

Measurements for errors

@ Define
_ i 8wnk
Wn1 = ZuTb(k N 9x
N
Wn2 = Z/b:“T (k)Lw"k
n - b\ K, N :
k=1 Ay
Then
lu — upl;

JZ/ (W”1> dxdy+z / < Wn2> dxdy.

e Each integral fE (Bx Wn]_) dxdy or fE (W,,g) dxdy
can be computed by numerical integration.

73 /139

FE Method

Measurements for errors

@ Develop a subroutine for a more general formulation

Nip 2
ooitaz 3061+042¢nk
> [(s~ Lemis) ey
k=1

o ||u— upl|y is equivalent to calling this subroutine with a; =0
and ap = 0.

® |u— up|,, is equivalent to calling this subroutine with a; =1
and ay = 0.

° |u— uh|1y is equivalent to calling this subroutine with a3 =0
and ap = 1.

74 /139

FE Method

Measurements for errors

Algorithm V:
@ Initialize the error error = Q; input the parameters a1 and «p;

@ Compute the integrals and add them into the total error:
FORn=1,--- ,N:

2
Nip
B oMtoz aa1+a2,¢nk dxdly:
error = error+ E UT,(k,n) Ixdy;
k=

E, 8XO‘1 ayaz X1 8ya2

END
error = +/error;

75 /139

FE Method

Numerical example

@ Example 1: Use the finite element method to solve the
following equation on the domain Q = [-1,1] x [-1,1]:

X2
—V-(Vu) = —y(1=y)Q—x=7)e

X X
=x(1=2)(=3y = y*)e*,

u = —15y(1—y)e ™ onx=-1,
u = 05y(1 y)e1+y on x =1,

u = —2x(1-) 1 ony = -1,

u = 0 ony= 1.

@ The analytic solution of this problem is
u=xy(1—3%)(1—y)e*™, which can be used to compute the
error of the numerical solution.

76 /139

FE Method

Numerical example

@ Let's code for the linear and quadratic finite element method
of the 2D second order elliptic equation together!

@ Open your Matlab!

77 /139

FE Method
Numerical example

h [Tu—unlle [Tu—ull [0 — uply
1/8 |2.3620 x 1072 | 6.8300 x 10~3 | 1.8774 x 1071
1/16 | 6.3421 x 1073 | 1.7189 x 1073 | 9.4167 x 102
1/32 | 1.6430 x 1073 | 4.3049 x 10~* | 4.7121 x 102
1/64 | 4.1810 x 10~* | 1.0767 x 10~* | 2.3565 x 102

1/128 | 1.0546 x 10~* | 2.6922 x 107° | 1.1783 x 1072

Table: The numerical errors for linear finite element.

@ Any Observation?

o Second order convergence O(h?) in L2/L> norm and first
order convergence O(h) in H! semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.

78 /139

FE Method
Numerical example

h | Tu—unlle | Jlu—unlq [u— uply
1/8 | 3.3678 x 10~* | 1.1705 x 10~* | 8.9192 x 10~3
1/16 | 4.4273 x 107> | 1.4637 x 107> | 2.2414 x 103
1/32 | 5.6752 x 107° | 1.8289 x 107° | 5.6131 x 10~*
1/64 | 7.1839 x 10~ | 2.2853 x 10~ | 1.4042 x 10~*
1/128 | 9.0366 x 10~8 | 2.8560 x 1078 | 3.5114 x 107>

Table: The numerical errors for quadratic finite element.

@ Any Observation?

o Third order convergence O(h®) in L?/L> norm and second
order convergence O(h?) in H! semi-norm, which match the
optimal approximation capability expected from piecewise
quadratic functions.

79 /139

More Discussion

Outline

© More Discussion

80 /139

More Discussion

Neumann boundary conditions

o Consider
—V - (cVu)=f inQ, Vu-ii=p on 9.
@ Recall

/CVU‘VV dxdy—/ (cVu-ﬁ)vds:/ fv dxdy.
Q o2 Q

@ Hence

/ cVu-Vyv dxdy = / fv dxdy +/ cpv ds.
Q Q o0

Is there anything wrong? The solution is not unique!

@ If uis a solution, then u + c is also a solution where c is a
constant.

81/139

More Discussion
Neumann boundary condition

@ Consider
-V (cVu)=f inQ,
Vu-ii=p onyCo,
u=g onlp=0Q/Ty
@ Recall

/ cVu - Vv dxdy —/ (cVu-n)v ds = / fv dxdy.
Q o0 Q

@ Since the solution on 'p = 9Q/T 'y is given by u = g, then we
can choose the test function v(x, y) such that v =0 on
0Q/T .

82 /139

More Discussion
Neumann boundary condition

@ Since
(cVu-A)vds = (cVu-ﬁ)vds+/ (cVu-nA)v ds
o0 My oQ/Ty
= / cpv ds,
My
then

/cVu-Vv dxdy/ cpv ds:/ fv dxdy.
Q Iy Q

o Hence the weak formulation is to find u € H1() such that

/ cVu - Vv dxdy :/ fv dxdy+/ cpv ds.
Q Q Ty

for any v € H3p () = {v e H(Q): v=0o0n Ip}.

83 /139

More Discussion

Neumann boundary condition

o Consider a finite element space U, C H'(Q). Define Uy to
be the space which consists of the functions of U, with value
0 on the Dirichlet boundary.

@ Then the Galerkin formulation is to find u, € Uy such that
/ cVuy - Vg dxdy :/ fvg dxdy+/ cpvy ds
Q Q JTy

for any v, € Upg.

@ For an easier implementation, we consider the Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find uj, € Up, such that

/ cVup - Vvy dxdy :/ fvp dxdy+/ cpvy ds
Q Q My

for any v, € U.

84 /139

More Discussion
Neumann boundary condition

@ Recall: Since up € Uy = span{¢; j’-V:bl, then
Ny
up =) ujd;
j=1
for some coefficients u; (j =1,--- , Np).
@ Recall: Choose vy, = ¢; (i=1,---, Np).
@ Then for i =1,---, Ny, the finite element formulation gives
Np .
/ CV(Z ujp;) - Vo dxdy _/ fo; dxdy+ / cpo; ds,
Q - Q Jr
Jj=1 N

Ny

=)y Uﬂ cVo; - Vo; dxdy} :/Qf¢,- dxdy+/rN cpd; ds.

Jj=1

85 /139

More Discussion
Neumann boundary condition

Recall

@ Define the stiffness matrix

Ny,

A= [aU]ﬁljb:I = |:/S-2 Cvd)_j . v¢l dXdy:| .
1=

@ Define the load vector

Ny
b=[b]N, = [/Q fo; dxdy] :

i=1

@ Define the unknown vector

v N,
X = [uj]j:bl'

86 /139

More Discussion

Neumann boundary condition

@ Define the additional vector from the Neumann boundary

condition
N Ne
V=I[v]2 = [/ cpoi ds} .
Y i=1

o Define the new vector b = b-+v.

@ Then we obtain the linear algebraic system
AX = b.
o Code?

@ Add one more subroutine for v to the existing codel!

87 /139

More Discussion
Neumann boundary condition

Recall
@ Matrix boundaryedges:
o boundaryedges(1, k) is the type of the k¥ boundary edge e:
Dirichlet (-1), Neumann (-2), Robin (-3)......
@ boundaryedges(2, k) is the index of the element which
contains the k' boundary edge e.

@ Each boundary edge has two end nodes. We index them as
the first and the second counterclock wise along the boundary.

@ boundaryedges(3, k) is the global node index of the first end
node of the k™ boundary boundary edge e.

@ boundaryedges(4, k) is the global node index of the second
end node of the k" boundary boundary edge e.

e Set nbe = size(boundaryedges, 2) to be the number of
boundary edges;

88 /139

More Discussion

Neumann boundary condition

@ The idea for the assembly of the vector V is similar to that of
the load vector. We have

Vi:/ cpo; ds = Z /Cp¢id5,i=17"‘aNb'
My &

exCly
1<k<nbe

@ Loop over all the boundary edges;

@ Compute all non-zero local integrals on each Neumann
boundary edge for the vector v;

@ Assemble these non-zero local integrals into the corresponding
entries of the vector V.

89 /139

More Discussion

Neumann boundary condition

Compute all non-zero local integrals on each Neumann boundary
edge for v:

@ The index of the element which contains the k" boundary
edge ey is ny = boundaryedges(2, k). Then on e, we get
non-zero local integrals only when the test basis functions are
corresponding to the finite element nodes of the nf{h element
En,.

o Let ps = Tp(s,nk) (s=1,---, Np).

@ Then we only consider the test basis functions to be
¢Ps (5 =1, 7N/b)'

@ There are only Ny, non-zero local integrals on e; with the
global basis functions ¢, (s =1, -+, Njp):

/ cppi ds (i = p1,--- , Pn,)-

€k

90 /139

More Discussion

Neumann boundary condition

@ In fact, we have

¢nks = ¢P5|Enk (5 =1 7N/b)'

@ That is, instead of the original non-zero local integrals with
the global basis functions ¢p, (s =1,---, Njp), we will
compute the following non-zero local integrals with the local
basis functions ¢,,s (s =1, , Njp):

/ Pms ds (B=1,-- , Nip).
Jex

@ Question: how to compute these integrals?

@ Gauss quadrature. The needed information is stored in the
matrices P and boundaryedges.

91 /139

More Discussion

Neumann boundary condition

e P(:, boundaryedges(3 : 4, k)) provides the coordinates of the
two end points of the k" boundary edge. We discuss three
cases based on these coordinates.

@ Case 1: If a boundary edge is vertical, then it can be
described as x = ¢ (y1 <y < y»). The y—coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [y, y2]. And the x—coordinates of the Gauss
quadrature nodes are fixed to be c.

92 /139

More Discussion

Neumann boundary condition

@ Case 2: If a boundary edge is horizontal, then it can be
described as y = ¢ (x1 < x < x2). The x—coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [xy, x2]. And the y—coordinates of the Gauss
quadrature nodes are fixed to be c.

@ Case 3: Otherwise, a boundary edge can be described as
y = ax+ b (x1 < x < x2). The x—coordinates of the Gauss
quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
nodes in [x1, x2]. And the y—coordinates of the Gauss
quadrature nodes are obtained from y = ax + b.

@ The case 3 with a =0 and b = c is equivalent to case 2.
Hence case 2 and case 3 can be combined into one case.

93 /139

More Discussion

Neumann boundary condition

Assemble the non-zero local integrals into v:

@ When the test function is ¢;, the corresponding non-zero local
integrals should be assembled to v;.

@ Therefore, if we find the global node indices of the test basis
functions, we can easily locate where to assemble a non-zero
local integral.

@ Question: Since we compute

/ Cp/lbnkﬁ ds ([5 — 17 o 7N/b)

J ey
instead of
Cpgbi ds (I = p1, 7pN/b)>
ex
how do we obtain the corresponding global node indices of the
local test basis functions 1,5 (8 =1,---, Njp)?

@ Information matrix Tp!
94 /139

More Discussion

Neumann boundary condition

@ Recall that Tp(3, nk) give the global node indices of the local
test basis functions ¢, 5 (B =1,---, Npp).

@ That is,
[cptns ds (B =1, .)

J ey

should be assembled to v; where i = T([3, ng).

95 /139

More Discussion
Neumann boundary condition

Algorithm VI-1:
e Initialize the vector: v = sparse(Np, 1);
@ Compute the integrals and assemble them into v:
FOR k=1,--- nbe:
IF boundaryedges(1, k) shows Neumann boundary
condition, THEN
ng = boundaryedges(2, k);
FOR =1, ,Np:
Compute r = [, cpip,p ds;
V(Te(B, 1), 1) = v(Tp(B,), 1) + 1
END
ENDIF
END

96 /139

More Discussion

Neumann boundary condition

o If we follow Algorithm VI-1 to develop a subroutine to
assemble the vector arising from

/ 6a+bwnkﬁ d
Ox30yb

then Algorithm VI-1 is equivalent to calling this subroutine
with parameters: a=b =0 and p = cp.

97 /139

More Discussion
Neumann boundary condition

Algorithm VI:
e Initialize the vector: v = sparse(Np, 1);
@ Compute the integrals and assemble them into v:

FOR k=1,--- ,nbe:
IF boundaryedges(1, k) shows Neumann boundary
condition, THEN
ny = boundaryedges(2, k);
FORﬁZ].,"- ,N/bi
L 07y,

Compute r = fek Paxagys ds:
V(Tb(B? nk)7 1) = V(Tb(ﬁa nk)7 1) +r;
END
ENDIF
END

98 /139

More Discussion

Neumann boundary condition

Recall

Matrix boundarynodes:

boundarynodes(1, k) is the type of the k" boundary finite
element node: Dirichlet (-1), Neumann (-2), Robin (-3)......

The intersection nodes of Dirichlet boundary condition and
other boundary conditions usually need to be treated as
Dirichlet boundary nodes.

boundarynodes(2, k) is the global node index of the k"
boundary boundary finite element node.

Set nbn = size(boundarynodes, 2) to be the number of
boundary finite element nodes;

99 /139

More Discussion

Neumann boundary condition

@ Example 2: Use the finite element method to solve the
following equation on the domain Q = [-1,1] x [-1,1]:

-V (Vu) = -2,
u = e M onx=-1,
u = e onx=1,
Vu-i = —e 1 ony=-1,
u = &t oony=

@ The analytic solution of this problem is u = XY, which can
be used to compute the error of the numerical solution.

100 /139

More Discussion

Neumann boundary condition

@ Let's code for the linear and quadratic finite element method
of the 2D second order elliptic equation with Neumann
boundary condition!

@ Open your Matlab!

101 /139

More Discussion
Neumann boundary condition

h [— unlls [[u — unllg |u — uply
1/8 | 1.3358 x 102 | 5.1224 x 103 | 1.8523 x 1071
1/16 | 3.4487 x 1073 | 1.2793 x 103 | 9.2559 x 102
1/32 | 8.7622 x 107% | 3.1973 x 10~ % | 4.6273 x 1072
1/64 | 2.2084 x 10~% | 7.9928 x 10> | 2.3136 x 102
1/128 | 5.5433 x 10> | 1.9982 x 10> | 1.1568 x 102

Table: The numerical errors for linear finite element.

@ Any Observation?

o Second order convergence O(h?) in L2/L> norm and first
order convergence O(h) in H! semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.

102 /139

More Discussion
Neumann boundary condition

h | Tu—ulle | Jlu—unlq [u— uply
1/8 | 1.0956 x 10~% | 3.9285 x 10> | 2.9874 x 1073
1/16 | 1.4074 x 107> | 4.9015 x 10~° | 7.4668 x 10~*
1/32 | 1.7835 x 107° | 6.1244 x 10~7 | 1.8667 x 10~*
1/64 | 2.2447 x 107 | 7.6549 x 1078 | 4.6667 x 107>
1/128 | 2.8155 x 1078 | 9.5686 x 10~° | 1.1667 x 107>

Table: The numerical errors for quadratic finite element.

@ Any Observation?

o Third order convergence O(h®) in L?/L> norm and second
order convergence O(h?) in H! semi-norm, which match the
optimal approximation capability expected from piecewise
quadratic functions.

103 /139

More Discussion
Robin boundary conditions

o Consider
-V (cVu)=f inQ,
Vu-fi+ru=gq onlgCOQ,
u=g onlp=0Q/Tg.

@ Recall

/ cVu - Vv dxdy —/ (cVu-n)v ds = / fv dxdy.
Q o0 Q

@ Since the solution on 'p = 0Q/Tg is given by u = g, then we
can choose the test function v(x, y) such that v =0 on
0Q/Tg.

104 /139

More Discussion
Robin boundary condition

@ Since
(cVu-A)vds = / (cVu-Fi)vds—i—/ (cVu-nA)v ds
o0 TR 0Q/Tr
= / cqv ds —/ cruv ds,
M'r M'r
then

/ cVu-Vv dxdy — </ cqv ds / cruv ds> :/ fv dxdy.
Q Ms Ms Q

@ Hence the weak formulation is to find u € H'(2) such that

/ cVu-Vv dxdy+/ cruv ds :/ fv dxdy+/ cqv ds.
Q Jrg Q Jrg

for any v € H3p(Q) = {ve H(Q):v=0o0nTp}.

105 /139

More Discussion

Robin boundary condition

o Consider a finite element space U, C H'(Q). Define Uy to
be the space which consists of the functions of U, with value
0 on the Dirichlet boundary.

@ Then the Galerkin formulation is to find u, € Uy such that
/ cVup - Vv dxdy—l—/ crupvy ds :/ fvy dxdy+/ cqvy ds
Q JTr Q JTr

for any v, € Upg.

@ For an easier implementation, we consider the Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find uj, € Up, such that

/ cVu, -V dxdy+/ crupvy ds :/ fvp dxdy+/ cqvy ds
Q Mk Q Mk

for any v, € U.

106 /139

More Discussion

Robin boundary condition

N

@ Recall: Since up € Uy = span{¢; j:bl, then
Ny
up = uje;
j=1
for some coefficients u; (j =1,-- -, Np).

@ Recall: Choose vy, = ¢; (i=1,---, Np).

107 /139

More Discussion
Robin boundary condition

@ Then for i =1,--- , Np, the finite element formulation gives
Nb . Nb
/ CV(Z uj;) - Vi dxdy+/ cr(z uip;)oi ds
Q . r ,
j=1 R Jj=1

:/ f¢; dxdy+ / cqo; ds,
Q Mk

Ny Ny X
= jzluj- [/QCV¢J-.V¢; dxdy} +Zuj~ [/

Crgbj@,' dsj|
j=1 UTr
:/ f ;i dxder/ cqo; ds.

Q Ms

108 /139

More Discussion
Robin boundary condition

@ Recall: Define the stiffness matrix
Np

— [ag), = [/Q Vo, - Vo, dxdy}

ij=1
@ Recall: Define the load vector

b= [b,-],:"1 = [/ fo; dxdy] .

Q i=1

@ Recall: Define the unknown vector

—

N,
= [Uj]j:b1
@ Define the additional vector from the Robin boundary

condition
Ny
W= [W,], 1= {/ cqop; ds
Mr

i=1

109 /139

More Discussion

Robin boundary condition

@ Define the additional matrix from the Robin boundary
condition

. N,
R = [r’J]INJb:I = |:/r Cr¢j@i d5:| .
R _

ij=1

Define the new vector b = E+|/T/.

o Define the new matrix A = A+R.

Then we obtain the linear algebraic system
AX = b.
o Code?

@ Add one more subroutine for w and R to the existing code!

110 /139

More Discussion
Robin boundary condition

Recall
@ Matrix boundaryedges:
o boundaryedges(1, k) is the type of the k¥ boundary edge e:
Dirichlet (-1), Neumann (-2), Robin (-3)......
@ boundaryedges(2, k) is the index of the element which
contains the k' boundary edge e.

@ Each boundary edge has two end nodes. We index them as
the first and the second counterclock wise along the boundary.

@ boundaryedges(3, k) is the global node index of the first end
node of the k™ boundary boundary edge e.

@ boundaryedges(4, k) is the global node index of the second
end node of the k" boundary boundary edge e.

e Set nbe = size(boundaryedges, 2) to be the number of
boundary edges;

111 /139

More Discussion

Robin boundary condition

@ The idea for the assembly of the matrix R and the vector w is
similar to that of the stiffness matrix and the load vector. We

have
wi = / Cq¢i ds = Z / Cq¢i d57 = 17' v 7Nb7
TR exClg €k
1<k<nbe
rij = / croj¢; ds = Z / crojpids, i,j=1,---,Np.
Mz e Clp 7
1<k<nbe

@ Loop over all the boundary edges;

@ Compute all non-zero local integrals on each Robin boundary
edge for the vector w and the matrix R;

@ Assemble these non-zero local integrals into the corresponding
entries of the vector w and the matrix R.

112 /139

More Discussion

Robin boundary condition

Compute all non-zero local integrals on each Robin boundary edge
for the vector w and the matrix R:

@ The index of the element which contains the k" boundary
edge ey is ny = boundaryedges(2, k). Then on ey, we get
non-zero local integrals only when the test and trial basis
functions are corresponding to the finite element nodes of the
nih element E,, .

o Let Ps = Tb(57 nk) (S = 15 T)N/b)'

@ Then we only consider the test basis functions to be
¢Ps (S = 17 T 7N/b)-

113 /139

More Discussion

Robin boundary condition

@ There are only Ny, non-zero local integrals on e, with the
global basis functions ¢, (s =1, -+, Njp):

/ CQ(ZS,' d57 i:P1>"' » PNy »

€k

/ Cr¢j¢i dS, ’7./ = P1, " 5 PNy

€k

@ In fact, we have

Unes = OpslE, (S=1,--+, Nip).

114 /139

More Discussion

Robin boundary condition

@ That is, instead of the original non-zero local integrals with

the global basis functions ¢p, (s =1,---, Njp), we will
compute the following non-zero local integrals with the local
basis functions s (s =1, , Njp):

/ Cpl/)nkﬁ d57 6 = 1* 7N/b7
ex

/ Cr@nkﬁl/)nka d57 «, /8 - 1: R} N/b'

€k

@ Question: how to compute these integrals?

@ Gauss quadrature. The needed information is stored in the
matrices P and boundaryedges.

115 /139

More Discussion

Robin boundary condition

Recall

e P(:, boundaryedges(3 : 4, k)) provides the coordinates of the
two end points of the k" boundary edge. We discuss three
cases based on these coordinates.

@ Case 1: If a boundary edge is vertical, then it can be
described as x = ¢ (y1 <y < y»). The y—coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [y, y2]. And the x—coordinates of the Gauss
quadrature nodes are fixed to be c.

116 /139

More Discussion

Robin boundary condition

@ Case 2: If a boundary edge is horizontal, then it can be
described as y = ¢ (x1 < x < x2). The x—coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [xy, x2]. And the y—coordinates of the Gauss
quadrature nodes are fixed to be c.

@ Case 3: Otherwise, a boundary edge can be described as
y = ax+ b (x1 < x < x2). The x—coordinates of the Gauss
quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
nodes in [x1, x2]. And the y—coordinates of the Gauss
quadrature nodes are obtained from y = ax + b.

@ The case 3 with a =0 and b = c is equivalent to case 2.
Hence case 2 and case 3 can be combined into one case.

117 /139

More Discussion

Robin boundary condition

Assemble the non-zero local integrals into w and R:

@ When the test function is ¢;, the corresponding non-zero local
integrals should be assembled to w;.

@ When the trial function is ¢; and the test function is ¢;, the
corresponding non-zero local integrals should be assembled to
r,-J-.

@ Therefore, if we find the global node indices of the trial and
test basis functions, we can easily locate where to assemble a
non-zero local integral.

118 /139

More Discussion

Robin boundary condition

@ Question: Since we compute

/ cqppp ds (B=1,---, Np)

J ey

instead of
qu)i ds (I = p1,- - 7pN/b)>

€k

how do we obtain the corresponding global node indices of the
local test basis functions v, 5 (8 =1,---, Njp)?

119 /139

More Discussion

Robin boundary condition

@ Question: Since we compute

/ cripn gW¥nga ds (o, f=1,---, Npp)

J ey

instead of
/ Cr¢j¢i ds (I7J:p17 7pN/b)7
ek

how do we obtain the corresponding global node indices of the
local trial and test basis functions 1, o and

Y (0, 5=1,---,Np)?

@ Information matrix Tp!

120 /139

More Discussion
Robin boundary condition

@ Recall that Tp(«, ng) and Tp(B, nk) give the global node
indices of the local trial and test basis functions 1, , and

¢nkﬁ (avﬁ = 1a e 7N/b)-
e That is,
/ qu/)nkﬁ ds (3 - 17 o 7N/b)

€k
should be assembled to w; where i = T([3, nk).

e And
Cr’l/)nk(xd}nkﬂ ds (O‘:B - 17 T 7N/b)

J ey
should be assembled to rjj where i = T,(/3, nx) and
J = Tp(a, nk).

121 /139

More Discussion

Robin boundary condition

Algorithm VII-1:
@ Initialize R = sparse(Np, Np) and w = sparse(Np, 1);
@ Compute the integrals and assemble them into R and w:
FOR k=1,--- , nbe:
IF boundaryedges(1, k) shows Robin boundary condition, THEN
nx = boundaryedges(2, k);
FORﬁ:]., ,N/b:
Compute r = fek cqn, s ds;
w(Ts(B, nk), 1) = w(Ts(B, ne), 1) + r;
END
FORazl,--- ,N/b:
FORB=1,---,Np:
Compute r = fek crbn s¥n,a ds;
Add r to R(Ts(B, nk), Te(cx, nk));
END
END
ENDIF
END

122 /139

More Discussion

Robin boundary condition

Algorithm VII-2:
@ Initialize R = sparse(Np, Np) and w = sparse(Np, 1);
@ Compute the integrals and assemble them into R and w:
FOR k=1,--- , nbe:
IF boundaryedges(1, k) shows Robin boundary condition, THEN
nk = boundaryedges(2, k);
FORﬁZ 1,'“ ,N/b:
Compute r = fek cqtn s ds;
W(Tb(ﬁ7 nk), 1) = W(Tb(ﬂ7 nk), 1) +r;
FORa=1,---, Np:
Compute r = fek Cripn, g¥nga ds;
Add r to R(Ts(B, nk), Te(ax, nk));
END
END
ENDIF
END

More Discussion

Robin boundary condition

o If we follow Algorithm VII-1 to develop a subroutine to
assemble the vector arising from

/ 6a+bwnkﬁ d
Ox30yb

and the vector arising from

am—"_sdjnka ad wnkﬁ d
ax’”ﬁy Oxd9y!

then Algorithm VII-1 is equivalent to calling this subroutine
with parameters: a=b=r=s=d=/=0, p = cq, and
F=cr.

@ Note that the vector part is exactly the same as what we had
for the Neumann boundary condition!

124 /139

More Discussion

Robin boundary condition

Algorithm VII:
@ Initialize R = sparse(Np, Np) and w = sparse(Np, 1);
@ Compute the integrals and assemble them into R and w:
FOR k=1,--- , nbe:
IF boundaryedges(1, k) shows Robin boundary condition, THEN
nx = boundaryedges(2, k);
FORﬁ:]., ,N/b:
Compute r = fek ;38;121;;7,’3 ds;
W(Tb(ﬁ, nk), 1) = W(Tb(ﬁ, f7k)7 1) +r;
END
FORO[:].,--' ,N/bi
FOR B =1,---, Np:
0™ o wnkﬁ

Compute r = f F xmay Bxday
Add r to R(Tb(,B, nk), To(a, nk));
END
END
ENDIF
END 125 /139

ds;

More Discussion

Robin boundary condition

Recall

Matrix boundarynodes:

boundarynodes(1, k) is the type of the k" boundary finite
element node: Dirichlet (-1), Neumann (-2), Robin (-3)......

The intersection nodes of Dirichlet boundary condition and
other boundary conditions usually need to be treated as
Dirichlet boundary nodes.

boundarynodes(2, k) is the global node index of the k"
boundary boundary finite element node.

Set nbn = size(boundarynodes, 2) to be the number of
boundary finite element nodes;

126 /139

More Discussion

Robin boundary condition

@ Example 3: Use the finite element method to solve the
following equation on the domain Q = [-1,1] x [-1,1]:

~V-(Vu) = -2,
u = e M onx=-1,
u = e onx=1,
Vu-i+u = 0 ony=-1,
u = &t oony=

@ The analytic solution of this problem is u = XY, which can
be used to compute the error of the numerical solution.

127 /139

More Discussion

Robin boundary condition

@ Let's code for the linear and quadratic finite element method
of the 2D second order elliptic equation with Neumann
boundary condition!

@ Open your Matlab!

128 /139

More Discussion
Robin boundary condition

h [— unlls [[u — unllg |u — uply
1/8 | 1.3358 x 1072 | 5.1094 x 10~3 | 1.8523 x 107!
1/16 | 3.4487 x 1073 | 1.2760 x 103 | 9.2559 x 102
1/32 | 8.7622 x 10~* | 3.1893 x 10~* | 4.6273 x 1072
1/64 | 2.2084 x 10~* | 7.9727 x 107> | 2.3136 x 1072
1/128 | 5.5433 x 107> | 1.9932 x 10~° | 1.1568 x 102

Table: The numerical errors for linear finite element.

@ Any Observation?

o Second order convergence O(h?) in L2/L> norm and first
order convergence O(h) in H! semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.

129 /139

More Discussion
Robin boundary condition

h | Tu—unlle | Jlu—unlq [u— uply
1/8 | 1.0056 x 10~* | 3.9278 x 107> | 2.9874 x 103
1/16 | 1.4074 x 10~ | 4.9012 x 107° | 7.4668 x 10~*
1/32 | 1.7835 x 107° | 6.1243 x 10~7 | 1.8667 x 10~*
1/64 | 2.2447 x 107 | 7.6549 x 1078 | 4.6667 x 107>
1/128 | 2.8155 x 1078 | 9.5686 x 10~° | 1.1667 x 107>

Table: The numerical errors for quadratic finite element.

@ Any Observation?

o Third order convergence iO(h*) in L2/L> norm and second
order convergence O(h?) in H! semi-norm, which match the
optimal approximation capability expected from piecewise
quadratic functions.

130 /139

More Discussion

Dirichlet/Neumann/Robin mixed boundary condition

e Consider
V- (cVu)=1F inQ,
Vu-i=p only CoQ,
Vu-i+ru=gq onlgr C0Q,
u=g on FD:69/(FNUFR)
@ Recall

/ cVu- Vv dxdy —/ (cVu-n)v ds = / fv dxdy.
Q 09 Q

@ Since the solution on I'p = 9Q/(I'y UTR) is given by u = g,
then we can choose the test function v such that v = 0 on

OQ/(FN U FR).

131 /139

More Discussion

Dirichlet/Neumann/Robin mixed boundary condition

@ Combining the derivation above for the Neumann and Robin
boundary conditions, the weak formulation is to find
u € HY(Q) such that

/ cVu-Vv dxdy+/ cruv ds
Q)

= /fv dxdy+/ cpv ds+/ cqv ds.
Q My Mk

for any v € Hp() = {v e H(Q): v=0o0n Ip}.
o Code?

e Combine all of the subroutines for Dirichlet/Neumann/Robin
boundary conditions.

132 /139

More Discussion

Non-isotropic equation

@ Consider
=V - (cVu)="f inQ,
cVu-i=p only C0Q,
cVu-i+ru=gq onlg COQ,
u=g onlp= OQ/(FN U FR),
where
c— < Ci1 C12)
1 2
@ Recall

/ cVu- Vv dxdy 7/ (cVu-n)vds= / fv dxdy.
Ja a0 Q
@ Since the solution on I'p = 9Q/(I'y UTR) is given by u = g, then
we can choose the test function v such that v =0 on
89/(FN U I'R)

133 /139

More Discussion

Non-isotropic equation

@ Similar to the previous derivation, the weak formulation is to
find u € H(Q) such that

/cVu-Vv dxdy+/ ruv ds
JQ Mk

= /fv dxdy+/ pv ds+/ qv ds.
Q My Mg

for any v € H}p(Q) = {v € H(Q): v=0o0nTp}. Here
e (2 2)() ()
C21 (22 uy Vy

o Cl1Ux + Ciouy) Vx
Co1Ux + Coouy, vy
= C11UxVx + Ci2Uy Vx + 1 UxVy + Coo Uy Vy.

134 /139

More Discussion
Non-isotropic equation

@ Code? Just call Algorithm -3 four times! Everything else is
the same as before!

Call Algorithm -3 with r=1,s=0, p=1, g =0, and
¢ = cy1 to obtain Aq;

Call Algorithm I-3 with r=0,s=1, p=1, g =0, and
¢ = c11 to obtain As;

Call Algorithm I-3 with r=1,s=0, p=0, g=1, and
¢ = ¢p1 to obtain As;

Call Algorithm I-3 with r=0,s=1, p=0,g=1, and
¢ = ¢y to obtain Aj.

@ Then the stiffness matrix is A = Ay + Ay + Az + As.

135 /139

More Discussion

A more general second order equation

o Consider
—V - (cVu)+au=f inQ,
cVu-Ai=p only COQ,
cVu-i+ru=gq onlgr COQ,
u=g onlp=0/(ThUTR),
where

€11 C12
c= .
C1 2

@ Then similar to the previous derivation, we have

/ cVu- Vv dxdy —/ (cVu-n)v ds+/ auv dxdy :/ fv dxdy.
Q Elo} Q Q

136 /139

More Discussion

A more general second order equation

@ Since the solution on I'p = 9Q/(I'y UTR) is given by u = g,
then we can choose the test function v such that v =0 on
OQ/(I‘N U I'R).

@ Similar to the previous derivation, the weak formulation is to
find u € H1(Q) such that

/CVU'VV dxdy+/auv dxdy+/ ruv ds
Q Q

Mg
= /fv dxdy+/ pv ds+/ qv ds.
Q (Y MR

for any v € H}p(Q) = {v € H () : v=0o0n Ip}. Here
cVu - Vv = cr1uxvx + Craly Vx + C1UxVy + CooUy Vy.

137 /139

More Discussion
A more general second order equation

@ Code? Just call Algorithm [-3 five times! Everything else is
the same as before!

e Call Algorithm I-3 with r=0,s =0, p=0,g=0,and c=a
to obtain Agp;

e Call Algorithm I-3 with r=1,s=0,p=1, ¢g=0, and
¢ = c11 to obtain Aq;

e Call Algorithm I-3 with r=0,s=1, p=1, ¢g=0, and
¢ = cy1 to obtain Ay;

o Call Algorithm -3 with r=1,s=0, p=0,g=1, and
¢ = ¢p1 to obtain As;

o Call Algorithm -3 with r=0,s=1, p=0,g=1, and
¢ = ¢pp to obtain Aj.

@ Then the stiffness matrix is A = Ag+A1 + A + Az + Aj.

138 /139

More Discussion
Linear regression for the convergence order

e Consider ||u — up|| = Ch".

@ The goal is to design a linear regression to obtain the C and r
based on the h and errors given in the table.

o First,
log (lu = unll) = log(Ch")
= log(C) + log(h")
= log(C)+ r log(h).
o Let y = log (||u— upl]), x = log(h), a=r, b= log(C).

Then y = ax + b.

For different h, we can obtain the corresponding x and y.

Then by the regular linear regression, we can obtain a and b,
which give us the C = e? and r = a.

139 /139

	Weak/Galerkin formulation
	FE discretization
	Dirichlet boundary condition
	FE Method
	More Discussion

