Introduction and Implementation for Finite Element Methods

Chapter 3: Finite elements for 2D second order elliptic equation

Xiaoming He
Department of Mathematics \& Statistics
Missouri University of Science \& Technology
Email: hex@mst.edu
Homepage: https://web.mst.edu/~hex/

Outline

(1) Weak/Galerkin formulation
(2) FE discretization
(3) Dirichlet boundary condition
(4) FE Method
(5) More Discussion

Outline

(1) Weak/Galerkin formulation
(2) FE discretization

3 Dirichlet boundary condition
(4) FE Method
(5) More Discussion

Target problem

- Consider the 2D second order elliptic equation

$$
\begin{aligned}
& -\nabla \cdot(c \nabla u)=f, \quad \text { in } \Omega \\
& u=g, \quad \text { on } \partial \Omega .
\end{aligned}
$$

where Ω is a 2 D domain, $f(x, y)$ and $c(x, y)$ are given functions on $\Omega, g(x, y)$ is a given function on $\partial \Omega$ and $u(x, y)$ is the unknown function.

- The gradient of a 2D function u is defined by

$$
\nabla u=\left(u_{x}, u_{y}\right)
$$

- The divergence of a 2×1 vector \vec{v} is defined by

$$
\nabla \cdot \vec{v}=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y} .
$$

Weak formulation

- First, multiply a function $v(x, y)$ on both sides of the original equation,

$$
\begin{aligned}
& -\nabla \cdot(c \nabla u)=f \text { in } \Omega \\
\Rightarrow & -\nabla \cdot(c \nabla u) v=f v \text { in } \Omega \\
\Rightarrow & -\int_{\Omega} \nabla \cdot(c \nabla u) v d x d y=\int_{\Omega} f v d x d y .
\end{aligned}
$$

- $u(x, y)$ is called a trail function and $v(x, y)$ is called a test function.

Weak formulation

- Second, using Green's formula (divergence theory, integration by parts in multi-dimension)
$\int_{\Omega} \nabla \cdot(c \nabla u) v d x d y=\int_{\partial \Omega}(c \nabla u \cdot \vec{n}) v d s-\int_{\Omega} c \nabla u \cdot \nabla v d x d y$,
we obtain

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y-\int_{\partial \Omega}(c \nabla u \cdot \vec{n}) v d s=\int_{\Omega} f v d x d y .
$$

Weak formulation

- Since the solution on the domain boundary $\partial \Omega$ are given by $u(x, y)=g(x, y)$, then we can choose the test function $v(x, y)$ such that $v=0$ on $\partial \Omega$.
- Hence

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y=\int_{\Omega} f v d x d y .
$$

- What spaces should u and v belong to? Sobolev spaces!

Sobolev spaces

Definition (Support)

If u is a function defined on a domain Ω, then its support $\operatorname{supp}(u)$ is the closure of the set on which u is nonzero.

Definition (Compactly supported)
If u is a function defined on a domain Ω and $\operatorname{supp}(u)$ is a compact subset (that is, a closed and bounded subset), then u is said to be compactly supported in Ω.

Lemma (I)

A function compactly supported in Ω is zero on and near the boundary of Ω.

Sobolev spaces

Definition

$C_{0}^{\infty}(\Omega)$ is the set of all functions that are infinitely differentiable on Ω and compactly supported in Ω.

- Recall integration by parts:

$$
\int_{\Omega} \frac{\partial u}{\partial x} v d x d y=\int_{\partial \Omega} u v n_{x} d s-\int_{\Omega} u \frac{\partial v}{\partial x} d x d y
$$

- For $v \in C_{0}^{\infty}(\Omega)$, we have $v=0$ on $\partial \Omega$. Then

$$
\int_{\Omega} \frac{\partial u}{\partial x} v d x d y=-\int_{\Omega} u \frac{\partial v}{\partial x} d x d y
$$

Sobolev spaces

Definition (weak derivative with respect to x in 2D)

Suppose u is a real-valued function defined on a domain Ω and that u is integrable over every compact subset of Ω. If there exists another locally integrable function w defined on Ω such that

$$
\int_{\Omega} w v d x d y=-\int_{\Omega} u \frac{\partial v}{\partial x} d x d y
$$

for all $v \in C_{0}^{\infty}(\Omega)$, then u is said to be weakly differentiable with respect to x and w is called the weak partial derivative of u with respect to x.

Sobolev spaces

Definition (general weak derivative in 2D)

Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$. Suppose u is a real-valued function defined on a domain Ω and that u is integrable over every compact subset of Ω. If there exists another locally integrable function w defined on Ω such that

$$
\int_{\Omega} w v d x d y=(-1)^{\alpha_{1}+\alpha_{2}} \int_{\Omega} u \frac{\partial^{\alpha_{1}+\alpha_{2}} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}} d x d y
$$

for all $v \in C_{0}^{\infty}(\Omega)$, then u is said to be α weakly differentiable and w is called the weak partial derivative of order α of u.

Sobolev spaces

Lemma (II)

If u is differentiable, then u is weakly differentiable and its weak derivative of order $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ is $\frac{\partial^{\alpha_{1}+\alpha_{2}}}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}$.

Remark

In the Sobolev spaces, which will be defined below, $\frac{\partial^{\alpha_{1}+\alpha_{2}}}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}$ is used to represent the weak derivative of order $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$.

Sobolev spaces

Definition (L^{p} space)

$$
L^{p}(\Omega)=\left\{v: \Omega \rightarrow \mathbf{R}: \int_{\Omega} v^{p} d x d y<\infty\right\}
$$

Definition (L^{2} space)

$$
L^{2}(\Omega)=\left\{v: \Omega \rightarrow \mathbf{R}: \int_{\Omega} v^{2} d x d y<\infty\right\}
$$

Definition (L^{∞} space)

$$
L^{\infty}(\Omega)=\left\{v: \Omega \rightarrow \mathbf{R}: \sup _{(x, y) \in \Omega}|u(x, y)|<\infty\right\}
$$

Sobolev spaces

$$
\begin{aligned}
& \text { Definition (} H^{m} \text { space) } \\
& H^{m}(\Omega)=\left\{v \in L^{2}(\Omega): \frac{\partial^{\alpha_{1}+\alpha_{2}} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}} \in L^{2}(\Omega), \forall \alpha_{1}+\alpha_{2}=1, \cdots, m\right\} .
\end{aligned}
$$

Definition (H^{1} space)

$$
H^{1}(\Omega)=\left\{v \in L^{2}(\Omega): \frac{\partial^{\alpha_{1}+\alpha_{2}} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}} \in L^{2}(\Omega), \forall \alpha_{1}+\alpha_{2}=1\right\}
$$

Definition (H_{0}^{1} space)

$$
H_{0}^{1}(\Omega)=\left\{v \in H^{1}(\Omega): v=0 \text { on } \partial \Omega\right\} .
$$

Sobolev spaces

Definition (W_{p}^{m} space)

$$
\begin{aligned}
W_{p}^{m}(\Omega)= & \left\{v: \Omega \rightarrow \mathbf{R}: \int_{\Omega}\left[\frac{\partial^{\alpha_{1}+\alpha_{2}} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}\right]^{p} d x d y<\infty\right. \\
& \left.\forall \alpha_{1}+\alpha_{2}=0, \cdots, m\right\}
\end{aligned}
$$

Remark

- $L^{p}(\Omega)=W_{p}^{0}(\Omega)$;
- $L^{2}(\Omega)=W_{2}^{0}(\Omega)$;
- $H^{m}(\Omega)=W_{2}^{m}(\Omega)$;
- $H^{1}(\Omega)=W_{2}^{1}(\Omega)$.

Weak formulation

- Weak formulation: find $u \in H^{1}(\Omega)$ such that

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y=\int_{\Omega} f v d x d y .
$$

for any $v \in H_{0}^{1}(\Omega)$.

- Let $a(u, v)=\int_{\Omega} c \nabla u \cdot \nabla v d x d y$ and $(f, v)=\int_{\Omega} f v d x d y$.
- Weak formulation: find $u \in H^{1}(\Omega)$ such that

$$
a(u, v)=(f, v)
$$

for any $v \in H_{0}^{1}(\Omega)$.

Galerkin formulation

- Assume there is a finite dimensional subspace $U_{h} \subset H^{1}(\Omega)$. Define $U_{h 0}$ to be the space which consists of the functions of U_{h} with value 0 on the Dirichlet boundary.
- Then the Galerkin formulation is to find $u_{h} \in U_{h}$ such that

$$
\begin{aligned}
& a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \\
\Leftrightarrow & \int_{\Omega} c \nabla u_{h} \cdot \nabla v_{h} d x d y=\int_{\Omega} f v_{h} d x d y
\end{aligned}
$$

for any $v_{h} \in U_{h 0}$.

- Basic idea of Galerkin formulation: use finite dimensional space to approximate infinite dimensional space.
- Here $U_{h}=\operatorname{span}\left\{\phi_{j}\right\}_{j=1}^{N_{b}}$ is chosen to be a finite element space where $\left\{\phi_{j}\right\}_{j=1}^{N_{b}}$ are the global finite element basis functions.

Galerkin formulation

- For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $u_{h} \in U_{h}$ such that

$$
\begin{aligned}
& a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \\
\Leftrightarrow & \int_{\Omega} c \nabla u_{h} \cdot \nabla v_{h} d x d y=\int_{\Omega} f v_{h} d x d y
\end{aligned}
$$

for any $v_{h} \in U_{h}$.

- Basic idea of Galerkin formulation: use finite dimensional space to approximate infinite dimensional space.
- Here $U_{h}=\operatorname{span}\left\{\phi_{j}\right\}_{j=1}^{N_{b}}$ is chosen to be a finite element space where $\left\{\phi_{j}\right\}_{j=1}^{N_{b}}$ are the global finite element basis functions.

Outline

(1) Weak/Galerkin formulation

(2) FE discretization

3 Dirichlet boundary condition
(4) FE Method
(5) More Discussion

Discretization formulation

Recall the following definitions from Chapter 2:

- N : number of mesh elements.
- N_{m} : number of mesh nodes.
- $E_{n}(n=1, \cdots, N)$: mesh elements.
- $Z_{k}\left(k=1, \cdots, N_{m}\right)$: mesh nodes.
- N_{l} : number of local mesh nodes in a mesh element.
- P:information matrix consisting of the coordinates of all mesh nodes.
- T : information matrix consisting of the global node indices of the mesh nodes of all the mesh elements.

Discretization formulation

- We only consider the nodal basis functions (Lagrange type) in this course.
- $N_{l b}$: number of local finite element nodes (=number of local finite element basis functions) in a mesh element.
- N_{b} : number of the finite element nodes (= the number of unknowns $=$ the total number of the finite element basis functions).
- $X_{j}\left(j=1, \cdots, N_{b}\right)$: finite element nodes.
- P_{b} : information matrix consisting of the coordinates of all finite element nodes.
- T_{b} : information matrix consisting of the global node indices of the finite element nodes of all the mesh elements.

Discretization formulation

- Recall the Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later) : find $u_{h} \in U_{h}$ such that

$$
\begin{aligned}
& a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \\
\Leftrightarrow & \int_{\Omega} c \nabla u_{h} \cdot \nabla v_{h} d x d y=\int_{\Omega} f v_{h} d x d y
\end{aligned}
$$

for any $v_{h} \in U_{h}$.

- Here $U_{h}=\operatorname{span}\left\{\phi_{j}\right\}_{j=1}^{N_{b}}$ is chosen to be a finite element space where $\left\{\phi_{j}\right\}_{j=1}^{N_{b}}$ are the global finite element basis functions defined in Chapter 2.
- Since $u_{h} \in U_{h}=\operatorname{span}\left\{\phi_{j}\right\}_{j=1}^{N_{b}}$, then

$$
u_{h}=\sum_{j=1}^{N_{b}} u_{j} \phi_{j}
$$

for some coefficients $u_{j}\left(j=1, \cdots, N_{b}\right)$.

Discretization formulation

- In fact, since

$$
\phi_{j}\left(X_{k}\right)=\delta_{j k}= \begin{cases}0, & \text { if } j \neq k \\ 1, & \text { if } j=k\end{cases}
$$

then

$$
u_{h}\left(X_{k}\right)=\sum_{j=1}^{N_{b}} u_{j} \phi_{j}\left(A_{k}\right)=u_{k} .
$$

- Hence the coefficient u_{j} is actually the numerical solution at the node $X_{j}\left(j=1, \cdots, N_{b}\right)$.

Discretization formulation

- If we can set up a linear algebraic system for $u_{j}\left(j=1, \cdots, N_{b}\right)$ and solve it, then we can obtain the finite element solution u_{h}.
- Therefore, we choose the test function $v_{h}=\phi_{i}\left(i=1, \cdots, N_{b}\right)$. Then the finite element formulation gives

$$
\begin{aligned}
& \int_{\Omega} c \nabla\left(\sum_{j=1}^{N_{b}} u_{j} \phi_{j}\right) \cdot \nabla \phi_{i} d x d y=\int_{\Omega} f \phi_{i} d x d y \\
\Rightarrow & \sum_{j=1}^{N_{b}} u_{j}\left[\int_{\Omega} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y\right]=\int_{\Omega} f \phi_{i} d x d y, i=1, \cdots, N_{b} .
\end{aligned}
$$

Matrix formulation

- Define the stiffness matrix

$$
A=\left[a_{i j}\right]_{i, j=1}^{N_{b}}=\left[\int_{\Omega} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y\right]_{i, j=1}^{N_{b}} .
$$

- Define the load vector

$$
\vec{b}=\left[b_{i}\right]_{i=1}^{N_{b}}=\left[\int_{\Omega} f \phi_{i} d x d y\right]_{i=1}^{N_{b}} .
$$

- Define the unknown vector

$$
\vec{X}=\left[u_{j}\right]_{j=1}^{N_{b}} .
$$

- Then we obtain the linear algebraic system

$$
A \vec{X}=\vec{b}
$$

Assembly of the stiffness matrix

- Once \vec{X} is obtained, the finite element solution u_{h} and the numerical solutions at all the mesh nodes are obtained.
- From the definition of $\phi_{j}\left(j=1, \cdots, N_{b}\right)$, we can see that ϕ_{j} are non-zero only on the elements adjacent to the node X_{j}, but 0 on all the other elements.
- This observation motivates us to think about

$$
a_{i j}=\int_{\Omega} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y=\sum_{n=1}^{N} \int_{E_{n}} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y .
$$

- It is easy to see that most of $\int_{E_{n}} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y$ will be 0 .
- So we only need to use numerical integration to compute those nonzero integrals.

Assembly of the stiffness matrix

General local assembly idea for A :

- Loop over all the elements;
- Compute all non-zero local integrals on each element for A;
- Assemble these non-zero local integrals into the corresponding entries of the stiffness matrix A.

Assembly of the stiffness matrix

Compute all non-zero local integrals on each element for A :

- On the $n^{\text {th }}$ element E_{n}, we get non-zero local integrals only when the trial and test basis functions are corresponding to the finite element nodes of this element.
- Let $p_{s}=T_{b}(s, n)\left(s=1, \cdots, N_{l b}\right)$.
- Then we only consider the trial and test basis functions to be $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$.
- There are only $N_{l b}^{2}$ non-zero local integrals on E_{n} with the global basis functions $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$:

$$
\int_{E_{n}} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y\left(i, j=p_{1}, \cdots, p_{N_{l b}}\right)
$$

- In fact, we have

$$
\psi_{n s}=\phi_{p_{s}} \mid E_{n}\left(s=1, \cdots, N_{l b}\right) .
$$

Assembly of the stiffness matrix

- That is, instead of the original non-zero local integrals with the global basis functions $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$, we will compute the following non-zero local integrals with the local basis functions $\psi_{n s}\left(s=1, \cdots, N_{l b}\right)$:

$$
\int_{E_{n}} c \nabla \psi_{n \alpha} \cdot \nabla \psi_{n \beta} d x d y\left(\alpha, \beta=1, \cdots, N_{l b}\right)
$$

- Question: how to compute these integrals?
- Gauss quadrature. The needed information is stored in the matrices P and T.

Assembly of the stiffness matrix

Assemble the non-zero local integrals into A :

- When the trial function is ϕ_{i} and the test function is ϕ_{j}, the corresponding non-zero local integrals should be assembled to $a_{i j}$.
- Therefore, if we find the global node indices of the trial and test basis functions, we can easily locate where to assemble a non-zero local integral.

Assembly of the stiffness matrix

- Question: Since we compute

$$
\int_{E_{n}} c \nabla \psi_{n \alpha} \cdot \nabla \psi_{n \beta} d x d y\left(\alpha, \beta=1, \cdots, N_{l b}\right)
$$

instead of

$$
\int_{E_{n}} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y\left(i, j=p_{1}, \cdots, p_{N_{l b}}\right)
$$

how do we obtain the corresponding global node indices of the local trial and test basis functions $\psi_{n \alpha}$ and $\psi_{n \beta}\left(\alpha, \beta=1, \cdots, N_{l b}\right)$?

- Information matrix T_{b} !

Assembly of the stiffness matrix

- Recall that $T_{b}(\alpha, n)$ and $T_{b}(\beta, n)$ give the global node indices of the local trial and test basis functions $\psi_{n \alpha}$ and $\psi_{n \beta}\left(\alpha, \beta=1, \cdots, N_{l b}\right)$.
- That is, for $n=1, \cdots, N$,

$$
\int_{E_{n}} c \nabla \psi_{n \alpha} \cdot \nabla \psi_{n \beta} d x d y\left(\alpha, \beta=1, \cdots, N_{l b}\right)
$$

should be assembled to $a_{i j}$ where $i=T_{b}(\beta, n)$ and $j=T_{b}(\alpha, n)$.

Assembly of the stiffness matrix

Algorithm I-1:

- Initialize the matrix: $A=\operatorname{sparse}\left(N_{b}, N_{b}\right)$;
- Compute the integrals and assemble them into A :

FOR $\alpha=1, \cdots, N_{l b}$: FOR $\beta=1, \cdots, N_{l b}$:

Compute $r=\int_{E_{n}} c \nabla \psi_{n \alpha} \cdot \nabla \psi_{n \beta} d x d y$; Add r to $A\left(T_{b}(\beta, n), T_{b}(\alpha, n)\right)$.

END

END
END

Assembly of the stiffness matrix

Algorithm I-2:

- Initialize the matrix: $A=\operatorname{sparse}\left(N_{b}, N_{b}\right)$ and $S=\operatorname{zeros}\left(N_{l b}, N_{l b}\right)$;
- Compute the integrals and assemble them into A :

FOR $n=1, \cdots, N$:

$$
\text { FOR } \alpha=1, \cdots, N_{l b}:
$$

$$
\text { FOR } \beta=1, \cdots, N_{l b}:
$$

Compute $S(\beta, \alpha)=\int_{E_{n}} c \nabla \psi_{n \alpha} \cdot \nabla \psi_{n \beta} d x d y ;$ END
END

$$
A\left(T_{b}(:, n), T_{b}(:, n)\right)=A\left(T_{b}(:, n), T_{b}(:, n)\right)+S
$$

END

Assembly of the stiffness matrix

To make a general subroutine for different cases, more information needed for computing and assembling the integral should be treated as input parameters or input functions of this subroutine:

- the coefficient function c;
- the quadrature points and weights for numerical integrals;
- the mesh information matrices P and T, which can also provide the number of mesh elements $N=\operatorname{size}(T, 2)$ and the number of mesh nodes $N_{m}=\operatorname{size}(P, 2)$;
- the finite element information matrices P_{b} and T_{b} for the trial and test functions respectively, which can also provide the number of local basis functions $N_{l b}=\operatorname{size}\left(T_{b}, 1\right)$ and the number of the global basis functions $N_{b}=\operatorname{size}\left(P_{b}, 2\right)(=$ the number of unknowns);
- the type of the basis function for the trial and test functions respectively;

Assembly of the stiffness matrix

- Note that

$$
\int_{E_{n}} c \nabla \psi_{n \alpha} \cdot \nabla \psi_{n \beta} d x d y=\int_{E_{n}} c \frac{\partial \psi_{n \alpha}}{\partial x} \frac{\partial \psi_{n \beta}}{\partial x} d x d y+\int_{E_{n}} c \frac{\partial \psi_{n \alpha}}{\partial y} \frac{\partial \psi_{n \beta}}{\partial y} d x d y
$$

- Hence we can consider to develop an algorithm to assemble the matrix arising from a more general integral

$$
\int_{E_{n}} c \frac{\partial^{r+s} \psi_{n \alpha}}{\partial x^{r} \partial y^{s}} \frac{\partial^{p+q} \psi_{n \beta}}{\partial x^{p} \partial y^{q}} d x d y
$$

with parameters r, s, p, and q.

Assembly of the stiffness matrix

Algorithm I-3:

- Initialize the matrix: $A=\operatorname{sparse}\left(N_{b}, N_{b}\right)$;
- Compute the integrals and assemble them into A :

FOR $n=1, \cdots, N$:
FOR $\alpha=1, \cdots, N_{l b}:$
FOR $\beta=1, \cdots, N_{l b}$:
Compute $r=\int_{E_{n}} c \frac{\partial^{r+s} \psi_{n \alpha}}{\partial x^{r} \partial y^{s}} \frac{\partial^{p+q} \psi_{n \beta}}{\partial x^{p} \partial y^{q}} d x d y$;
Add r to $A\left(T_{b}(\beta, n), T_{b}(\alpha, n)\right)$.
END
END
END

Assembly of the stiffness matrix

Algorithm I-4:

- Initialize the matrix: $A=\operatorname{sparse}\left(N_{b}, N_{b}\right)$ and

$$
S=\operatorname{zeros}\left(N_{l b}, N_{l b}\right) ;
$$

- Compute the integrals and assemble them into A :

$$
\begin{aligned}
& \text { FOR } n=1, \cdots, N: \\
& \quad \text { FOR } \alpha=1, \cdots, N_{l b}: \\
& \quad \text { FOR } \beta=1, \cdots, N_{l b}: \\
& \quad \text { Compute } S(\beta, \alpha)=\int_{E_{n}} c \frac{\partial^{r+s} \psi_{n \alpha}}{\partial x^{r} \partial y^{s}} \frac{\partial^{p+q} \psi_{n \beta}}{\partial x^{p} \partial y^{q}} d x d y ; \\
& \quad E N D \\
& A\left(T_{b}(:, n), T_{b}(:, n)\right)=A\left(T_{b}(:, n), T_{b}(:, n)\right)+S ;
\end{aligned}
$$

END

Assembly of the stiffness matrix

- First, we call Algorithm I-3 with $r=p=1$ and $s=q=0$ to obtain A1.
- Second, we call Algorithm l-3 with $r=p=0$ and $s=q=1$ to obtain A2.
- Then the stiffness matrix $A=A 1+A 2$.
- That is, Algorithm I-1 is equivalent to calling Algorithm I-3 twice with two different groups of parameters ($r=p=1, s=q=0$ and $r=p=0, s=q=1$) and then adding the two resulted matrices together.
- Algorithm I-2 and Algorithm I-4 have a similar relationship.

Assembly of the load vector

- The idea for the assembly of the load vector is similar. We have

$$
b_{i}=\int_{\Omega} f \phi_{i} d x d y=\sum_{n=1}^{N} \int_{E_{n}} f \phi_{i} d x d y, i=1, \cdots, N_{b} .
$$

- Loop over all the elements;
- Compute all non-zero local integrals on each element for the load vector \vec{b};
- Assemble these non-zero local integrals into the corresponding entries of the load vector \vec{b}.

Assembly of the load vector

Compute all non-zero local integrals on each element for \vec{b} :

- On the $n^{\text {th }}$ element E_{n}, we get non-zero local integrals only when the test basis functions are corresponding to the finite element nodes of the element.
- Let $p_{s}=T_{b}(s, n)\left(s=1, \cdots, N_{l b}\right)$.
- Then we only consider the test basis functions to be $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$.
- There are only $N_{l b}$ non-zero local integrals on E_{n} with the global basis functions $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$:

$$
\int_{E_{n}} f \phi_{i} d x d y\left(i=p_{1}, \cdots, p_{N_{l b}}\right)
$$

- In fact, we have

$$
\psi_{n s}=\phi_{p_{s}} \mid E_{n}\left(s=1, \cdots, N_{l b}\right) .
$$

Assembly of the load vector

- That is, instead of the original non-zero local integrals with the global basis functions $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$, we will compute the following non-zero local integrals with the local basis functions $\psi_{n s}\left(s=1, \cdots, N_{l b}\right)$:

$$
\int_{E_{n}} f \psi_{n \beta} d x d y\left(\beta=1, \cdots, N_{l b}\right)
$$

- Question: how to compute these integrals?
- Gauss quadrature. The needed information is stored in the matrices P and T.

Assembly of the load vector

Assemble the non-zero local integrals into \vec{b} :

- When the test function is ϕ_{i}, the corresponding non-zero local integrals should be assembled to b_{i}.
- Therefore, if we find the global node indices of the test basis functions, we can easily locate where to assemble a non-zero local integral.
- Question: Since we compute

$$
\int_{E_{n}} f \psi_{n \beta} d x d y\left(\beta=1, \cdots, N_{l b}\right)
$$

instead of

$$
\int_{E_{n}} f \phi_{i} d x d y\left(i=p_{1}, \cdots, p_{N_{l b}}\right)
$$

how do we obtain the corresponding global node indices of the local test basis functions $\psi_{n \beta}\left(\beta=1, \cdots, N_{l b}\right)$?

- Information matrix T_{b} !

Assembly of the load vector

- Recall that $T_{b}(\beta, n)$ give the global node indices of the local test basis functions $\psi_{n \beta}\left(\beta=1, \cdots, N_{l b}\right)$.
- That is, for $n=1, \cdots, N$,

$$
\int_{E_{n}} f \psi_{n \beta} d x d y\left(\beta=1, \cdots, N_{l b}\right)
$$

should be assembled to b_{i} where $i=T_{b}(\beta, n)$.

Assembly of the load vector

Algorithm II-1:

- Initialize the vector: $b=\operatorname{sparse}\left(N_{b}, 1\right)$;
- Compute the integrals and assemble them into b :

```
FOR \(n=1, \cdots, N\) :
    FOR \(\beta=1, \cdots, N_{l b}\) :
        Compute \(r=\int_{E_{n}} f \psi_{n \beta} d x d y\);
        \(b\left(T_{b}(\beta, n), 1\right)=b\left(T_{b}(\beta, n), 1\right)+r ;\)
```

 END
 END

Assembly of the load vector

Algorithm II-2:

- Initialize the vector: $b=\operatorname{sparse}\left(N_{b}, 1\right)$ and $d=\operatorname{zeros}\left(N_{l b}, 1\right)$;
- Compute the integrals and assemble them into b :

$$
\begin{aligned}
& \text { FOR } n=1, \cdots, N: \\
& \quad \text { FOR } \beta=1, \cdots, N_{l b}: \\
& \quad \text { Compute } d(\beta, 1)=\int_{E_{n}} f \psi_{n \beta} d x d y ; \\
& \quad \text { END } \\
& \quad b\left(T_{b}(:, n), 1\right)=b\left(T_{b}(:, n), 1\right)+d ;
\end{aligned}
$$

END

Assembly of the load vector

To make a general subroutine for different cases, more information needed for computing and assembling the integral should be treated as input parameters or input functions of this subroutine:

- the right hand side function f;
- the quadrature points and weights for numerical integrals;
- the mesh information matrices P and T, which can also provide the number of mesh elements $N=\operatorname{size}(T, 2)$ and the number of mesh nodes $N_{m}=\operatorname{size}(P, 2)$;
- the finite element information matrices P_{b} and T_{b} for the test functions, which can also provide the number of local basis functions $N_{l b}=\operatorname{size}\left(T_{b}, 1\right)$ and the number of the global basis functions $N_{b}=\operatorname{size}\left(P_{b}, 2\right)$ ($=$ the number of unknowns);
- the type of the basis function for the test functions.

Assembly of the load vector

- We can also consider to develop an algorithm to assemble the vector arising from

$$
\int_{E_{n}} f \frac{\partial^{p+q} \psi_{n \beta}}{\partial x^{p} \partial y^{q}} d x d y
$$

Assembly of the load vector

Algorithm II-3:

- Initialize the vector: $b=\operatorname{sparse}\left(N_{b}, 1\right)$;
- Compute the integrals and assemble them into b :

FOR $n=1, \cdots, N$:

$$
\text { FOR } \beta=1, \cdots, N_{l b}:
$$

Compute $r=\int_{E_{n}} f \frac{\partial^{p+q} \psi_{n \beta}}{\partial x^{p} \partial y^{q}} d x d y$; $b\left(T_{b}(\beta, n), 1\right)=b\left(T_{b}(\beta, n), 1\right)+r ;$
END
END

Assembly of the load vector

Algorithm II-4:

- Initialize the vector: $b=\operatorname{sparse}\left(N_{b}, 1\right)$ and $d=\operatorname{zeros}\left(N_{l b}, 1\right)$;
- Compute the integrals and assemble them into b :

FOR $n=1, \cdots, N$:
FOR $\beta=1, \cdots, N_{l b}$:
Compute $d(\beta, 1)=\int_{E_{n}} f \frac{\partial^{p+q} \psi_{n \beta}}{\partial x^{p} \partial y^{q}} d x d y$;
END

$$
b\left(T_{b}(:, n), 1\right)=b\left(T_{b}(:, n), 1\right)+d
$$

END

Assembly of the load vector

- We call Algorithm II-3 with $p=q=0$ to obtain b.
- That is, Algorithm II-3 is equivalent to Algorithm II-1 with $p=q=0$.
- Algorithm II-2 and Algorithm II-4 have a similar relationship.

Outline

(1) Weak/Galerkin formulation

(2) FE discretization
(3) Dirichlet boundary condition
(4) FE Method
(5) More Discussion

Dirichlet boundary condition

- Basically, the Dirichlet boundary condition $u=g$ give the solutions at all boundary finite element nodes.
- Since the coefficient u_{j} in the finite element solution $u_{h}=\sum_{j=1}^{N_{b}} u_{j} \phi_{j}$ is actually the numerical solution at the finite element node $X_{j}\left(j=1, \cdots, N_{b}\right)$, we actually know those u_{j} which are corresponding to the boundary finite element nodes.
- Recall that boundarynodes(2,:) store the global node indices of all boundary finite element nodes.
- If $m \in$ boundarynodes($2,:$), then the $m^{\text {th }}$ equation is called a boundary node equation.
- Set nbn to be the number of boundary nodes;

Dirichlet boundary condition

- One way to impose the Dirichlet boundary condition is to replace the boundary node equations in the linear system by the following equations

$$
u_{m}=g\left(X_{m}\right)
$$

for all $m \in$ boundarynodes(2,:).

Dirichlet boundary condition

Algorithm III:

- Deal with the Dirichlet boundary conditions:

FOR $k=1, \cdots$, nbn:
If boundarynodes $(1, k)$ shows Dirichlet condition, then $i=$ boundarynodes $(2, k)$;
$A(i,:)=0$;
$A(i, i)=1$; $b(i)=g\left(P_{b}(:, i)\right) ;$
ENDIF
END

Outline

(1) Weak/Galerkin formulation

(2) FE discretization
(3) Dirichlet boundary condition
(4) FE Method
(5) More Discussion

Universal framework of the finite element method

- Generate the mesh information: matrices P and T;
- Assemble the matrices and vectors: local assembly based on P and T only;
- Deal with the boundary conditions: boundary information matrix and local assembly;
- Solve linear systems: numerical linear algebra (Math 6601: Numerical Analysis).

Algorithm

- Generate the mesh information matrices P and T.
- Assemble the stiffness matrix A by using Algorithm I. (We will choose Algorithm l-3 in class)
- Assemble the load vector \vec{b} by using Algorithm II. (We will choose Algorithm II-3 in class)
- Deal with the Dirichlet boundary condition by using Algorithm III.
- Solve $A \vec{X}=\vec{b}$ for \vec{X} by using a direct or iterative method.

Algorithm

Recall Algorithm l-3:

- Initialize the matrix: $A=\operatorname{sparse}\left(N_{b}, N_{b}\right)$;
- Compute the integrals and assemble them into A :

FOR $n=1, \cdots, N$:
FOR $\alpha=1, \cdots, N_{l b}:$
FOR $\beta=1, \cdots, N_{l b}$:
Compute $r=\int_{E_{n}} c \frac{\partial^{r+s} \psi_{n \alpha}}{\partial x^{r} \partial y^{s}} \frac{\partial^{p+q} \psi_{n \beta}}{\partial x^{p} \partial y^{q}} d x d y$;
Add r to $A\left(T_{b}(\beta, n), T_{b}(\alpha, n)\right)$.
END
END
END

Algorithm

Recall

- First, we call Algorithm I-3 with $r=p=1$ and $s=q=0$ to obtain A1.
- Second, we call Algorithm l-3 with $r=p=0$ and $s=q=1$ to obtain A2.
- Then the stiffness matrix $A=A 1+A 2$.

Algorithm

Recall Algorithm II-3:

- Initialize the vector: $b=\operatorname{sparse}\left(N_{b}, 1\right)$;
- Compute the integrals and assemble them into b :

FOR $n=1, \cdots, N$:

$$
\text { FOR } \beta=1, \cdots, N_{l b}:
$$

Compute $r=\int_{E_{n}} f \frac{\partial^{p+q} \psi_{n \beta}}{\partial x^{p} \partial y^{q}} d x d y$; $b\left(T_{b}(\beta, n), 1\right)=b\left(T_{b}(\beta, n), 1\right)+r ;$
END
END

- Recall: We call Algorithm II-3 with $p=q=0$ to obtain b.

Algorithm

Recall Algorithm III:

- Deal with the Dirichlet boundary conditions:

FOR $k=1, \cdots, n b n$:
If boundarynodes $(1, k)$ shows Dirichlet condition, then $i=$ boundarynodes $(2, k)$;
$A(i,:)=0$;
$A(i, i)=1$; $b(i)=g\left(P_{b}(:, i)\right) ;$
ENDIF
END

Measurements for errors

Recall

Definition (L^{2} space)

$$
L^{2}(\Omega)=\left\{v: \Omega \rightarrow \mathbf{R}: \int_{\Omega} v^{2} d x d y<\infty\right\}
$$

Definition (H^{1} space)

$$
H^{1}(\Omega)=\left\{v \in L^{2}(\Omega): \frac{\partial^{\alpha_{1}+\alpha_{2}} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}} \in L^{2}(\Omega), \forall \alpha_{1}+\alpha_{2}=1\right\} .
$$

Definition (L^{∞} space)

$$
L^{\infty}(\Omega)=\left\{v: \Omega \rightarrow \mathbf{R}: \sup _{(x, y) \in \Omega}|u(x, y)|<\infty\right\} .
$$

Measurements for errors

- L^{∞} norm: $\|u\|_{\infty}=\sup _{(x, y) \in \Omega}|u(x, y)|$ for $u \in L^{\infty}(\Omega)$.
- L^{∞} norm error: $\left\|u-u_{h}\right\|_{\infty}=\sup _{(x, y) \in \Omega}\left|u(x, y)-u_{h}(x, y)\right|$.
- L^{2} norm: $\|u\|_{0}=\sqrt{\int_{\Omega} u^{2} d x d y}$ for $u \in L^{2}(\Omega)$.
- L^{2} norm error: $\left\|u-u_{h}\right\|_{0}=\sqrt{\int_{\Omega}\left(u-u_{h}\right)^{2} d x d y}$.
- H^{1} semi-norm: $|u|_{1}=\sqrt{\int_{\Omega}\left(\frac{\partial u}{\partial x}\right)^{2} d x d y+\int_{\Omega}\left(\frac{\partial u}{\partial y}\right)^{2} d x d y}$ for $u \in H^{1}(\Omega)$.
- H^{1} semi-norm error:

$$
\left|u-u_{h}\right|_{1}=\sqrt{\int_{\Omega}\left(\frac{\partial\left(u-u_{h}\right)}{\partial x}\right)^{2} d x d y+\int_{\Omega}\left(\frac{\partial\left(u-u_{h}\right)}{\partial y}\right)^{2} d x d y}
$$

Measurements for errors

- By using $u_{h}=\sum_{j=1}^{N_{b}} u_{j} \phi_{j}$, the definition of T_{b}, and the definition of the local basis functions $\psi_{n k}$, we get

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{\infty} & =\sup _{(x, y) \in \Omega}\left|u(x, y)-u_{h}(x, y)\right| \\
& =\max _{1 \leq n \leq N} \max _{(x, y) \in E_{n}}\left|u(x, y)-u_{h}(x, y)\right| \\
& =\max _{1 \leq n \leq N} \max _{(x, y) \in E_{n}}\left|u(x, y)-\sum_{j=1}^{N_{b}} u_{j} \phi_{j}\right| \\
& =\max _{1 \leq n \leq N} \max _{(x, y) \in E_{n}}\left|u(x, y)-\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \psi_{n k}(x, y)\right| .
\end{aligned}
$$

Measurements for errors

- Define

$$
w_{n}(x, y)=\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \psi_{n k}(x, y)
$$

Then

$$
\left\|u-u_{h}\right\|_{\infty}=\max _{1 \leq n \leq N} \max _{(x, y) \in E_{n}}\left|u(x, y)-w_{n}(x, y)\right|
$$

- $\max _{(x, y) \in E_{n}}\left|u(x, y)-w_{n}(x, y)\right|$ can be approximated by choosing the maximum values of $\left|u(x, y)-w_{n}(x, y)\right|$ on a group of chosen points in E_{n}, such as some Gauss quadrature nodes in this element. We denote the approximation by r_{n}.

Measurements for errors

Algorithm IV:

- Initialize the error error $=0$;
- Approximate the maximum absolute errors on all elements and then choose the largest one as the final approximation: FOR $n=1, \cdots, N$:

Compute $r_{n} \approx \max _{(x, y) \in E_{n}}\left|u(x, y)-w_{n}(x, y)\right| ;$
IF $r_{n}>$ error, THEN

$$
\text { error }=r_{n} \text {; }
$$

END
END

Measurements for errors

- By using $u_{h}=\sum_{j=1}^{N_{b}} u_{j} \phi_{j}$, the definition of T_{b}, and the definition of the local basis functions $\psi_{n k}$, we get

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{0} & =\sqrt{\int_{\Omega}\left(u-u_{h}\right)^{2} d x d y} \\
& =\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(u-u_{h}\right)^{2} d x d y} \\
& =\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(u-\sum_{j=1}^{N_{b}} u_{j} \phi_{j}\right)^{2} d x d y} \\
& =\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(u-\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \psi_{n k}\right)^{2} d x d y}
\end{aligned}
$$

Measurements for errors

- Define

$$
w_{n}=\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \psi_{n k}
$$

Then

$$
\left\|u-u_{h}\right\|_{0}=\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(u-w_{n}\right)^{2} d x d y} .
$$

- Each integral $\int_{E_{n}}\left(u-w_{n}\right)^{2} d x d y$ can be computed by numerical integration.

Measurements for errors

- By using $u_{h}=\sum_{j=1}^{N_{b}} u_{j} \phi_{j}$, the definition of T_{b}, and the definition of the local basis functions $\psi_{n k}$, we get

$$
\begin{aligned}
\left|u-u_{h}\right|_{1, x} & =\sqrt{\int_{\Omega}\left(\frac{\partial\left(u-u_{h}\right)}{\partial x}\right)^{2}} \\
& =\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(\frac{\partial\left(u-u_{h}\right)}{\partial x}\right)^{2} d x d y} \\
& =\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(\frac{\partial u}{\partial x}-\sum_{j=1}^{N_{b}} u_{j} \frac{\partial \phi_{j}}{\partial x}\right)^{2} d x d y} \\
& =\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(\frac{\partial u}{\partial x}-\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \frac{\partial \psi_{n k}}{\partial x}\right)^{2} d x d y}
\end{aligned}
$$

Measurements for errors

- Similarly,

$$
\begin{aligned}
\left|u-u_{h}\right|_{1, y} & =\sqrt{\int_{\Omega}\left(\frac{\partial\left(u-u_{h}\right)}{\partial y}\right)^{2} d x d y} \\
& =\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(\frac{\partial\left(u-u_{h}\right)}{\partial y}\right)^{2} d x d y} \\
& =\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(\frac{\partial u}{\partial y}-\sum_{j=1}^{N_{b}} u_{j} \frac{\partial \phi_{j}}{\partial y}\right)^{2} d x d y} \\
& =\sqrt{\left(\frac{\partial u}{\partial y}-\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \frac{\partial \psi_{n k}}{\partial y}\right)^{2} d x d y}
\end{aligned}
$$

Measurements for errors

- Then

$$
\begin{aligned}
& \left|u-u_{h}\right|_{1}^{2} \\
= & \left|u-u_{h}\right|_{1, x}^{2}+\left|u-u_{h}\right|_{1, y}^{2} \\
= & \sum_{n=1}^{N} \int_{E_{n}}\left(\frac{\partial u}{\partial x}-\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \frac{\partial \psi_{n k}}{\partial x}\right)^{2} d x d y \\
& +\sum_{n=1}^{N} \int_{E_{n}}\left(\frac{\partial u}{\partial y}-\sum_{k=1}^{N_{I b}} u_{T_{b}(k, n)} \frac{\partial \psi_{n k}}{\partial y}\right)^{2} d x d y .
\end{aligned}
$$

Measurements for errors

- Define

$$
\begin{aligned}
& w_{n 1}=\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \frac{\partial \psi_{n k}}{\partial x} \\
& w_{n 2}=\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \frac{\partial \psi_{n k}}{\partial y}
\end{aligned}
$$

Then

$$
\begin{aligned}
&\left|u-u_{h}\right|_{1} \\
&=\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(\frac{\partial u}{\partial x}-w_{n 1}\right)^{2} d x d y+\sum_{n=1}^{N} \int_{E_{n}}\left(\frac{\partial u}{\partial y}-w_{n 2}\right)^{2} d x d y}
\end{aligned}
$$

- Each integral $\int_{E_{n}}\left(\frac{\partial u}{\partial x}-w_{n 1}\right)^{2} d x d y$ or $\int_{E_{n}}\left(\frac{\partial u}{\partial y}-w_{n 2}\right)^{2} d x d y$ can be computed by numerical integration.

Measurements for errors

- Develop a subroutine for a more general formulation

$$
\sqrt{\sum_{n=1}^{N} \int_{E_{n}}\left(\frac{\partial^{\alpha_{1}+\alpha_{2}} u}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}-\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \frac{\partial^{\alpha_{1}+\alpha_{2}} \psi_{n k}}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}\right)^{2} d x d y .}
$$

- $\left\|u-u_{h}\right\|_{0}$ is equivalent to calling this subroutine with $\alpha_{1}=0$ and $\alpha_{2}=0$.
- $\left|u-u_{h}\right|_{1, x}$ is equivalent to calling this subroutine with $\alpha_{1}=1$ and $\alpha_{2}=0$.
- $\left|u-u_{h}\right|_{1, y}$ is equivalent to calling this subroutine with $\alpha_{1}=0$ and $\alpha_{2}=1$.

Measurements for errors

Algorithm V:

- Initialize the error error $=0$; input the parameters α_{1} and α_{2};
- Compute the integrals and add them into the total error:

FOR $n=1, \cdots, N$:
error $=\operatorname{error}+\int_{E_{n}}\left(\frac{\partial^{\alpha_{1}+\alpha_{2}} u}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}-\sum_{k=1}^{N_{l b}} u_{T_{b}(k, n)} \frac{\partial^{\alpha_{1}+\alpha_{2}} \psi_{n k}}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}\right)^{2} d x d y ;$
END
error $=\sqrt{\text { error } ; ~}$

Numerical example

- Example 1: Use the finite element method to solve the following equation on the domain $\Omega=[-1,1] \times[-1,1]$:

$$
\begin{aligned}
-\nabla \cdot(\nabla u)= & -y(1-y)\left(1-x-\frac{x^{2}}{2}\right) e^{x+y} \\
& -x\left(1-\frac{x}{2}\right)\left(-3 y-y^{2}\right) e^{x+y} \\
u= & -1.5 y(1-y) e^{-1+y} \text { on } x=-1, \\
u= & 0.5 y(1-y) e^{1+y} \text { on } x=1, \\
u= & -2 x\left(1-\frac{x}{2}\right) e^{x-1} \quad \text { on } y=-1, \\
u= & 0 \text { on } y=1 .
\end{aligned}
$$

- The analytic solution of this problem is
$u=x y\left(1-\frac{x}{2}\right)(1-y) e^{x+y}$, which can be used to compute the error of the numerical solution.

Numerical example

- Let's code for the linear and quadratic finite element method of the 2D second order elliptic equation together!
- Open your Matlab!

Numerical example

h	$\left\\|u-u_{h}\right\\|_{\infty}$	$\left\\|u-u_{h}\right\\|_{0}$	$\left\|u-u_{h}\right\|_{1}$
$1 / 8$	2.3620×10^{-2}	6.8300×10^{-3}	1.8774×10^{-1}
$1 / 16$	6.3421×10^{-3}	1.7189×10^{-3}	9.4167×10^{-2}
$1 / 32$	1.6430×10^{-3}	4.3049×10^{-4}	4.7121×10^{-2}
$1 / 64$	4.1810×10^{-4}	1.0767×10^{-4}	2.3565×10^{-2}
$1 / 128$	1.0546×10^{-4}	2.6922×10^{-5}	1.1783×10^{-2}

Table: The numerical errors for linear finite element.

- Any Observation?
- Second order convergence $O\left(h^{2}\right)$ in L^{2} / L^{∞} norm and first order convergence $O(h)$ in H^{1} semi-norm, which match the optimal approximation capability expected from piecewise linear functions.

Numerical example

h	$\left\\|u-u_{h}\right\\|_{\infty}$	$\left\\|u-u_{h}\right\\|_{0}$	$\left\|u-u_{h}\right\|_{1}$
$1 / 8$	3.3678×10^{-4}	1.1705×10^{-4}	8.9192×10^{-3}
$1 / 16$	4.4273×10^{-5}	1.4637×10^{-5}	2.2414×10^{-3}
$1 / 32$	5.6752×10^{-6}	1.8289×10^{-6}	5.6131×10^{-4}
$1 / 64$	7.1839×10^{-7}	2.2853×10^{-7}	1.4042×10^{-4}
$1 / 128$	9.0366×10^{-8}	2.8560×10^{-8}	3.5114×10^{-5}

Table: The numerical errors for quadratic finite element.

- Any Observation?
- Third order convergence $O\left(h^{3}\right)$ in L^{2} / L^{∞} norm and second order convergence $O\left(h^{2}\right)$ in H^{1} semi-norm, which match the optimal approximation capability expected from piecewise quadratic functions.

Outline

(1) Weak/Galerkin formulation
 (2) FE discretization
 (3) Dirichlet boundary condition
 (4) FE Method

(5) More Discussion

Neumann boundary conditions

- Consider

$$
-\nabla \cdot(c \nabla u)=f \text { in } \Omega, \quad \nabla u \cdot \vec{n}=p \text { on } \partial \Omega .
$$

- Recall

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y-\int_{\partial \Omega}(c \nabla u \cdot \vec{n}) v d s=\int_{\Omega} f v d x d y .
$$

- Hence

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y=\int_{\Omega} f v d x d y+\int_{\partial \Omega} c p v d s .
$$

- Is there anything wrong? The solution is not unique!
- If u is a solution, then $u+c$ is also a solution where c is a constant.

Neumann boundary condition

- Consider

$$
\begin{aligned}
& -\nabla \cdot(c \nabla u)=f \text { in } \Omega, \\
& \nabla u \cdot \vec{n}=p \text { on } \Gamma_{N} \subset \partial \Omega, \\
& u=g \text { on } \Gamma_{D}=\partial \Omega / \Gamma_{N} .
\end{aligned}
$$

- Recall

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y-\int_{\partial \Omega}(c \nabla u \cdot \vec{n}) v d s=\int_{\Omega} f v d x d y .
$$

- Since the solution on $\Gamma_{D}=\partial \Omega / \Gamma_{N}$ is given by $u=g$, then we can choose the test function $v(x, y)$ such that $v=0$ on $\partial \Omega / \Gamma_{N}$.

Neumann boundary condition

- Since

$$
\begin{aligned}
\int_{\partial \Omega}(c \nabla u \cdot \vec{n}) v d s & =\int_{\Gamma_{N}}(c \nabla u \cdot \vec{n}) v d s+\int_{\partial \Omega / \Gamma_{N}}(c \nabla u \cdot \vec{n}) v d s \\
& =\int_{\Gamma_{N}} c p v d s,
\end{aligned}
$$

then

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y-\int_{\Gamma_{N}} c p v d s=\int_{\Omega} f v d x d y
$$

- Hence the weak formulation is to find $u \in H^{1}(\Omega)$ such that

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y=\int_{\Omega} f v d x d y+\int_{\Gamma_{N}} c p v d s
$$

for any $v \in H_{0 D}^{1}(\Omega)=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{D}\right\}$.

Neumann boundary condition

- Consider a finite element space $U_{h} \subset H^{1}(\Omega)$. Define $U_{h 0}$ to be the space which consists of the functions of U_{h} with value 0 on the Dirichlet boundary.
- Then the Galerkin formulation is to find $u_{h} \in U_{h}$ such that

$$
\int_{\Omega} c \nabla u_{h} \cdot \nabla v_{h} d x d y=\int_{\Omega} f v_{h} d x d y+\int_{\Gamma_{N}} c p v_{h} d s
$$

for any $v_{h} \in U_{h 0}$.

- For an easier implementation, we consider the Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $u_{h} \in U_{h}$ such that

$$
\int_{\Omega} c \nabla u_{h} \cdot \nabla v_{h} d x d y=\int_{\Omega} f v_{h} d x d y+\int_{\Gamma_{N}} c p v_{h} d s
$$

for any $v_{h} \in U_{h}$.

Neumann boundary condition

- Recall: Since $u_{h} \in U_{h}=\operatorname{span}\left\{\phi_{j}\right\}_{j=1}^{N_{b}}$, then

$$
u_{h}=\sum_{j=1}^{N_{b}} u_{j} \phi_{j}
$$

for some coefficients $u_{j}\left(j=1, \cdots, N_{b}\right)$.

- Recall: Choose $v_{h}=\phi_{i}\left(i=1, \cdots, N_{b}\right)$.
- Then for $i=1, \cdots, N_{b}$, the finite element formulation gives

$$
\begin{aligned}
& \int_{\Omega} c \nabla\left(\sum_{j=1}^{N_{b}} u_{j} \phi_{j}\right) \cdot \nabla \phi_{i} d x d y=\int_{\Omega} f \phi_{i} d x d y+\int_{\Gamma_{N}} c p \phi_{i} d s \\
\Rightarrow & \sum_{j=1}^{N_{b}} u_{j}\left[\int_{\Omega} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y\right]=\int_{\Omega} f \phi_{i} d x d y+\int_{\Gamma_{N}} c p \phi_{i} d s .
\end{aligned}
$$

Neumann boundary condition

Recall

- Define the stiffness matrix

$$
A=\left[a_{i j}\right]_{i, j=1}^{N_{b}}=\left[\int_{\Omega} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y\right]_{i, j=1}^{N_{b}} .
$$

- Define the load vector

$$
\vec{b}=\left[b_{i}\right]_{i=1}^{N_{b}}=\left[\int_{\Omega} f \phi_{i} d x d y\right]_{i=1}^{N_{b}} .
$$

- Define the unknown vector

$$
\vec{X}=\left[u_{j}\right]_{j=1}^{N_{b}} .
$$

Neumann boundary condition

- Define the additional vector from the Neumann boundary condition

$$
\vec{v}=\left[v_{i}\right]_{i=1}^{N_{b}}=\left[\int_{\Gamma_{N}} c p \phi_{i} d s\right]_{i=1}^{N_{b}} .
$$

- Define the new vector $\widetilde{\vec{b}}=\vec{b}+\vec{v}$.
- Then we obtain the linear algebraic system

$$
A \vec{X}=\widetilde{\vec{b}}
$$

- Code?
- Add one more subroutine for \vec{v} to the existing code!

Neumann boundary condition

Recall

- Matrix boundaryedges:
- boundaryedges $(1, k)$ is the type of the $k^{\text {th }}$ boundary edge e_{k} : Dirichlet (-1), Neumann (-2), Robin (-3)......
- boundaryedges $(2, k)$ is the index of the element which contains the $k^{t h}$ boundary edge e_{k}.
- Each boundary edge has two end nodes. We index them as the first and the second counterclock wise along the boundary.
- boundaryedges $(3, k)$ is the global node index of the first end node of the $k^{\text {th }}$ boundary boundary edge e_{k}.
- boundaryedges $(4, k)$ is the global node index of the second end node of the $k^{t h}$ boundary boundary edge e_{k}.
- Set nbe $=\operatorname{size}$ (boundaryedges, 2) to be the number of boundary edges;

Neumann boundary condition

- The idea for the assembly of the vector \vec{v} is similar to that of the load vector. We have

$$
v_{i}=\int_{\Gamma_{N}} c p \phi_{i} d s=\sum_{\substack{e_{k} \subset \Gamma_{N} \\ 1 \leq k \leq n b e}} \int_{e_{k}} c p \phi_{i} d s, i=1, \cdots, N_{b} .
$$

- Loop over all the boundary edges;
- Compute all non-zero local integrals on each Neumann boundary edge for the vector \vec{v};
- Assemble these non-zero local integrals into the corresponding entries of the vector \vec{v}.

Neumann boundary condition

Compute all non-zero local integrals on each Neumann boundary edge for \vec{v} :

- The index of the element which contains the $k^{t h}$ boundary edge e_{k} is $n_{k}=$ boundaryedges $(2, k)$. Then on e_{k}, we get non-zero local integrals only when the test basis functions are corresponding to the finite element nodes of the $n_{k}^{t h}$ element $E_{n_{k}}$.
- Let $p_{s}=T_{b}\left(s, n_{k}\right)\left(s=1, \cdots, N_{l b}\right)$.
- Then we only consider the test basis functions to be $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$.
- There are only $N_{l b}$ non-zero local integrals on e_{k} with the global basis functions $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$:

$$
\int_{e_{k}} c p \phi_{i} d s\left(i=p_{1}, \cdots, p_{N_{l b}}\right)
$$

Neumann boundary condition

- In fact, we have

$$
\psi_{n_{k} s}=\phi_{p_{s} \mid E_{n_{k}}}\left(s=1, \cdots, N_{l b}\right) .
$$

- That is, instead of the original non-zero local integrals with the global basis functions $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$, we will compute the following non-zero local integrals with the local basis functions $\psi_{n_{k} s}\left(s=1, \cdots, N_{l b}\right)$:

$$
\int_{e_{k}} c p \psi_{n_{k} \beta} d s\left(\beta=1, \cdots, N_{l b}\right) .
$$

- Question: how to compute these integrals?
- Gauss quadrature. The needed information is stored in the matrices P and boundaryedges.

Neumann boundary condition

- $P(:$, boundaryedges $(3: 4, k))$ provides the coordinates of the two end points of the $k^{\text {th }}$ boundary edge. We discuss three cases based on these coordinates.
- Case 1: If a boundary edge is vertical, then it can be described as $x=c\left(y_{1} \leq y \leq y_{2}\right)$. The y-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss quadrature on $\left[y_{1}, y_{2}\right]$. And the x-coordinates of the Gauss quadrature nodes are fixed to be c.

Neumann boundary condition

- Case 2: If a boundary edge is horizontal, then it can be described as $y=c\left(x_{1} \leq x \leq x_{2}\right)$. The x-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss quadrature on $\left[x_{1}, x_{2}\right]$. And the y-coordinates of the Gauss quadrature nodes are fixed to be c.
- Case 3: Otherwise, a boundary edge can be described as $y=a x+b\left(x_{1} \leq x \leq x_{2}\right)$. The x-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss nodes in $\left[x_{1}, x_{2}\right]$. And the y-coordinates of the Gauss quadrature nodes are obtained from $y=a x+b$.
- The case 3 with $a=0$ and $b=c$ is equivalent to case 2 . Hence case 2 and case 3 can be combined into one case.

Neumann boundary condition

Assemble the non-zero local integrals into \vec{v} :

- When the test function is ϕ_{i}, the corresponding non-zero local integrals should be assembled to v_{i}.
- Therefore, if we find the global node indices of the test basis functions, we can easily locate where to assemble a non-zero local integral.
- Question: Since we compute

$$
\int_{e_{k}} c p \psi_{n_{k} \beta} d s\left(\beta=1, \cdots, N_{l b}\right)
$$

instead of

$$
\int_{e_{k}} c p \phi_{i} d s\left(i=p_{1}, \cdots, p_{N_{l b}}\right)
$$

how do we obtain the corresponding global node indices of the local test basis functions $\psi_{n_{k} \beta}\left(\beta=1, \cdots, N_{l b}\right)$?

- Information matrix T_{b} !

Neumann boundary condition

- Recall that $T_{b}\left(\beta, n_{k}\right)$ give the global node indices of the local test basis functions $\psi_{n_{k} \beta}\left(\beta=1, \cdots, N_{l b}\right)$.
- That is,

$$
\int_{e_{k}} c p \psi_{n_{k} \beta} d s\left(\beta=1, \cdots, N_{l b}\right)
$$

should be assembled to v_{i} where $i=T_{b}\left(\beta, n_{k}\right)$.

Neumann boundary condition

Algorithm VI-1:

- Initialize the vector: $v=\operatorname{sparse}\left(N_{b}, 1\right)$;
- Compute the integrals and assemble them into v :

FOR $k=1, \cdots$, nbe:
IF boundaryedges $(1, k)$ shows Neumann boundary condition, THEN

$$
\begin{aligned}
& n_{k}=\text { boundaryedges }(2, k) ; \\
& \text { FOR } \beta=1, \cdots, N_{l b}: \\
& \quad \text { Compute } r=\int_{e_{k}} c p \psi_{n_{k} \beta} d s ; \\
& \quad v\left(T_{b}\left(\beta, n_{k}\right), 1\right)=v\left(T_{b}\left(\beta, n_{k}\right), 1\right)+r ;
\end{aligned}
$$

END
ENDIF
END

Neumann boundary condition

- If we follow Algorithm VI-1 to develop a subroutine to assemble the vector arising from

$$
\int_{e_{k}} \tilde{p} \frac{\partial^{a+b} \psi_{n_{k} \beta}}{\partial x^{a} \partial y^{b}} d s,
$$

then Algorithm $\mathrm{VI}-1$ is equivalent to calling this subroutine with parameters: $a=b=0$ and $\tilde{p}=c p$.

Neumann boundary condition

Algorithm VI:

- Initialize the vector: $v=\operatorname{sparse}\left(N_{b}, 1\right)$;
- Compute the integrals and assemble them into v : FOR $k=1, \cdots$, nbe:

IF boundaryedges $(1, k)$ shows Neumann boundary condition, THEN

$$
\begin{aligned}
& n_{k}=\text { boundaryedges }(2, k) ; \\
& \text { FOR } \beta=1, \cdots, N_{l b}: \\
& \quad \text { Compute } r=\int_{e_{k}} \tilde{p} \frac{\partial^{a+b} \psi_{n_{k} \beta}}{\partial x^{2} \partial y^{b}} d s ; \\
& \quad v\left(T_{b}\left(\beta, n_{k}\right), 1\right)=v\left(T_{b}\left(\beta, n_{k}\right), 1\right)+r ;
\end{aligned}
$$

END
ENDIF
END

Neumann boundary condition

Recall

- Matrix boundarynodes:
- boundarynodes $(1, k)$ is the type of the $k^{t h}$ boundary finite element node: Dirichlet (-1), Neumann (-2), Robin (-3)......
- The intersection nodes of Dirichlet boundary condition and other boundary conditions usually need to be treated as Dirichlet boundary nodes.
- boundarynodes $(2, k)$ is the global node index of the $k^{\text {th }}$ boundary boundary finite element node.
- Set $n b n=\operatorname{size}($ boundarynodes, 2) to be the number of boundary finite element nodes;

Neumann boundary condition

- Example 2: Use the finite element method to solve the following equation on the domain $\Omega=[-1,1] \times[-1,1]$:

$$
\begin{aligned}
-\nabla \cdot(\nabla u) & =-2 e^{x+y} \\
u & =e^{-1+y} \text { on } x=-1, \\
u & =e^{1+y} \text { on } x=1 \\
\nabla u \cdot \vec{n} & =-e^{x-1} \quad \text { on } y=-1, \\
u & =e^{x+1} \quad \text { on } y=1
\end{aligned}
$$

- The analytic solution of this problem is $u=e^{x+y}$, which can be used to compute the error of the numerical solution.

Neumann boundary condition

- Let's code for the linear and quadratic finite element method of the 2D second order elliptic equation with Neumann boundary condition!
- Open your Matlab!

Neumann boundary condition

h	$\left\\|u-u_{h}\right\\|_{\infty}$	$\left\\|u-u_{h}\right\\|_{0}$	$\left\|u-u_{h}\right\|_{1}$
$1 / 8$	1.3358×10^{-2}	5.1224×10^{-3}	1.8523×10^{-1}
$1 / 16$	3.4487×10^{-3}	1.2793×10^{-3}	9.2559×10^{-2}
$1 / 32$	8.7622×10^{-4}	3.1973×10^{-4}	4.6273×10^{-2}
$1 / 64$	2.2084×10^{-4}	7.9928×10^{-5}	2.3136×10^{-2}
$1 / 128$	5.5433×10^{-5}	1.9982×10^{-5}	1.1568×10^{-2}

Table: The numerical errors for linear finite element.

- Any Observation?
- Second order convergence $O\left(h^{2}\right)$ in L^{2} / L^{∞} norm and first order convergence $O(h)$ in H^{1} semi-norm, which match the optimal approximation capability expected from piecewise linear functions.

Neumann boundary condition

h	$\left\\|u-u_{h}\right\\|_{\infty}$	$\left\\|u-u_{h}\right\\|_{0}$	$\left\|u-u_{h}\right\|_{1}$
$1 / 8$	1.0956×10^{-4}	3.9285×10^{-5}	2.9874×10^{-3}
$1 / 16$	1.4074×10^{-5}	4.9015×10^{-6}	7.4668×10^{-4}
$1 / 32$	1.7835×10^{-6}	6.1244×10^{-7}	1.8667×10^{-4}
$1 / 64$	2.2447×10^{-7}	7.6549×10^{-8}	4.6667×10^{-5}
$1 / 128$	2.8155×10^{-8}	9.5686×10^{-9}	1.1667×10^{-5}

Table: The numerical errors for quadratic finite element.

- Any Observation?
- Third order convergence $O\left(h^{3}\right)$ in L^{2} / L^{∞} norm and second order convergence $O\left(h^{2}\right)$ in H^{1} semi-norm, which match the optimal approximation capability expected from piecewise quadratic functions.

Robin boundary conditions

- Consider

$$
\begin{aligned}
& -\nabla \cdot(c \nabla u)=f \text { in } \Omega \\
& \nabla u \cdot \vec{n}+r u=q \text { on } \Gamma_{R \subseteq \partial \Omega} \\
& u=g \text { on } \Gamma_{D}=\partial \Omega / \Gamma_{R} .
\end{aligned}
$$

- Recall

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y-\int_{\partial \Omega}(c \nabla u \cdot \vec{n}) v d s=\int_{\Omega} f v d x d y
$$

- Since the solution on $\Gamma_{D}=\partial \Omega / \Gamma_{R}$ is given by $u=g$, then we can choose the test function $v(x, y)$ such that $v=0$ on $\partial \Omega / \Gamma_{R}$.

Robin boundary condition

- Since

$$
\begin{aligned}
\int_{\partial \Omega}(c \nabla u \cdot \vec{n}) v d s & =\int_{\Gamma_{R}}(c \nabla u \cdot \vec{n}) v d s+\int_{\partial \Omega / \Gamma_{R}}(c \nabla u \cdot \vec{n}) v d s \\
& =\int_{\Gamma_{R}} c q v d s-\int_{\Gamma_{R}} c r u v d s,
\end{aligned}
$$

then

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y-\left(\int_{\Gamma_{R}} c q v d s-\int_{\Gamma_{R}} c r u v d s\right)=\int_{\Omega} f v d x d y
$$

- Hence the weak formulation is to find $u \in H^{1}(\Omega)$ such that

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y+\int_{\Gamma_{R}} c r u v d s=\int_{\Omega} f v d x d y+\int_{\Gamma_{R}} c q v d s .
$$

for any $v \in H_{0 D}^{1}(\Omega)=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{D}\right\}$.

Robin boundary condition

- Consider a finite element space $U_{h} \subset H^{1}(\Omega)$. Define $U_{h 0}$ to be the space which consists of the functions of U_{h} with value 0 on the Dirichlet boundary.
- Then the Galerkin formulation is to find $u_{h} \in U_{h}$ such that

$$
\int_{\Omega} c \nabla u_{h} \cdot \nabla v_{h} d x d y+\int_{\Gamma_{R}} c r u_{h} v_{h} d s=\int_{\Omega} f v_{h} d x d y+\int_{\Gamma_{R}} c q v_{h} d s
$$

for any $v_{h} \in U_{h 0}$.

- For an easier implementation, we consider the Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $u_{h} \in U_{h}$ such that

$$
\int_{\Omega} c \nabla u_{h} \cdot \nabla v_{h} d x d y+\int_{\Gamma_{R}} c r u_{h} v_{h} d s=\int_{\Omega} f v_{h} d x d y+\int_{\Gamma_{R}} c q v_{h} d s
$$

for any $v_{h} \in U_{h}$.

Robin boundary condition

- Recall: Since $u_{h} \in U_{h}=\operatorname{span}\left\{\phi_{j}\right\}_{j=1}^{N_{b}}$, then

$$
u_{h}=\sum_{j=1}^{N_{b}} u_{j} \phi_{j}
$$

for some coefficients $u_{j}\left(j=1, \cdots, N_{b}\right)$.

- Recall: Choose $v_{h}=\phi_{i}\left(i=1, \cdots, N_{b}\right)$.

Robin boundary condition

- Then for $i=1, \cdots, N_{b}$, the finite element formulation gives

$$
\begin{aligned}
& \int_{\Omega} c \nabla\left(\sum_{j=1}^{N_{b}} u_{j} \phi_{j}\right) \cdot \nabla \phi_{i} d x d y+\int_{\Gamma_{R}} c r\left(\sum_{j=1}^{N_{b}} u_{j} \phi_{j}\right) \phi_{i} d s \\
& =\int_{\Omega} f \phi_{i} d x d y+\int_{\Gamma_{R}} c q \phi_{i} d s, \\
\Rightarrow & \sum_{j=1}^{N_{b}} u_{j}\left[\int_{\Omega} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y\right]+\sum_{j=1}^{N_{b}} u_{j}\left[\int_{\Gamma_{R}} c r \phi_{j} \phi_{i} d s\right] \\
& =\int_{\Omega} f \phi_{i} d x d y+\int_{\Gamma_{R}} c q \phi_{i} d s .
\end{aligned}
$$

Robin boundary condition

- Recall: Define the stiffness matrix

$$
A=\left[a_{i j}\right]_{i, j=1}^{N_{b}}=\left[\int_{\Omega} c \nabla \phi_{j} \cdot \nabla \phi_{i} d x d y\right]_{i, j=1}^{N_{b}} .
$$

- Recall: Define the load vector

$$
\vec{b}=\left[b_{i}\right]_{i=1}^{N_{b}}=\left[\int_{\Omega} f \phi_{i} d x d y\right]_{i=1}^{N_{b}} .
$$

- Recall: Define the unknown vector

$$
\vec{X}=\left[u_{j}\right]_{j=1}^{N_{b}} .
$$

- Define the additional vector from the Robin boundary condition

$$
\vec{w}=\left[w_{i}\right]_{i=1}^{N_{b}}=\left[\int_{\Gamma_{R}} c q \phi_{i} d s\right]_{i=1}^{N_{b}} .
$$

Robin boundary condition

- Define the additional matrix from the Robin boundary condition

$$
R=\left[r_{i j}\right]_{i, j=1}^{N_{b}}=\left[\int_{\Gamma_{R}} c r \phi_{j} \phi_{i} d s\right]_{i, j=1}^{N_{b}} .
$$

- Define the new vector $\widetilde{\vec{b}}=\vec{b}+\vec{w}$.
- Define the new matrix $\widetilde{A}=A+R$.
- Then we obtain the linear algebraic system

$$
\widetilde{A} \vec{X}=\widetilde{\vec{b}}
$$

- Code?
- Add one more subroutine for \vec{w} and R to the existing code!

Robin boundary condition

Recall

- Matrix boundaryedges:
- boundaryedges $(1, k)$ is the type of the $k^{\text {th }}$ boundary edge e_{k} : Dirichlet (-1), Neumann (-2), Robin (-3)......
- boundaryedges $(2, k)$ is the index of the element which contains the $k^{t h}$ boundary edge e_{k}.
- Each boundary edge has two end nodes. We index them as the first and the second counterclock wise along the boundary.
- boundaryedges $(3, k)$ is the global node index of the first end node of the $k^{\text {th }}$ boundary boundary edge e_{k}.
- boundaryedges $(4, k)$ is the global node index of the second end node of the $k^{t h}$ boundary boundary edge e_{k}.
- Set nbe $=\operatorname{size}$ (boundaryedges, 2) to be the number of boundary edges;

Robin boundary condition

- The idea for the assembly of the matrix R and the vector \vec{w} is similar to that of the stiffness matrix and the load vector. We have

$$
\begin{aligned}
& w_{i}=\int_{\Gamma_{R}} c q \phi_{i} d s=\sum_{\substack{e_{e^{\prime} \subset \Gamma_{R}}^{1 \leq k \leq n b e}}} \int_{e_{k}} c q \phi_{i} d s, i=1, \cdots, N_{b}, \\
& r_{i j}=\int_{\Gamma_{R}} c r \phi_{j} \phi_{i} d s=\sum_{\substack{e_{k} \subset \Gamma_{R} \\
1 \leq k \leq n b e}} \int_{e_{k}} c r \phi_{j} \phi_{i} d s, i, j=1, \cdots, N_{b} .
\end{aligned}
$$

- Loop over all the boundary edges;
- Compute all non-zero local integrals on each Robin boundary edge for the vector \vec{w} and the matrix R;
- Assemble these non-zero local integrals into the corresponding entries of the vector \vec{w} and the matrix R.

Robin boundary condition

Compute all non-zero local integrals on each Robin boundary edge for the vector \vec{w} and the matrix R :

- The index of the element which contains the $k^{t h}$ boundary edge e_{k} is $n_{k}=$ boundaryedges $(2, k)$. Then on e_{k}, we get non-zero local integrals only when the test and trial basis functions are corresponding to the finite element nodes of the $n_{k}^{t h}$ element $E_{n_{k}}$.
- Let $p_{s}=T_{b}\left(s, n_{k}\right)\left(s=1, \cdots, N_{l b}\right)$.
- Then we only consider the test basis functions to be $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$.

Robin boundary condition

- There are only $N_{l b}$ non-zero local integrals on e_{k} with the global basis functions $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$:

$$
\begin{array}{r}
\int_{e_{k}} c q \phi_{i} d s, i=p_{1}, \cdots, p_{N_{l b}}, \\
\int_{e_{k}} c r \phi_{j} \phi_{i} d s, i, j=p_{1}, \cdots, p_{N_{l b}} .
\end{array}
$$

- In fact, we have

$$
\psi_{n_{k} s}=\phi_{p_{s} \mid E_{n_{k}}}\left(s=1, \cdots, N_{l b}\right)
$$

Robin boundary condition

- That is, instead of the original non-zero local integrals with the global basis functions $\phi_{p_{s}}\left(s=1, \cdots, N_{l b}\right)$, we will compute the following non-zero local integrals with the local basis functions $\psi_{n_{k} s}\left(s=1, \cdots, N_{l b}\right)$:

$$
\begin{array}{r}
\int_{e_{k}} c p \psi_{n_{k} \beta} d s, \beta=1, \cdots, N_{l b}, \\
\int_{e_{k}} c r \psi_{n_{k} \beta} \psi_{n_{k} \alpha} d s, \alpha, \beta=1, \cdots, N_{l b} .
\end{array}
$$

- Question: how to compute these integrals?
- Gauss quadrature. The needed information is stored in the matrices P and boundaryedges.

Robin boundary condition

Recall

- $P(:$, boundaryedges $(3: 4, k))$ provides the coordinates of the two end points of the $k^{\text {th }}$ boundary edge. We discuss three cases based on these coordinates.
- Case 1: If a boundary edge is vertical, then it can be described as $x=c\left(y_{1} \leq y \leq y_{2}\right)$. The y-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss quadrature on $\left[y_{1}, y_{2}\right]$. And the x-coordinates of the Gauss quadrature nodes are fixed to be c.

Robin boundary condition

- Case 2: If a boundary edge is horizontal, then it can be described as $y=c\left(x_{1} \leq x \leq x_{2}\right)$. The x-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss quadrature on $\left[x_{1}, x_{2}\right]$. And the y-coordinates of the Gauss quadrature nodes are fixed to be c.
- Case 3: Otherwise, a boundary edge can be described as $y=a x+b\left(x_{1} \leq x \leq x_{2}\right)$. The x-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss nodes in $\left[x_{1}, x_{2}\right]$. And the y-coordinates of the Gauss quadrature nodes are obtained from $y=a x+b$.
- The case 3 with $a=0$ and $b=c$ is equivalent to case 2 . Hence case 2 and case 3 can be combined into one case.

Robin boundary condition

Assemble the non-zero local integrals into \vec{w} and R :

- When the test function is ϕ_{i}, the corresponding non-zero local integrals should be assembled to w_{i}.
- When the trial function is ϕ_{i} and the test function is ϕ_{j}, the corresponding non-zero local integrals should be assembled to $r_{i j}$.
- Therefore, if we find the global node indices of the trial and test basis functions, we can easily locate where to assemble a non-zero local integral.

Robin boundary condition

- Question: Since we compute

$$
\int_{e_{k}} c q \psi_{n_{k} \beta} d s\left(\beta=1, \cdots, N_{l b}\right)
$$

instead of

$$
\int_{e_{k}} c q \phi_{i} d s\left(i=p_{1}, \cdots, p_{N_{l b}}\right)
$$

how do we obtain the corresponding global node indices of the local test basis functions $\psi_{n_{k} \beta}\left(\beta=1, \cdots, N_{l b}\right)$?

Robin boundary condition

- Question: Since we compute

$$
\int_{e_{k}} c r \psi_{n_{k} \beta} \psi_{n_{k} \alpha} d s\left(\alpha, \beta=1, \cdots, N_{l b}\right)
$$

instead of

$$
\int_{e_{k}} \operatorname{cr} \phi_{j} \phi_{i} d s\left(i, j=p_{1}, \cdots, p_{N_{l b}}\right),
$$

how do we obtain the corresponding global node indices of the local trial and test basis functions $\psi_{n_{k} \alpha}$ and $\psi_{n_{k} \beta}\left(\alpha, \beta=1, \cdots, N_{l b}\right) ?$

- Information matrix T_{b} !

Robin boundary condition

- Recall that $T_{b}\left(\alpha, n_{k}\right)$ and $T_{b}\left(\beta, n_{k}\right)$ give the global node indices of the local trial and test basis functions $\psi_{n_{k} \alpha}$ and $\psi_{n_{k} \beta}\left(\alpha, \beta=1, \cdots, N_{l b}\right)$.
- That is,

$$
\int_{e_{k}} c q \psi_{n_{k} \beta} d s\left(\beta=1, \cdots, N_{l b}\right)
$$

should be assembled to w_{i} where $i=T_{b}\left(\beta, n_{k}\right)$.

- And

$$
\int_{e_{k}} c r \psi_{n_{k} \alpha} \psi_{n_{k} \beta} d s\left(\alpha, \beta=1, \cdots, N_{l b}\right)
$$

should be assembled to $r_{i j}$ where $i=T_{b}\left(\beta, n_{k}\right)$ and
$j=T_{b}\left(\alpha, n_{k}\right)$.

Robin boundary condition

Algorithm VII-1:

- Initialize $R=\operatorname{sparse}\left(N_{b}, N_{b}\right)$ and $w=\operatorname{sparse}\left(N_{b}, 1\right)$;
- Compute the integrals and assemble them into R and w :

FOR $k=1, \cdots$, nbe:
IF boundaryedges $(1, k)$ shows Robin boundary condition, THEN $n_{k}=$ boundaryedges $(2, k)$; FOR $\beta=1, \cdots, N_{l b}$: Compute $r=\int_{e_{k}} c q \psi_{n_{k} \beta} d s$; $w\left(T_{b}\left(\beta, n_{k}\right), 1\right)=w\left(T_{b}\left(\beta, n_{k}\right), 1\right)+r ;$
END
FOR $\alpha=1, \cdots, N_{l b}$:
FOR $\beta=1, \cdots, N_{l b}$:
Compute $r=\int_{e_{k}} c r \psi_{n_{k} \beta} \psi_{n_{k} \alpha} d s$;
Add r to $R\left(T_{b}\left(\beta, n_{k}\right), T_{b}\left(\alpha, n_{k}\right)\right)$;
END
END
ENDIF
END

Robin boundary condition

Algorithm VII-2:

- Initialize $R=\operatorname{sparse}\left(N_{b}, N_{b}\right)$ and $w=\operatorname{sparse}\left(N_{b}, 1\right)$;
- Compute the integrals and assemble them into R and w : FOR $k=1, \cdots$, nbe:

IF boundaryedges $(1, k)$ shows Robin boundary condition, THEN

$$
\begin{aligned}
& n_{k}=\text { boundaryedges }(2, k) \\
& \text { FOR } \beta=1, \cdots, N_{l b} \text { : } \\
& \quad \text { Compute } r=\int_{e_{k}} c q \psi_{n_{k} \beta} d s ; \\
& \quad w\left(T_{b}\left(\beta, n_{k}\right), 1\right)=w\left(T_{b}\left(\beta, n_{k}\right), 1\right)+r ; \\
& \quad \text { FOR } \alpha=1, \cdots, N_{l b} \text { : }
\end{aligned}
$$

Compute $r=\int_{e_{k}} c r \psi_{n_{k} \beta} \psi_{n_{k} \alpha} d s ;$
Add r to $R\left(T_{b}\left(\beta, n_{k}\right), T_{b}\left(\alpha, n_{k}\right)\right)$;
END
END

ENDIF

END

Robin boundary condition

- If we follow Algorithm VII-1 to develop a subroutine to assemble the vector arising from

$$
\int_{e_{k}} \tilde{p} \frac{\partial^{a+b} \psi_{n_{k} \beta}}{\partial x^{a} \partial y^{b}} d s
$$

and the vector arising from

$$
\int_{e_{k}} \tilde{r} \frac{\partial^{m+s} \psi_{n_{k} \alpha}}{\partial x^{m} \partial y^{s}} \frac{\partial^{d+I} \psi_{n_{k} \beta}}{\partial x^{d} \partial y^{I}} d s,
$$

then Algorithm VII-1 is equivalent to calling this subroutine with parameters: $a=b=r=s=d=I=0, \tilde{p}=c q$, and $\tilde{r}=c r$.

- Note that the vector part is exactly the same as what we had for the Neumann boundary condition!

Robin boundary condition

Algorithm VII:

- Initialize $R=\operatorname{sparse}\left(N_{b}, N_{b}\right)$ and $w=\operatorname{sparse}\left(N_{b}, 1\right)$;
- Compute the integrals and assemble them into R and w :

FOR $k=1, \cdots$, nbe:
IF boundaryedges $(1, k)$ shows Robin boundary condition, THEN

$$
n_{k}=\text { boundaryedges }(2, k) ;
$$

$$
\text { FOR } \beta=1, \cdots, N_{l b}:
$$

Compute $r=\int_{e_{k}} \tilde{p} \frac{\partial^{a+b} \psi_{n_{k} \beta}}{\partial x^{a} \partial y^{b}} d s$;
$w\left(T_{b}\left(\beta, n_{k}\right), 1\right)=w\left(T_{b}\left(\beta, n_{k}\right), 1\right)+r ;$
END

$$
\text { FOR } \alpha=1, \cdots, N_{l b}:
$$

$$
\text { FOR } \beta=1, \cdots, N_{l b}:
$$

Compute $r=\int_{e_{k}} \tilde{r} \frac{\partial^{m+s} \psi_{n_{k} \alpha}}{\partial x^{m} \partial y^{s}} \frac{\partial^{d+1} \psi_{n_{k} \beta}}{\partial x^{d} \partial y^{\prime}} d s$;
Add r to $R\left(T_{b}\left(\beta, n_{k}\right), T_{b}\left(\alpha, n_{k}\right)\right)$;
END
END
ENDIF

Robin boundary condition

Recall

- Matrix boundarynodes:
- boundarynodes $(1, k)$ is the type of the $k^{t h}$ boundary finite element node: Dirichlet (-1), Neumann (-2), Robin (-3)......
- The intersection nodes of Dirichlet boundary condition and other boundary conditions usually need to be treated as Dirichlet boundary nodes.
- boundarynodes $(2, k)$ is the global node index of the $k^{\text {th }}$ boundary boundary finite element node.
- Set $n b n=\operatorname{size}($ boundarynodes, 2) to be the number of boundary finite element nodes;

Robin boundary condition

- Example 3: Use the finite element method to solve the following equation on the domain $\Omega=[-1,1] \times[-1,1]$:

$$
\begin{aligned}
-\nabla \cdot(\nabla u) & =-2 e^{x+y} \\
u & =e^{-1+y} \text { on } x=-1, \\
u & =e^{1+y} \text { on } x=1, \\
\nabla u \cdot \vec{n}+u & =0 \text { on } y=-1, \\
u & =e^{x+1} \text { on } y=1 .
\end{aligned}
$$

- The analytic solution of this problem is $u=e^{x+y}$, which can be used to compute the error of the numerical solution.

Robin boundary condition

- Let's code for the linear and quadratic finite element method of the 2D second order elliptic equation with Neumann boundary condition!
- Open your Matlab!

Robin boundary condition

h	$\left\\|u-u_{h}\right\\|_{\infty}$	$\left\\|u-u_{h}\right\\|_{0}$	$\left\|u-u_{h}\right\|_{1}$
$1 / 8$	1.3358×10^{-2}	5.1094×10^{-3}	1.8523×10^{-1}
$1 / 16$	3.4487×10^{-3}	1.2760×10^{-3}	9.2559×10^{-2}
$1 / 32$	8.7622×10^{-4}	3.1893×10^{-4}	4.6273×10^{-2}
$1 / 64$	2.2084×10^{-4}	7.9727×10^{-5}	2.3136×10^{-2}
$1 / 128$	5.5433×10^{-5}	1.9932×10^{-5}	1.1568×10^{-2}

Table: The numerical errors for linear finite element.

- Any Observation?
- Second order convergence $O\left(h^{2}\right)$ in L^{2} / L^{∞} norm and first order convergence $O(h)$ in H^{1} semi-norm, which match the optimal approximation capability expected from piecewise linear functions.

Robin boundary condition

h	$\left\\|u-u_{h}\right\\|_{\infty}$	$\left\\|u-u_{h}\right\\|_{0}$	$\left\|u-u_{h}\right\|_{1}$
$1 / 8$	1.0956×10^{-4}	3.9278×10^{-5}	2.9874×10^{-3}
$1 / 16$	1.4074×10^{-5}	4.9012×10^{-6}	7.4668×10^{-4}
$1 / 32$	1.7835×10^{-6}	6.1243×10^{-7}	1.8667×10^{-4}
$1 / 64$	2.2447×10^{-7}	7.6549×10^{-8}	4.6667×10^{-5}
$1 / 128$	2.8155×10^{-8}	9.5686×10^{-9}	1.1667×10^{-5}

Table: The numerical errors for quadratic finite element.

- Any Observation?
- Third order convergence i $O\left(h^{3}\right)$ in L^{2} / L^{∞} norm and second order convergence $O\left(h^{2}\right)$ in H^{1} semi-norm, which match the optimal approximation capability expected from piecewise quadratic functions.

Dirichlet/Neumann/Robin mixed boundary condition

- Consider

$$
\begin{aligned}
& -\nabla \cdot(c \nabla u)=f \text { in } \Omega, \\
& \nabla u \cdot \vec{n}=p \text { on } \Gamma_{N} \subset \partial \Omega, \\
& \nabla u \cdot \vec{n}+r u=q \text { on } \Gamma_{R} \subseteq \partial \Omega, \\
& u=g \text { on } \Gamma_{D}=\partial \Omega /\left(\Gamma_{N} \cup \Gamma_{R}\right) .
\end{aligned}
$$

- Recall

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y-\int_{\partial \Omega}(c \nabla u \cdot \vec{n}) v d s=\int_{\Omega} f v d x d y .
$$

- Since the solution on $\Gamma_{D}=\partial \Omega /\left(\Gamma_{N} \cup \Gamma_{R}\right)$ is given by $u=g$, then we can choose the test function v such that $v=0$ on $\partial \Omega /\left(\Gamma_{N} \cup \Gamma_{R}\right)$.

Dirichlet/Neumann/Robin mixed boundary condition

- Combining the derivation above for the Neumann and Robin boundary conditions, the weak formulation is to find $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
& \int_{\Omega} c \nabla u \cdot \nabla v d x d y+\int_{\Gamma_{R}} c r u v d s \\
= & \int_{\Omega} f v d x d y+\int_{\Gamma_{N}} c p v d s+\int_{\Gamma_{R}} c q v d s .
\end{aligned}
$$

for any $v \in H_{0 D}^{1}(\Omega)=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{D}\right\}$.

- Code?
- Combine all of the subroutines for Dirichlet/Neumann/Robin boundary conditions.

Non-isotropic equation

- Consider

$$
\begin{aligned}
& -\nabla \cdot(c \nabla u)=f \text { in } \Omega \\
& c \nabla u \cdot \vec{n}=p \text { on } \Gamma_{N} \subset \partial \Omega \\
& c \nabla u \cdot \vec{n}+r u=q \text { on } \Gamma_{R} \subseteq \partial \Omega \\
& u=g \text { on } \Gamma_{D}=\partial \Omega /\left(\Gamma_{N} \cup \Gamma_{R}\right),
\end{aligned}
$$

where

$$
c=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)
$$

- Recall

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y-\int_{\partial \Omega}(c \nabla u \cdot \vec{n}) v d s=\int_{\Omega} f v d x d y
$$

- Since the solution on $\Gamma_{D}=\partial \Omega /\left(\Gamma_{N} \cup \Gamma_{R}\right)$ is given by $u=g$, then we can choose the test function v such that $v=0$ on $\partial \Omega /\left(\Gamma_{N} \cup \Gamma_{R}\right)$.

Non-isotropic equation

- Similar to the previous derivation, the weak formulation is to find $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
& \int_{\Omega} c \nabla u \cdot \nabla v d x d y+\int_{\Gamma_{R}} r u v d s \\
= & \int_{\Omega} f v d x d y+\int_{\Gamma_{N}} p v d s+\int_{\Gamma_{R}} q v d s .
\end{aligned}
$$

for any $v \in H_{0 D}^{1}(\Omega)=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{D}\right\}$. Here

$$
\begin{aligned}
c \nabla u \cdot \nabla v & =\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)\binom{u_{x}}{u_{y}} \cdot\binom{v_{x}}{v_{y}} \\
& =\binom{c_{11} u_{x}+c_{12} u_{y}}{c_{21} u_{x}+c_{22} u_{y}} \cdot\binom{v_{x}}{v_{y}} \\
& =c_{11} u_{x} v_{x}+c_{12} u_{y} v_{x}+c_{21} u_{x} v_{y}+c_{22} u_{y} v_{y}
\end{aligned}
$$

Non-isotropic equation

- Code? Just call Algorithm l-3 four times! Everything else is the same as before!
- Call Algorithm I-3 with $r=1, s=0, p=1, q=0$, and $c=c_{11}$ to obtain A_{1};
- Call Algorithm I-3 with $r=0, s=1, p=1, q=0$, and $c=c_{11}$ to obtain A_{2};
- Call Algorithm I-3 with $r=1, s=0, p=0, q=1$, and $c=c_{21}$ to obtain A_{3};
- Call Algorithm I-3 with $r=0, s=1, p=0, q=1$, and $c=c_{22}$ to obtain A_{4}.
- Then the stiffness matrix is $A=A_{1}+A_{2}+A_{3}+A_{4}$.

A more general second order equation

- Consider

$$
\begin{aligned}
& -\nabla \cdot(c \nabla u)+a u=f \text { in } \Omega, \\
& c \nabla u \cdot \vec{n}=p \text { on } \Gamma_{N} \subset \partial \Omega, \\
& c \nabla u \cdot \vec{n}+r u=q \text { on } \Gamma_{R} \subseteq \partial \Omega, \\
& u=g \text { on } \Gamma_{D}=\partial \Omega /\left(\Gamma_{N} \cup \Gamma_{R}\right),
\end{aligned}
$$

where

$$
c=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)
$$

- Then similar to the previous derivation, we have

$$
\int_{\Omega} c \nabla u \cdot \nabla v d x d y-\int_{\partial \Omega}(c \nabla u \cdot \vec{n}) v d s+\int_{\Omega} a u v d x d y=\int_{\Omega} f v d x d y .
$$

A more general second order equation

- Since the solution on $\Gamma_{D}=\partial \Omega /\left(\Gamma_{N} \cup \Gamma_{R}\right)$ is given by $u=g$, then we can choose the test function v such that $v=0$ on $\partial \Omega /\left(\Gamma_{N} \cup \Gamma_{R}\right)$.
- Similar to the previous derivation, the weak formulation is to find $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
& \int_{\Omega} c \nabla u \cdot \nabla v d x d y+\int_{\Omega} a u v d x d y+\int_{\Gamma_{R}} r u v d s \\
= & \int_{\Omega} f v d x d y+\int_{\Gamma_{N}} p v d s+\int_{\Gamma_{R}} q v d s .
\end{aligned}
$$

for any $v \in H_{0 D}^{1}(\Omega)=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{D}\right\}$. Here

$$
c \nabla u \cdot \nabla v=c_{11} u_{x} v_{x}+c_{12} u_{y} v_{x}+c_{21} u_{x} v_{y}+c_{22} u_{y} v_{y} .
$$

A more general second order equation

- Code? Just call Algorithm I-3 five times! Everything else is the same as before!
- Call Algorithm I-3 with $r=0, s=0, p=0, q=0$, and $c=a$ to obtain A_{0};
- Call Algorithm I-3 with $r=1, s=0, p=1, q=0$, and $c=c_{11}$ to obtain A_{1};
- Call Algorithm I-3 with $r=0, s=1, p=1, q=0$, and $c=c_{11}$ to obtain A_{2};
- Call Algorithm I-3 with $r=1, s=0, p=0, q=1$, and $c=c_{21}$ to obtain A_{3};
- Call Algorithm I-3 with $r=0, s=1, p=0, q=1$, and $c=c_{22}$ to obtain A_{4}.
- Then the stiffness matrix is $A=A_{0}+A_{1}+A_{2}+A_{3}+A_{4}$.

Linear regression for the convergence order

- Consider $\left\|u-u_{h}\right\|=C h^{r}$.
- The goal is to design a linear regression to obtain the C and r based on the h and errors given in the table.
- First,

$$
\begin{aligned}
\log \left(\left\|u-u_{h}\right\|\right) & =\log \left(C h^{r}\right) \\
& =\log (C)+\log \left(h^{r}\right) \\
& =\log (C)+r \log (h) .
\end{aligned}
$$

- Let $y=\log \left(\left\|u-u_{h}\right\|\right), x=\log (h), a=r, b=\log (C)$.
- Then $y=a x+b$.
- For different h, we can obtain the corresponding x and y.
- Then by the regular linear regression, we can obtain a and b, which give us the $C=e^{b}$ and $r=a$.

