(日) (同) (三) (三)

Introduction and Implementation for Finite Element Methods

Chapter 3: Finite elements for 2D second order elliptic equation

Xiaoming He Department of Mathematics & Statistics Missouri University of Science & Technology Email: hex@mst.edu Homepage: https://web.mst.edu/~hex/

Outline

- 2 FE discretization
- Oirichlet boundary condition
- 4 FE Method

Outline

2 FE discretization

- Oirichlet boundary condition
- 4 FE Method
- 5 More Discussion

Target problem

• Consider the 2D second order elliptic equation

$$-\nabla \cdot (c\nabla u) = f$$
, in Ω
 $u = g$, on $\partial \Omega$.

where Ω is a 2D domain, f(x, y) and c(x, y) are given functions on Ω , g(x, y) is a given function on $\partial\Omega$ and u(x, y) is the unknown function.

• The gradient of a 2D function *u* is defined by

$$\nabla u = (u_x, u_y).$$

• The divergence of a 2×1 vector \overrightarrow{v} is defined by

$$\nabla \cdot \overrightarrow{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y}.$$

4/139

 First, multiply a function v(x, y) on both sides of the original equation,

$$\begin{aligned} -\nabla \cdot (c\nabla u) &= f \quad \text{in } \Omega \\ \Rightarrow \quad -\nabla \cdot (c\nabla u)v &= fv \quad \text{in } \Omega \\ \Rightarrow \quad -\int_{\Omega} \nabla \cdot (c\nabla u)v \, dxdy &= \int_{\Omega} fv \, dxdy. \end{aligned}$$

• u(x, y) is called a trail function and v(x, y) is called a test function.

• Second, using Green's formula (divergence theory, integration by parts in multi-dimension)

$$\int_{\Omega} \nabla \cdot (c \nabla u) v \, dx dy = \int_{\partial \Omega} (c \nabla u \cdot \vec{n}) v \, ds - \int_{\Omega} c \nabla u \cdot \nabla v \, dx dy,$$

we obtain

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy - \int_{\partial \Omega} (c \nabla u \cdot \vec{n}) \, v \, ds = \int_{\Omega} f v \, dx dy.$$

- Since the solution on the domain boundary $\partial \Omega$ are given by u(x, y) = g(x, y), then we can choose the test function v(x, y) such that v = 0 on $\partial \Omega$.
- Hence

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy = \int_{\Omega} f v \, dx dy.$$

• What spaces should *u* and *v* belong to? Sobolev spaces!

Definition (Support)

If u is a function defined on a domain Ω , then its support supp(u) is the closure of the set on which u is nonzero.

Definition (Compactly supported)

If u is a function defined on a domain Ω and supp(u) is a compact subset (that is, a closed and bounded subset), then u is said to be compactly supported in Ω .

Lemma (I)

A function compactly supported in Ω is zero on and near the boundary of $\Omega.$

Definition

 $C_0^{\infty}(\Omega)$ is the set of all functions that are infinitely differentiable on Ω and compactly supported in Ω .

• Recall integration by parts:

$$\int_{\Omega} \frac{\partial u}{\partial x} v \, dx dy = \int_{\partial \Omega} u v n_x \, ds - \int_{\Omega} u \frac{\partial v}{\partial x} \, dx dy.$$

• For $v \in C_0^\infty(\Omega)$, we have v = 0 on $\partial \Omega$. Then

$$\int_{\Omega} \frac{\partial u}{\partial x} v \, dx dy = - \int_{\Omega} u \frac{\partial v}{\partial x} \, dx dy.$$

Definition (weak derivative with respect to x in 2D)

Suppose u is a real-valued function defined on a domain Ω and that u is integrable over every compact subset of Ω . If there exists another locally integrable function w defined on Ω such that

$$\int_{\Omega} wv \, dx dy = -\int_{\Omega} u \frac{\partial v}{\partial x} \, dx dy.$$

for all $v \in C_0^{\infty}(\Omega)$, then *u* is said to be weakly differentiable with respect to *x* and *w* is called the weak partial derivative of *u* with respect to *x*.

Definition (general weak derivative in 2D)

Let $\alpha = (\alpha_1, \alpha_2)$. Suppose *u* is a real-valued function defined on a domain Ω and that *u* is integrable over every compact subset of Ω . If there exists another locally integrable function *w* defined on Ω such that

$$\int_{\Omega} wv \, dxdy = (-1)^{\alpha_1 + \alpha_2} \int_{\Omega} u \frac{\partial^{\alpha_1 + \alpha_2} v}{\partial x^{\alpha_1} \partial y^{\alpha_2}} \, dxdy.$$

for all $v \in C_0^{\infty}(\Omega)$, then u is said to be α weakly differentiable and w is called the weak partial derivative of order α of u.

Lemma (II)

If u is differentiable, then u is weakly differentiable and its weak derivative of order $\alpha = (\alpha_1, \alpha_2)$ is $\frac{\partial^{\alpha_1 + \alpha_2} u}{\partial x^{\alpha_1} \partial y^{\alpha_2}}$.

Remark

In the Sobolev spaces, which will be defined below, $\frac{\partial^{\alpha_1+\alpha_2} u}{\partial x^{\alpha_1} \partial y^{\alpha_2}}$ is used to represent the weak derivative of order $\alpha = (\alpha_1, \alpha_2)$.

Defi

nition
$$(L^p \text{ space})$$

 $L^p(\Omega) = \{ v : \Omega o \mathbf{R} : \int_{\Omega} v^p \ dxdy < \infty \}.$

Definition (L^2 space)

$$L^2(\Omega) = \{ v : \Omega \to \mathbf{R} : \int_{\Omega} v^2 dx dy < \infty \}.$$

Definition (L^{∞} space)

$$L^{\infty}(\Omega) = \{ v : \Omega
ightarrow \mathsf{R} : \sup_{(x,y) \in \Omega} |u(x,y)| < \infty \}.$$

Definition (H^m space)

$$H^{m}(\Omega) = \{ v \in L^{2}(\Omega) : \frac{\partial^{\alpha_{1}+\alpha_{2}}v}{\partial x^{\alpha_{1}}\partial y^{\alpha_{2}}} \in L^{2}(\Omega), \ \forall \alpha_{1}+\alpha_{2}=1,\cdots,m \}.$$

Definition (H^1 space)

$$H^{1}(\Omega) = \{ v \in L^{2}(\Omega) : \frac{\partial^{\alpha_{1} + \alpha_{2}} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}} \in L^{2}(\Omega), \ \forall \alpha_{1} + \alpha_{2} = 1 \}.$$

Definition $(H_0^1 \text{ space})$

$$H^1_0(\Omega) = \{ v \in H^1(\Omega) : v = 0 \text{ on } \partial \Omega \}.$$

Definition (W_p^m space)

$$\begin{split} W^m_p(\Omega) &= \{ \boldsymbol{v}: \Omega \to \mathbf{R}: \int_{\Omega} \left[\frac{\partial^{\alpha_1 + \alpha_2} \boldsymbol{v}}{\partial x^{\alpha_1} \partial y^{\alpha_2}} \right]^p \, dx dy < \infty, \\ &\forall \alpha_1 + \alpha_2 = 0, \cdots, m \}. \end{split}$$

Remark

- $L^p(\Omega) = W^0_p(\Omega);$
- $L^{2}(\Omega) = W_{2}^{0}(\Omega);$
- $H^m(\Omega) = W_2^m(\Omega);$
- $H^1(\Omega) = W_2^1(\Omega)$.

• Weak formulation: find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy = \int_{\Omega} f v \, dx dy.$$

for any $v \in H_0^1(\Omega)$.

- Let $a(u, v) = \int_{\Omega} c \nabla u \cdot \nabla v dx dy$ and $(f, v) = \int_{\Omega} f v dx dy$.
- Weak formulation: find $u \in H^1(\Omega)$ such that

$$a(u,v)=(f,v)$$

for any $v \in H_0^1(\Omega)$.

Galerkin formulation

- Assume there is a finite dimensional subspace U_h ⊂ H¹(Ω). Define U_{h0} to be the space which consists of the functions of U_h with value 0 on the Dirichlet boundary.
- Then the Galerkin formulation is to find $u_h \in U_h$ such that

$$a(u_h, v_h) = (f, v_h)$$

$$\Leftrightarrow \quad \int_{\Omega} c \nabla u_h \cdot \nabla v_h \, dx dy = \int_{\Omega} f v_h \, dx dy$$

for any $v_h \in U_{h0}$.

- Basic idea of Galerkin formulation: use finite dimensional space to approximate infinite dimensional space.
- Here $U_h = span\{\phi_j\}_{j=1}^{N_b}$ is chosen to be a finite element space where $\{\phi_j\}_{j=1}^{N_b}$ are the global finite element basis functions.

Galerkin formulation

 For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find u_h ∈ U_h such that

$$\begin{aligned} \mathsf{a}(u_h, \mathsf{v}_h) &= (f, \mathsf{v}_h) \\ \Leftrightarrow \quad \int_\Omega c \nabla u_h \cdot \nabla \mathsf{v}_h \, d\mathsf{x} d\mathsf{y} = \int_\Omega f \mathsf{v}_h \, d\mathsf{x} d\mathsf{y} \end{aligned}$$

for any $v_h \in U_h$.

- Basic idea of Galerkin formulation: use finite dimensional space to approximate infinite dimensional space.
- Here $U_h = span\{\phi_j\}_{j=1}^{N_b}$ is chosen to be a finite element space where $\{\phi_j\}_{j=1}^{N_b}$ are the global finite element basis functions.

Outline

2 FE discretization

Oirichlet boundary condition

④ FE Method

5 More Discussion

<ロト < 部 > < 言 > < 言 > 言 の < で 19/139

Recall the following definitions from Chapter 2:

- N: number of mesh elements.
- N_m: number of mesh nodes.
- E_n ($n = 1, \dots, N$): mesh elements.
- Z_k ($k = 1, \cdots, N_m$): mesh nodes.
- N_I : number of local mesh nodes in a mesh element.
- *P*:information matrix consisting of the coordinates of all mesh nodes.
- *T*: information matrix consisting of the global node indices of the mesh nodes of all the mesh elements.

- We only consider the nodal basis functions (Lagrange type) in this course.
- *N*_{*lb*}: number of local finite element nodes (=number of local finite element basis functions) in a mesh element.
- *N_b*: number of the finite element nodes (= the number of unknowns = the total number of the finite element basis functions).
- X_j $(j = 1, \dots, N_b)$: finite element nodes.
- *P_b*: information matrix consisting of the coordinates of all finite element nodes.
- *T_b*: information matrix consisting of the global node indices of the finite element nodes of all the mesh elements.

• Recall the Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later) : find $u_h \in U_h$ such that

$$\begin{aligned} \mathsf{a}(u_h, \mathsf{v}_h) &= (f, \mathsf{v}_h) \\ \Leftrightarrow \quad \int_\Omega c \nabla u_h \cdot \nabla \mathsf{v}_h \, d\mathsf{x} d\mathsf{y} = \int_\Omega f \mathsf{v}_h \, d\mathsf{x} d\mathsf{y} \end{aligned}$$

for any $v_h \in U_h$.

- Here U_h = span{φ_j}^{N_b}_{j=1} is chosen to be a finite element space where {φ_j}^{N_b}_{j=1} are the global finite element basis functions defined in Chapter 2.
- Since $u_h \in U_h = span\{\phi_j\}_{j=1}^{N_b}$, then

$$u_h = \sum_{j=1}^{N_b} u_j \phi_j$$

for some coefficients u_j $(j = 1, \dots, N_b)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Discretization formulation

• In fact, since

$$\phi_j(X_k) = \delta_{jk} = \begin{cases} 0, & \text{if } j \neq k, \\ 1, & \text{if } j = k. \end{cases}$$

then

$$u_h(X_k) = \sum_{j=1}^{N_b} u_j \phi_j(A_k) = u_k.$$

 Hence the coefficient u_j is actually the numerical solution at the node X_j (j = 1, · · · , N_b).

- If we can set up a linear algebraic system for u_i $(i = 1, \dots, N_b)$ and solve it, then we can obtain the finite element solution u_h .
- Therefore, we choose the test function $v_h = \phi_i$ $(i = 1, \dots, N_b)$. Then the finite element formulation gives

$$\int_{\Omega} c \nabla \left(\sum_{j=1}^{N_b} u_j \phi_j \right) \cdot \nabla \phi_i \, dx dy = \int_{\Omega} f \phi_i \, dx dy,$$

$$\Rightarrow \sum_{j=1}^{N_b} u_j \left[\int_{\Omega} c \nabla \phi_j \cdot \nabla \phi_i \, dx dy \right] = \int_{\Omega} f \phi_i \, dx dy, \ i = 1, \cdots, N_b.$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで 24 / 139

Matrix formulation

• Define the stiffness matrix

$$A = [a_{ij}]_{i,j=1}^{N_b} = \left[\int_{\Omega} c \nabla \phi_j \cdot \nabla \phi_i \, dx dy \right]_{i,j=1}^{N_b}$$

Define the load vector

$$\vec{b} = [b_i]_{i=1}^{N_b} = \left[\int_{\Omega} f\phi_i \ dxdy\right]_{i=1}^{N_b}$$

Define the unknown vector

$$\vec{X} = [u_j]_{j=1}^{N_b}.$$

• Then we obtain the linear algebraic system

$$A\vec{X}=\vec{b}.$$

25/139

3

.

<ロ> <同> <同> < 回> < 回>

- Once \vec{X} is obtained, the finite element solution u_h and the numerical solutions at all the mesh nodes are obtained.
- From the definition of ϕ_i $(j = 1, \dots, N_b)$, we can see that ϕ_i are non-zero only on the elements adjacent to the node X_i , but 0 on all the other elements.
- This observation motivates us to think about

$$a_{ij} = \int_{\Omega} c \nabla \phi_j \cdot \nabla \phi_i \, dx dy = \sum_{n=1}^{N} \int_{E_n} c \nabla \phi_j \cdot \nabla \phi_i \, dx dy.$$

- It is easy to see that most of $\int_{E_n} c \nabla \phi_j \cdot \nabla \phi_i \, dx dy$ will be 0.
- So we only need to use numerical integration to compute those nonzero integrals.

General local assembly idea for A:

- Loop over all the elements;
- Compute all non-zero local integrals on each element for A;
- Assemble these non-zero local integrals into the corresponding entries of the stiffness matrix *A*.

Compute all non-zero local integrals on each element for A:

- On the n^{th} element E_n , we get non-zero local integrals only when the trial and test basis functions are corresponding to the finite element nodes of this element.
- Let $p_s = T_h(s, n)$ $(s = 1, \dots, N_{lb})$.
- Then we only consider the trial and test basis functions to be ϕ_{p_c} $(s = 1, \cdots, N_{lb}).$
- There are only N_{lb}^2 non-zero local integrals on E_n with the global basis functions ϕ_{p_s} ($s = 1, \dots, N_{lb}$):

$$\int_{E_n} c \nabla \phi_j \cdot \nabla \phi_i \, dx dy \, (i, j = p_1, \cdots, p_{N_{lb}}).$$

In fact, we have

$$\psi_{ns} = \phi_{p_s}|_{E_n} (s = 1, \cdots, N_{lb}).$$

More Discussion

Assembly of the stiffness matrix

• That is, instead of the original non-zero local integrals with the global basis functions ϕ_{p_s} $(s = 1, \dots, N_{lb})$, we will compute the following non-zero local integrals with the local basis functions ψ_{ns} $(s = 1, \dots, N_{lb})$:

$$\int_{E_n} c \nabla \psi_{n\alpha} \cdot \nabla \psi_{n\beta} \, dxdy \, (\alpha, \beta = 1, \cdots, N_{lb}).$$

- Question: how to compute these integrals?
- Gauss quadrature. The needed information is stored in the matrices *P* and *T*.

Assemble the non-zero local integrals into A:

- When the trial function is φ_i and the test function is φ_j, the corresponding non-zero local integrals should be assembled to a_{ij}.
- Therefore, if we find the global node indices of the trial and test basis functions, we can easily locate where to assemble a non-zero local integral.

• Question: Since we compute

$$\int_{E_n} c \nabla \psi_{n\alpha} \cdot \nabla \psi_{n\beta} \, d\mathsf{x} d\mathsf{y} \, (\alpha, \beta = 1, \cdots, \mathsf{N}_{lb})$$

instead of

$$\int_{E_n} c \nabla \phi_j \cdot \nabla \phi_i \, d\mathsf{x} d\mathsf{y} \, (i, j = p_1, \cdots, p_{N_{lb}}),$$

how do we obtain the corresponding global node indices of the local trial and test basis functions $\psi_{n\alpha}$ and $\psi_{n\beta}$ ($\alpha, \beta = 1, \cdots, N_{lb}$)?

• Information matrix $T_b!$

イロン 不良と 不良と 一度 …

32/139

Assembly of the stiffness matrix

- Recall that $T_b(\alpha, n)$ and $T_b(\beta, n)$ give the global node indices of the local trial and test basis functions $\psi_{n\alpha}$ and $\psi_{n\beta} (\alpha, \beta = 1, \cdots, N_{lb}).$
- That is, for $n = 1, \dots, N$,

$$\int_{E_n} c \nabla \psi_{n\alpha} \cdot \nabla \psi_{n\beta} \, dxdy \, (\alpha, \beta = 1, \cdots, N_{lb})$$

should be assembled to a_{ii} where $i = T_b(\beta, n)$ and $j = T_b(\alpha, n).$

Algorithm I-1:

- Initialize the matrix: $A = sparse(N_b, N_b)$;
- Compute the integrals and assemble them into A:

```
FOR n = 1, \dots, N:

FOR \alpha = 1, \dots, N_{lb}:

FOR \beta = 1, \dots, N_{lb}:

Compute r = \int_{E_n} c \nabla \psi_{n\alpha} \cdot \nabla \psi_{n\beta} dxdy;

Add r to A(T_b(\beta, n), T_b(\alpha, n)).

END

END

END
```

Algorithm I-2:

- Initialize the matrix: $A = sparse(N_b, N_b)$ and $S = zeros(N_{lb}, N_{lb})$;
- Compute the integrals and assemble them into A:

FOR
$$n = 1, \dots, N$$
:
FOR $\alpha = 1, \dots, N_{lb}$:
FOR $\beta = 1, \dots, N_{lb}$:
Compute $S(\beta, \alpha) = \int_{E_n} c \nabla \psi_{n\alpha} \cdot \nabla \psi_{n\beta} \, dxdy$;
END
END
 $A(T_b(:, n), T_b(:, n)) = A(T_b(:, n), T_b(:, n)) + S$;
END

To make a general subroutine for different cases, more information needed for computing and assembling the integral should be treated as input parameters or input functions of this subroutine:

- the coefficient function *c*;
- the quadrature points and weights for numerical integrals;
- the mesh information matrices P and T, which can also provide the number of mesh elements N = size(T, 2) and the number of mesh nodes N_m = size(P, 2);
- the finite element information matrices P_b and T_b for the trial and test functions respectively, which can also provide the number of local basis functions $N_{lb} = size(T_b, 1)$ and the number of the global basis functions $N_b = size(P_b, 2)$ (= the number of unknowns);
- the type of the basis function for the trial and test functions respectively;

Note that

$$\int_{E_n} c \nabla \psi_{n\alpha} \cdot \nabla \psi_{n\beta} \, dx dy = \int_{E_n} c \frac{\partial \psi_{n\alpha}}{\partial x} \frac{\partial \psi_{n\beta}}{\partial x} \, dx dy + \int_{E_n} c \frac{\partial \psi_{n\alpha}}{\partial y} \frac{\partial \psi_{n\beta}}{\partial y} \, dx dy.$$

 Hence we can consider to develop an algorithm to assemble the matrix arising from a more general integral

$$\int_{E_n} c \frac{\partial^{r+s} \psi_{n\alpha}}{\partial x^r \partial y^s} \frac{\partial^{p+q} \psi_{n\beta}}{\partial x^p \partial y^q} dxdy.$$

with parameters r, s, p, and q.
Assembly of the stiffness matrix

Algorithm I-3:

- Initialize the matrix: $A = sparse(N_b, N_b)$;
- Compute the integrals and assemble them into A:

FOR
$$n = 1, \dots, N$$
:
FOR $\alpha = 1, \dots, N_{lb}$:
FOR $\beta = 1, \dots, N_{lb}$:
Compute $r = \int_{E_n} c \frac{\partial^{r+s}\psi_{n\alpha}}{\partial x^r \partial y^s} \frac{\partial^{p+q}\psi_{n\beta}}{\partial x^p \partial y^q} dxdy$;
Add r to $A(T_b(\beta, n), T_b(\alpha, n))$.
END
END
END

Assembly of the stiffness matrix

Algorithm I-4:

- Initialize the matrix: $A = sparse(N_b, N_b)$ and $S = zeros(N_{lb}, N_{lb})$;
- Compute the integrals and assemble them into A:

FOR
$$n = 1, \dots, N$$
:
FOR $\alpha = 1, \dots, N_{lb}$:
FOR $\beta = 1, \dots, N_{lb}$:
Compute $S(\beta, \alpha) = \int_{E_n} c \frac{\partial^{r+s}\psi_{n\alpha}}{\partial x^r \partial y^s} \frac{\partial^{p+q}\psi_{n\beta}}{\partial x^p \partial y^q} dxdy$;
END
END
 $A(T_b(:, n), T_b(:, n)) = A(T_b(:, n), T_b(:, n)) + S$;
END

Assembly of the stiffness matrix

- First, we call Algorithm I-3 with r = p = 1 and s = q = 0 to obtain A1.
- Second, we call Algorithm I-3 with r = p = 0 and s = q = 1 to obtain A2.
- Then the stiffness matrix A = A1 + A2.
- That is, Algorithm I-1 is equivalent to calling Algorithm I-3 twice with two different groups of parameters
 (r = p = 1, s = q = 0 and r = p = 0, s = q = 1) and then
 adding the two resulted matrices together.
- Algorithm I-2 and Algorithm I-4 have a similar relationship.

• The idea for the assembly of the load vector is similar. We have

$$b_i = \int_{\Omega} f \phi_i \, dx dy = \sum_{n=1}^{N} \int_{E_n} f \phi_i \, dx dy, \ i = 1, \cdots, N_b.$$

- Loop over all the elements;
- Compute all non-zero local integrals on each element for the load vector \vec{b} ;
- Assemble these non-zero local integrals into the corresponding entries of the load vector \vec{b} .

Compute all non-zero local integrals on each element for \vec{b} :

- On the n^{th} element E_n , we get non-zero local integrals only when the test basis functions are corresponding to the finite element nodes of the element.
- Let $p_s = T_b(s, n)$ $(s = 1, \dots, N_{lb})$.
- Then we only consider the test basis functions to be ϕ_{P_s} ($s = 1, \cdots, N_{lb}$).
- There are only N_{lb} non-zero local integrals on E_n with the global basis functions ϕ_{p_s} $(s = 1, \dots, N_{lb})$:

$$\int_{E_n} f\phi_i \, dxdy \, (i=p_1,\cdots,p_{N_{lb}}).$$

In fact, we have

$$\psi_{ns} = \phi_{p_s}|_{E_n} \ (s = 1, \cdots, N_{lb}).$$

• That is, instead of the original non-zero local integrals with the global basis functions ϕ_{p_s} $(s = 1, \dots, N_{lb})$, we will compute the following non-zero local integrals with the local basis functions ψ_{ns} $(s = 1, \dots, N_{lb})$:

$$\int_{E_n} f\psi_{n\beta} \, dxdy \, (\beta = 1, \cdots, N_{lb}).$$

- Question: how to compute these integrals?
- Gauss quadrature. The needed information is stored in the matrices *P* and *T*.

Assemble the non-zero local integrals into \vec{b} :

- When the test function is φ_i, the corresponding non-zero local integrals should be assembled to b_i.
- Therefore, if we find the global node indices of the test basis functions, we can easily locate where to assemble a non-zero local integral.
- Question: Since we compute

$$\int_{E_n} f\psi_{n\beta} \, dxdy \, (\beta = 1, \cdots, N_{lb})$$

instead of

$$\int_{E_n} f\phi_i \, dxdy \, (i=p_1,\cdots,p_{N_{lb}}),$$

how do we obtain the corresponding global node indices of the local test basis functions $\psi_{n\beta}$ ($\beta = 1, \dots, N_{lb}$)?

• Information matrix $T_b!$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

44 / 139

Assembly of the load vector

- Recall that $T_b(\beta, n)$ give the global node indices of the local test basis functions $\psi_{n\beta}$ ($\beta = 1, \dots, N_{lb}$).
- That is, for $n = 1, \cdots, N$,

$$\int_{E_n} f\psi_{n\beta} \, dxdy \, (\beta = 1, \cdots, N_{lb})$$

should be assembled to b_i where $i = T_b(\beta, n)$.

Algorithm II-1:

- Initialize the vector: $b = sparse(N_b, 1)$;
- Compute the integrals and assemble them into b:

```
FOR n = 1, \dots, N:

FOR \beta = 1, \dots, N_{lb}:

Compute r = \int_{E_n} f\psi_{n\beta} dxdy;

b(T_b(\beta, n), 1) = b(T_b(\beta, n), 1) + r;

END

END
```

イロン イヨン イヨン イヨン 三日

46 / 139

Assembly of the load vector

Algorithm II-2:

- Initialize the vector: $b = sparse(N_b, 1)$ and $d = zeros(N_{lb}, 1)$;
- Compute the integrals and assemble them into *b*:

FOR
$$n = 1, \dots, N$$
:
FOR $\beta = 1, \dots, N_{lb}$:
Compute $d(\beta, 1) = \int_{E_n} f\psi_{n\beta} dxdy$;
END
 $b(T_b(:, n), 1) = b(T_b(:, n), 1) + d$;
END

To make a general subroutine for different cases, more information needed for computing and assembling the integral should be treated as input parameters or input functions of this subroutine:

- the right hand side function f;
- the quadrature points and weights for numerical integrals;
- the mesh information matrices P and T, which can also provide the number of mesh elements N = size(T, 2) and the number of mesh nodes N_m = size(P, 2);
- the finite element information matrices P_b and T_b for the test functions, which can also provide the number of local basis functions $N_{lb} = size(T_b, 1)$ and the number of the global basis functions $N_b = size(P_b, 2)$ (= the number of unknowns);
- the type of the basis function for the test functions.

・ロン ・四 と ・ ヨ と ・ ヨ と

Assembly of the load vector

• We can also consider to develop an algorithm to assemble the vector arising from

$$\int_{E_n} f \frac{\partial^{p+q} \psi_{n\beta}}{\partial x^p \partial y^q} \, dx dy.$$

Algorithm II-3:

- Initialize the vector: $b = sparse(N_b, 1)$;
- Compute the integrals and assemble them into *b*:

FOR
$$n = 1, \dots, N$$
:
FOR $\beta = 1, \dots, N_{lb}$:
Compute $r = \int_{E_n} f \frac{\partial^{p+q} \psi_{n\beta}}{\partial x^p \partial y^q} dxdy$;
 $b(T_b(\beta, n), 1) = b(T_b(\beta, n), 1) + r$;
END
END

Algorithm II-4:

- Initialize the vector: $b = sparse(N_b, 1)$ and $d = zeros(N_{lb}, 1)$;
- Compute the integrals and assemble them into *b*:

FOR
$$n = 1, \dots, N$$
:
FOR $\beta = 1, \dots, N_{lb}$:
Compute $d(\beta, 1) = \int_{E_n} f \frac{\partial^{p+q}\psi_{n\beta}}{\partial x^p \partial y^q} dxdy$;
END
 $b(T_b(:, n), 1) = b(T_b(:, n), 1) + d$;
END

- We call Algorithm II-3 with p = q = 0 to obtain *b*.
- That is, Algorithm II-3 is equivalent to Algorithm II-1 with p = q = 0.
- Algorithm II-2 and Algorithm II-4 have a similar relationship.

Outline

- Weak/Galerkin formulation
- 2 FE discretization
- Oirichlet boundary condition
- 4 FE Method
- 5 More Discussion

More Discussion

Dirichlet boundary condition

- Basically, the Dirichlet boundary condition u = g give the solutions at all boundary finite element nodes.
- Since the coefficient u_i in the finite element solution $u_h = \sum_{i=1}^{N_b} u_j \phi_j$ is actually the numerical solution at the finite element node X_i $(j = 1, \dots, N_b)$, we actually know those u_i which are corresponding to the boundary finite element nodes.
- Recall that boundarynodes(2,:) store the global node indices of all boundary finite element nodes.
- If $m \in boundarynodes(2, :)$, then the m^{th} equation is called a boundary node equation.
- Set nbn to be the number of boundary nodes;

・ロン ・四 と ・ ヨ と ・ ヨ と

54 / 139

Dirichlet boundary condition

• One way to impose the Dirichlet boundary condition is to replace the boundary node equations in the linear system by the following equations

$$u_m = g(X_m).$$

for all $m \in boundarynodes(2, :)$.

Dirichlet boundary condition

Algorithm III:

• Deal with the Dirichlet boundary conditions:

FOR $k = 1, \dots, nbn$: If boundarynodes(1, k) shows Dirichlet condition, then i = boundarynodes(2, k); A(i, :) = 0; A(i, i) = 1; $b(i) = g(P_b(:, i));$ ENDIF END

Outline

- 1 Weak/Galerkin formulation
- 2 FE discretization
- Oirichlet boundary condition
- 4 FE Method
- 5 More Discussion

Universal framework of the finite element method

- Generate the mesh information: matrices *P* and *T*;
- Assemble the matrices and vectors: local assembly based on *P* and *T* only;
- Deal with the boundary conditions: boundary information matrix and local assembly;
- Solve linear systems: numerical linear algebra (Math 6601: Numerical Analysis).

- Generate the mesh information matrices P and T.
- Assemble the stiffness matrix A by using Algorithm I. (We will choose Algorithm I-3 in class)
- Assemble the load vector \vec{b} by using Algorithm II. (We will choose Algorithm II-3 in class)
- Deal with the Dirichlet boundary condition by using Algorithm III.
- Solve $A\vec{X} = \vec{b}$ for \vec{X} by using a direct or iterative method.

Recall Algorithm I-3:

- Initialize the matrix: $A = sparse(N_b, N_b)$;
- Compute the integrals and assemble them into A:

FOR
$$n = 1, \dots, N$$
:
FOR $\alpha = 1, \dots, N_{lb}$:
FOR $\beta = 1, \dots, N_{lb}$:
Compute $r = \int_{E_n} c \frac{\partial^{r+s}\psi_{n\alpha}}{\partial x^r \partial y^s} \frac{\partial^{p+q}\psi_{n\beta}}{\partial x^p \partial y^q} dxdy$;
Add r to $A(T_b(\beta, n), T_b(\alpha, n))$.
END
END
END

Recall

- First, we call Algorithm I-3 with r = p = 1 and s = q = 0 to obtain A1.
- Second, we call Algorithm I-3 with r = p = 0 and s = q = 1 to obtain A2.
- Then the stiffness matrix A = A1 + A2.

Recall Algorithm II-3:

- Initialize the vector: $b = sparse(N_b, 1)$;
- Compute the integrals and assemble them into *b*:

FOR
$$n = 1, \dots, N$$
:
FOR $\beta = 1, \dots, N_{lb}$:
Compute $r = \int_{E_n} f \frac{\partial^{p+q}\psi_{n\beta}}{\partial x^p \partial y^q} dxdy$;
 $b(T_b(\beta, n), 1) = b(T_b(\beta, n), 1) + r$;
END
END

• Recall: We call Algorithm II-3 with p = q = 0 to obtain *b*.

Recall Algorithm III:

• Deal with the Dirichlet boundary conditions:

FOR $k = 1, \dots, nbn$: If boundarynodes(1, k) shows Dirichlet condition, then i = boundarynodes(2, k); A(i, :) = 0; A(i, i) = 1; $b(i) = g(P_b(:, i))$; ENDIF END

Recall

Definition (L^2 space)

$$L^2(\Omega) = \{ v : \Omega \to \mathbf{R} : \int_{\Omega} v^2 dx dy < \infty \}.$$

Definition (H^1 space)

$$H^{1}(\Omega) = \{ v \in L^{2}(\Omega) : \frac{\partial^{\alpha_{1}+\alpha_{2}}v}{\partial x^{\alpha_{1}}\partial y^{\alpha_{2}}} \in L^{2}(\Omega), \ \forall \alpha_{1}+\alpha_{2}=1 \}.$$

Definition (L^{∞} space)

$$L^{\infty}(\Omega) = \{ v : \Omega \to \mathbf{R} : \sup_{(x,y)\in\Omega} |u(x,y)| < \infty \}.$$

63/139

•
$$L^{\infty}$$
 norm: $||u||_{\infty} = \sup_{(x,y)\in\Omega} |u(x,y)|$ for $u \in L^{\infty}(\Omega)$.

•
$$L^{\infty}$$
 norm error: $\left\|u-u_{h}\right\|_{\infty} = \sup_{(x,y)\in\Omega} |u(x,y)-u_{h}(x,y)|.$

•
$$L^2$$
 norm: $||u||_0 = \sqrt{\int_{\Omega} u^2 dx dy}$ for $u \in L^2(\Omega)$.

•
$$L^2$$
 norm error: $||u - u_h||_0 = \sqrt{\int_\Omega (u - u_h)^2 dx dy}$.

•
$$H^1$$
 semi-norm: $|u|_1 = \sqrt{\int_{\Omega} \left(\frac{\partial u}{\partial x}\right)^2 dx dy + \int_{\Omega} \left(\frac{\partial u}{\partial y}\right)^2 dx dy}$ for $u \in H^1(\Omega)$.

•
$$H^1$$
 semi-norm error:
 $|u - u_h|_1 = \sqrt{\int_{\Omega} \left(\frac{\partial(u - u_h)}{\partial x}\right)^2 dx dy} + \int_{\Omega} \left(\frac{\partial(u - u_h)}{\partial y}\right)^2 dx dy.$

2 64/139

• By using $u_h = \sum_{i=1}^{N_b} u_j \phi_j$, the definition of T_b , and the definition of the local basis functions ψ_{nk} , we get $||u - u_h||_{\infty} = \sup_{(x,y)\in\Omega} |u(x,y) - u_h(x,y)|$ $= \max_{1 \le n \le N} \max_{(x,y) \in E_n} |u(x,y) - u_h(x,y)|$ $= \max_{1 \le n \le N} \max_{(x,y) \in E_n} \left| u(x,y) - \sum_{i=1}^{N_b} u_j \phi_j \right|$ $= \max_{1 \le n \le N} \max_{(x,y) \in E_n} \left| u(x,y) - \sum_{k=1}^{N_{lb}} u_{T_b(k,n)} \psi_{nk}(x,y) \right|.$

Define

$$w_n(x,y) = \sum_{k=1}^{N_{lb}} u_{T_b(k,n)} \psi_{nk}(x,y).$$

Then

$$||u - u_h||_{\infty} = \max_{1 \le n \le N} \max_{(x,y) \in E_n} |u(x,y) - w_n(x,y)|.$$

max_ $|u(x,y) - w_n(x,y)|$ can be approximated by choosing ۲ $(x,y) \in E_n$ the maximum values of $|u(x, y) - w_n(x, y)|$ on a group of chosen points in E_n , such as some Gauss quadrature nodes in this element. We denote the approximation by r_n .

・ロト ・回ト ・ヨト ・ヨト

3

Measurements for errors

Algorithm IV:

- Initialize the error *error* = 0;
- Approximate the maximum absolute errors on all elements and then choose the largest one as the final approximation:

FOR
$$n = 1, \dots, N$$
:
Compute $r_n \approx \max_{(x,y)\in E_n} |u(x,y) - w_n(x,y)|$;
IF $r_n > error$, THEN
error = r_n ;
END
END

• By using $u_h = \sum_{i=1}^{N_b} u_j \phi_j$, the definition of T_b , and the definition of the local basis functions ψ_{nk} , we get $\|u-u_h\|_0 = \sqrt{\int_{\Omega} (u-u_h)^2 dx dy}$ $= \sqrt{\sum_{n=1}^{N} \int_{E_n} (u - u_h)^2 dx dy}$ $= \sqrt{\sum_{n=1}^{N} \int_{E_n} \left(u - \sum_{i=1}^{N_b} u_j \phi_j \right)^2} dx dy$ $= \sqrt{\sum_{i=1}^{N} \int_{F} \left(u - \sum_{i=1}^{N_{lb}} u_{T_{b}(k,n)} \psi_{nk} \right)^{2}} dx dy.$

68 / 139

Define

$$w_n = \sum_{k=1}^{N_{lb}} u_{T_b(k,n)} \psi_{nk}.$$

Then

$$||u-u_h||_0 = \sqrt{\sum_{n=1}^N \int_{E_n} (u-w_n)^2 dx dy}.$$

• Each integral $\int_{E_n} (u - w_n)^2 dx dy$ can be computed by numerical integration.

• By using $u_h = \sum_{i=1}^{N_b} u_j \phi_j$, the definition of T_b , and the definition of the local basis functions ψ_{nk} , we get $|u-u_h|_{1,x} = \sqrt{\int_{\Omega} \left(\frac{\partial(u-u_h)}{\partial x}\right)^2}$ $= \sqrt{\sum_{k=1}^{N} \int_{F} \left(\frac{\partial(u-u_{h})}{\partial x}\right)^{2} dx dy}$ $= \sqrt{\sum_{n=1}^{N} \int_{E_n} \left(\frac{\partial u}{\partial x} - \sum_{i=1}^{N_b} u_j \frac{\partial \phi_j}{\partial x} \right)^2} dx dy$ $= \sqrt{\sum_{n=1}^{N} \int_{E_n} \left(\frac{\partial u}{\partial x} - \sum_{k=1}^{N_{lb}} u_{T_b(k,n)} \frac{\partial \psi_{nk}}{\partial x} \right)^2} dx dy.$

70/139

• Similarly,

$$\begin{aligned} |u - u_h|_{1,y} &= \sqrt{\int_{\Omega} \left(\frac{\partial (u - u_h)}{\partial y}\right)^2 dx dy} \\ &= \sqrt{\sum_{n=1}^{N} \int_{E_n} \left(\frac{\partial (u - u_h)}{\partial y}\right)^2 dx dy} \\ &= \sqrt{\sum_{n=1}^{N} \int_{E_n} \left(\frac{\partial u}{\partial y} - \sum_{j=1}^{N_b} u_j \frac{\partial \phi_j}{\partial y}\right)^2 dx dy} \\ &= \sqrt{\left(\frac{\partial u}{\partial y} - \sum_{k=1}^{N_{b}} u_{T_b(k,n)} \frac{\partial \psi_{nk}}{\partial y}\right)^2 dx dy}. \end{aligned}$$

・ロン ・四 と ・ ヨ と ・ ヨ と æ – 71/139

• Then

$$\begin{aligned} &|u-u_{h}|_{1}^{2} \\ &= |u-u_{h}|_{1,x}^{2} + |u-u_{h}|_{1,y}^{2} \\ &= \sum_{n=1}^{N} \int_{E_{n}} \left(\frac{\partial u}{\partial x} - \sum_{k=1}^{N_{lb}} u_{T_{b}(k,n)} \frac{\partial \psi_{nk}}{\partial x} \right)^{2} dx dy \\ &+ \sum_{n=1}^{N} \int_{E_{n}} \left(\frac{\partial u}{\partial y} - \sum_{k=1}^{N_{lb}} u_{T_{b}(k,n)} \frac{\partial \psi_{nk}}{\partial y} \right)^{2} dx dy. \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Measurements for errors

• Define

$$w_{n1} = \sum_{k=1}^{N_{lb}} u_{T_b(k,n)} \frac{\partial \psi_{nk}}{\partial x},$$

$$w_{n2} = \sum_{k=1}^{N_{lb}} u_{T_b(k,n)} \frac{\partial \psi_{nk}}{\partial y}.$$

Then

$$|u-u_h|_1$$

$$= \sqrt{\sum_{n=1}^N \int_{E_n} \left(\frac{\partial u}{\partial x} - w_{n1}\right)^2 dx dy} + \sum_{n=1}^N \int_{E_n} \left(\frac{\partial u}{\partial y} - w_{n2}\right)^2 dx dy.$$

• Each integral $\int_{E_n} \left(\frac{\partial u}{\partial x} - w_{n1}\right)^2 dxdy$ or $\int_{E_n} \left(\frac{\partial u}{\partial y} - w_{n2}\right)^2 dxdy$ can be computed by numerical integration.

73/139

Measurements for errors

• Develop a subroutine for a more general formulation

$$\sqrt{\sum_{n=1}^{N}\int_{E_{n}}\left(\frac{\partial^{\alpha_{1}+\alpha_{2}}u}{\partial x^{\alpha_{1}}\partial y^{\alpha_{2}}}-\sum_{k=1}^{N_{lb}}u_{T_{b}(k,n)}\frac{\partial^{\alpha_{1}+\alpha_{2}}\psi_{nk}}{\partial x^{\alpha_{1}}\partial y^{\alpha_{2}}}\right)^{2}dxdy}.$$

- $||u u_h||_0$ is equivalent to calling this subroutine with $\alpha_1 = 0$ and $\alpha_2 = 0$.
- $|u u_h|_{1,x}$ is equivalent to calling this subroutine with $\alpha_1 = 1$ and $\alpha_2 = 0$.
- $|u u_h|_{1,y}$ is equivalent to calling this subroutine with $\alpha_1 = 0$ and $\alpha_2 = 1$.

イロン イロン イヨン イヨン 三日

75/139

Measurements for errors

Algorithm V:

- Initialize the error error = 0; input the parameters α_1 and α_2 ;
- Compute the integrals and add them into the total error: FOR $n = 1, \cdots, N$:

$$error = error + \int_{E_n} \left(\frac{\partial^{\alpha_1 + \alpha_2} u}{\partial x^{\alpha_1} \partial y^{\alpha_2}} - \sum_{k=1}^{N_{lb}} u_{T_b(k,n)} \frac{\partial^{\alpha_1 + \alpha_2} \psi_{nk}}{\partial x^{\alpha_1} \partial y^{\alpha_2}} \right)^2 dxdy;$$

$$END \\ error = \sqrt{error};$$

• Example 1: Use the finite element method to solve the following equation on the domain $\Omega = [-1, 1] \times [-1, 1]$:

$$\begin{aligned} -\nabla \cdot (\nabla u) &= -y(1-y)(1-x-\frac{x^2}{2})e^{x+y} \\ &-x(1-\frac{x}{2})(-3y-y^2)e^{x+y}, \\ u &= -1.5y(1-y)e^{-1+y} \text{ on } x = -1, \\ u &= 0.5y(1-y)e^{1+y} \text{ on } x = 1, \\ u &= -2x(1-\frac{x}{2})e^{x-1} \text{ on } y = -1, \\ u &= 0 \text{ on } y = 1. \end{aligned}$$

• The analytic solution of this problem is $u = xy(1-\frac{x}{2})(1-y)e^{x+y}$, which can be used to compute the error of the numerical solution.

- Let's code for the linear and quadratic finite element method of the 2D second order elliptic equation together!
- Open your Matlab!

h	$\ u-u_h\ _{\infty}$	$ u - u_h _0$	$ u - u_h _1$
1/8	$2.3620 imes 10^{-2}$	$6.8300 imes 10^{-3}$	$1.8774 imes10^{-1}$
1/16	$6.3421 imes 10^{-3}$	$1.7189 imes10^{-3}$	$9.4167 imes 10^{-2}$
1/32	$1.6430 imes 10^{-3}$	$4.3049 imes 10^{-4}$	$4.7121 imes 10^{-2}$
1/64	$4.1810 imes 10^{-4}$	$1.0767 imes 10^{-4}$	$2.3565 imes 10^{-2}$
1/128	$1.0546 imes 10^{-4}$	$2.6922 imes 10^{-5}$	$1.1783 imes 10^{-2}$

Table: The numerical errors for linear finite element.

- Any Observation?
- Second order convergence $O(h^2)$ in L^2/L^{∞} norm and first order convergence O(h) in H^1 semi-norm, which match the optimal approximation capability expected from piecewise linear functions.

h	$\ u-u_h\ _{\infty}$	$ u - u_h _0$	$ u - u_h _1$
1/8	$3.3678 imes 10^{-4}$	$1.1705 imes10^{-4}$	$8.9192 imes 10^{-3}$
1/16	$4.4273 imes 10^{-5}$	$1.4637 imes10^{-5}$	$2.2414 imes 10^{-3}$
1/32	$5.6752 imes 10^{-6}$	$1.8289 imes10^{-6}$	$5.6131 imes10^{-4}$
1/64	$7.1839 imes 10^{-7}$	$2.2853 imes 10^{-7}$	$1.4042 imes 10^{-4}$
1/128	$9.0366 imes 10^{-8}$	$2.8560 imes 10^{-8}$	3.5114×10^{-5}

Table: The numerical errors for quadratic finite element.

- Any Observation?
- Third order convergence $O(h^3)$ in L^2/L^{∞} norm and second order convergence $O(h^2)$ in H^1 semi-norm, which match the optimal approximation capability expected from piecewise quadratic functions.

Outline

- 1 Weak/Galerkin formulation
- 2 FE discretization
- Oirichlet boundary condition
- FE Method
- 5 More Discussion

Consider

$$-
abla \cdot (c
abla u) = f \text{ in } \Omega, \quad
abla u \cdot \vec{n} = p \text{ on } \partial\Omega.$$

Recall

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy - \int_{\partial \Omega} (c \nabla u \cdot \vec{n}) \, v \, ds = \int_{\Omega} f v \, dx dy.$$

Hence

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy = \int_{\Omega} f v \, dx dy + \int_{\partial \Omega} c p v \, ds.$$

- Is there anything wrong? The solution is not unique!
- If u is a solution, then u + c is also a solution where c is a constant.

Consider

$$\begin{aligned} -\nabla \cdot (c\nabla u) &= f \text{ in } \Omega, \\ \nabla u \cdot \vec{n} &= p \text{ on } \Gamma_N \subset \partial \Omega, \\ u &= g \text{ on } \Gamma_D &= \partial \Omega / \Gamma_N. \end{aligned}$$

Recall

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy - \int_{\partial \Omega} (c \nabla u \cdot \vec{n}) \, v \, ds = \int_{\Omega} f v \, dx dy.$$

• Since the solution on $\Gamma_D = \partial \Omega / \Gamma_N$ is given by u = g, then we can choose the test function v(x, y) such that v = 0 on $\partial \Omega / \Gamma_N$.

٠

Since

$$\int_{\partial\Omega} (c\nabla u \cdot \vec{n}) v \, ds = \int_{\Gamma_N} (c\nabla u \cdot \vec{n}) v \, ds + \int_{\partial\Omega/\Gamma_N} (c\nabla u \cdot \vec{n}) v \, ds$$
$$= \int_{\Gamma_N} cpv \, ds,$$

then

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy - \int_{\Gamma_N} c p v \, ds = \int_{\Omega} f v \, dx dy.$$

• Hence the weak formulation is to find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy = \int_{\Omega} f v \, dx dy + \int_{\Gamma_N} c p v \, ds.$$

for any $v \in H^1_{0D}(\Omega) = \{ v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D \}.$

- Consider a finite element space $U_h \subset H^1(\Omega)$. Define U_{h0} to be the space which consists of the functions of U_h with value 0 on the Dirichlet boundary.
- Then the Galerkin formulation is to find $u_h \in U_h$ such that

$$\int_{\Omega} c \nabla u_h \cdot \nabla v_h \, dx dy = \int_{\Omega} f v_h \, dx dy + \int_{\Gamma_N} c p v_h \, ds$$

for any $v_h \in U_{h0}$.

• For an easier implementation, we consider the Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $u_h \in U_h$ such that

$$\int_{\Omega} c \nabla u_h \cdot \nabla v_h \, dx dy = \int_{\Omega} f v_h \, dx dy + \int_{\Gamma_N} c p v_h \, ds$$

for any $v_h \in U_h$.

FE discretization

More Discussion

Neumann boundary condition

• Recall: Since
$$u_h \in U_h = span\{\phi_j\}_{j=1}^{N_b}$$
, then

$$u_h = \sum_{j=1}^{N_b} u_j \phi_j$$

for some coefficients u_j $(j = 1, \cdots, N_b)$.

- Recall: Choose $v_h = \phi_i$ $(i = 1, \dots, N_b)$.
- Then for $i = 1, \cdots, N_b$, the finite element formulation gives

$$\int_{\Omega} c \nabla (\sum_{j=1}^{N_b} u_j \phi_j) \cdot \nabla \phi_i \, dx dy = \int_{\Omega} f \phi_i \, dx dy + \int_{\Gamma_N} c p \phi_i \, ds,$$
$$\Rightarrow \sum_{j=1}^{N_b} u_j \left[\int_{\Omega} c \nabla \phi_j \cdot \nabla \phi_i \, dx dy \right] = \int_{\Omega} f \phi_i \, dx dy + \int_{\Gamma_N} c p \phi_i \, ds.$$

85/139

Recall

• Define the stiffness matrix

$$A = [a_{ij}]_{i,j=1}^{N_b} = \left[\int_{\Omega} c \nabla \phi_j \cdot \nabla \phi_i \, dx dy \right]_{i,j=1}^{N_b}$$

Define the load vector

$$ec{b} = [b_i]_{i=1}^{N_b} = \left[\int_\Omega f \phi_i \ dx dy
ight]_{i=1}^{N_b}.$$

Define the unknown vector

$$\vec{X} = [u_j]_{j=1}^{N_b}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

.

• Define the additional vector from the Neumann boundary condition

$$\vec{v} = [v_i]_{i=1}^{N_b} = \left[\int_{\Gamma_N} c p \phi_i \ ds \right]_{i=1}^{N_b}$$

- Define the new vector $\tilde{\vec{b}} = \vec{b} + \vec{v}$.
- Then we obtain the linear algebraic system

$$A\vec{X} = \widetilde{\vec{b}}$$

• Code?

• Add one more subroutine for \vec{v} to the existing code!

Recall

- Matrix *boundaryedges*:
- boundaryedges(1, k) is the type of the kth boundary edge e_k: Dirichlet (-1), Neumann (-2), Robin (-3).....
- *boundaryedges*(2, *k*) is the index of the element which contains the *k*th boundary edge *e_k*.
- Each boundary edge has two end nodes. We index them as the first and the second counterclock wise along the boundary.
- boundaryedges(3, k) is the global node index of the first end node of the kth boundary boundary edge e_k.
- boundaryedges(4, k) is the global node index of the second end node of the kth boundary boundary edge e_k.
- Set *nbe* = *size*(*boundaryedges*, 2) to be the number of boundary edges;

• The idea for the assembly of the vector \vec{v} is similar to that of the load vector. We have

$$v_i = \int_{\Gamma_N} cp\phi_i \ ds = \sum_{\substack{e_k \subset \Gamma_N \\ 1 \leq k \leq nbe}} \int_{e_k} cp\phi_i \ ds, \ i = 1, \cdots, N_b.$$

- Loop over all the boundary edges;
- Compute all non-zero local integrals on each Neumann boundary edge for the vector v

 ;
- Assemble these non-zero local integrals into the corresponding entries of the vector \vec{v} .

Compute all non-zero local integrals on each Neumann boundary edge for \vec{v} :

- The index of the element which contains the k^{th} boundary edge e_k is $n_k = boundaryedges(2, k)$. Then on e_k , we get non-zero local integrals only when the test basis functions are corresponding to the finite element nodes of the n_{μ}^{th} element $E_{n_{\nu}}$.
- Let $p_s = T_h(s, n_k)$ $(s = 1, \dots, N_{lb})$.
- Then we only consider the test basis functions to be ϕ_{P_s} $(s = 1, \cdots, N_{lb}).$
- There are only N_{lb} non-zero local integrals on e_k with the global basis functions ϕ_{p_s} ($s = 1, \dots, N_{lb}$):

$$\int_{e_k} cp\phi_i \ ds \ (i=p_1,\cdots,p_{N_{lb}}).$$

• In fact, we have

$$\psi_{n_ks} = \phi_{p_s}|_{E_{n_k}} \ (s = 1, \cdots, N_{lb}).$$

• That is, instead of the original non-zero local integrals with the global basis functions ϕ_{p_s} ($s = 1, \dots, N_{lb}$), we will compute the following non-zero local integrals with the local basis functions $\psi_{n_k s}$ ($s = 1, \dots, N_{lb}$):

$$\int_{e_k} c p \psi_{n_k eta} \; ds \; (eta = 1, \cdots, N_{lb}).$$

- Question: how to compute these integrals?
- Gauss quadrature. The needed information is stored in the matrices *P* and *boundaryedges*.

- P(:, boundaryedges(3:4, k)) provides the coordinates of the two end points of the kth boundary edge. We discuss three cases based on these coordinates.
- Case 1: If a boundary edge is vertical, then it can be described as x = c ($y_1 \le y \le y_2$). The y-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss quadrature on [y_1, y_2]. And the x-coordinates of the Gauss quadrature nodes are fixed to be c.

- Case 2: If a boundary edge is horizontal, then it can be described as y = c ($x_1 \le x \le x_2$). The x-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss quadrature on $[x_1, x_2]$. And the y-coordinates of the Gauss quadrature nodes are fixed to be c.
- Case 3: Otherwise, a boundary edge can be described as y = ax + b ($x_1 \le x \le x_2$). The x-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss nodes in $[x_1, x_2]$. And the *y*-coordinates of the Gauss quadrature nodes are obtained from y = ax + b.
- The case 3 with a = 0 and b = c is equivalent to case 2. Hence case 2 and case 3 can be combined into one case.

Assemble the non-zero local integrals into \vec{v} :

- When the test function is φ_i, the corresponding non-zero local integrals should be assembled to v_i.
- Therefore, if we find the global node indices of the test basis functions, we can easily locate where to assemble a non-zero local integral.
- Question: Since we compute

$$\int_{e_k} c p \psi_{n_k eta} \; ds \; (eta = 1, \cdots, N_{lb})$$

instead of

$$\int_{e_k} cp\phi_i \ ds \ (i=p_1,\cdots,p_{N_{lb}}),$$

how do we obtain the corresponding global node indices of the local test basis functions $\psi_{n_k\beta}$ ($\beta = 1, \dots, N_{lb}$)?

• Information matrix $T_b!$

95 / 139

Neumann boundary condition

- Recall that $T_b(\beta, n_k)$ give the global node indices of the local test basis functions $\psi_{n_k\beta}$ ($\beta = 1, \dots, N_{lb}$).
- That is,

$$\int_{e_k} c p \psi_{n_k eta} \; ds \; (eta = 1, \cdots, N_{lb})$$

should be assembled to v_i where $i = T_b(\beta, n_k)$.

Algorithm VI-1:

1

- Initialize the vector: $v = sparse(N_b, 1)$;
- Compute the integrals and assemble them into v:

FOR $k = 1, \cdots, nbe$:

IF boundaryedges(1, k) shows Neumann boundary condition, THEN

$$\begin{array}{l} n_{k} = \textit{boundaryedges}(2,k);\\ \textit{FOR } \beta = 1, \cdots, N_{lb};\\ \textit{Compute } r = \int_{e_{k}} cp\psi_{n_{k}\beta} \textit{ ds};\\ \textit{v}(T_{b}(\beta,n_{k}),1) = \textit{v}(T_{b}(\beta,n_{k}),1) + r;\\ \textit{END}\\ \textit{ENDIF}\\ \textit{END}\\ \textit{END} \end{array}$$

96/139

イロン イヨン イヨン イヨン 三日

97 / 139

Neumann boundary condition

• If we follow Algorithm VI-1 to develop a subroutine to assemble the vector arising from

$$\int_{e_k} \tilde{p} \frac{\partial^{a+b} \psi_{n_k\beta}}{\partial x^a \partial y^b} \, ds,$$

then Algorithm VI-1 is equivalent to calling this subroutine with parameters: a = b = 0 and $\tilde{p} = cp$.

Algorithm VI:

- Initialize the vector: $v = sparse(N_b, 1)$;
- Compute the integrals and assemble them into v:

FOR $k = 1, \cdots, nbe$:

IF boundaryedges(1, k) shows Neumann boundary condition, *THEN*

$$\begin{array}{l} n_{k} = boundaryedges(2,k);\\ FOR \ \beta = 1, \cdots, N_{lb};\\ \text{Compute } r = \int_{e_{k}} \tilde{p} \frac{\partial^{a+b}\psi_{n_{k}\beta}}{\partial x^{a}\partial y^{b}} \ ds;\\ v(T_{b}(\beta,n_{k}),1) = v(T_{b}(\beta,n_{k}),1) + r;\\ END\\ ENDIF\\ FND\end{array}$$

イロト 不得下 イヨト イヨト 二日

Recall

- Matrix *boundarynodes*:
- boundarynodes(1, k) is the type of the kth boundary finite element node: Dirichlet (-1), Neumann (-2), Robin (-3).....
- The intersection nodes of Dirichlet boundary condition and other boundary conditions usually need to be treated as Dirichlet boundary nodes.
- boundarynodes(2, k) is the global node index of the kth boundary boundary finite element node.
- Set *nbn* = *size*(*boundarynodes*, 2) to be the number of boundary finite element nodes;

 Example 2: Use the finite element method to solve the following equation on the domain Ω = [-1, 1] × [-1, 1]:

$$\begin{aligned} -\nabla \cdot (\nabla u) &= -2e^{x+y}, \\ u &= e^{-1+y} \text{ on } x = -1, \\ u &= e^{1+y} \text{ on } x = 1, \\ \nabla u \cdot \vec{n} &= -e^{x-1} \text{ on } y = -1, \\ u &= e^{x+1} \text{ on } y = 1. \end{aligned}$$

• The analytic solution of this problem is $u = e^{x+y}$, which can be used to compute the error of the numerical solution.

- Let's code for the linear and quadratic finite element method of the 2D second order elliptic equation with Neumann boundary condition!
- Open your Matlab!

h	$\ u-u_h\ _{\infty}$	$ u - u_h _0$	$ u - u_h _1$
1/8	$1.3358 imes 10^{-2}$	$5.1224 imes10^{-3}$	$1.8523 imes10^{-1}$
1/16	$3.4487 imes 10^{-3}$	$1.2793 imes 10^{-3}$	$9.2559 imes 10^{-2}$
1/32	$8.7622 imes 10^{-4}$	$3.1973 imes 10^{-4}$	$4.6273 imes 10^{-2}$
1/64	$2.2084 imes 10^{-4}$	$7.9928 imes10^{-5}$	$2.3136 imes 10^{-2}$
1/128	$5.5433 imes 10^{-5}$	$1.9982 imes10^{-5}$	$1.1568 imes 10^{-2}$

Table: The numerical errors for linear finite element.

- Any Observation?
- Second order convergence $O(h^2)$ in L^2/L^{∞} norm and first order convergence O(h) in H^1 semi-norm, which match the optimal approximation capability expected from piecewise linear functions.

h	$\ u-u_h\ _{\infty}$	$ u - u_h _0$	$ u - u_h _1$
1/8	$1.0956 imes10^{-4}$	$3.9285 imes10^{-5}$	$2.9874 imes 10^{-3}$
1/16	$1.4074 imes10^{-5}$	$4.9015 imes 10^{-6}$	$7.4668 imes 10^{-4}$
1/32	$1.7835 imes10^{-6}$	$6.1244 imes10^{-7}$	$1.8667 imes 10^{-4}$
1/64	$2.2447 imes 10^{-7}$	$7.6549 imes 10^{-8}$	$4.6667 imes 10^{-5}$
1/128	$2.8155 imes 10^{-8}$	$9.5686 imes 10^{-9}$	$1.1667 imes10^{-5}$

Table: The numerical errors for guadratic finite element.

- Any Observation?
- Third order convergence $O(h^3)$ in L^2/L^{∞} norm and second order convergence $O(h^2)$ in H^1 semi-norm, which match the optimal approximation capability expected from piecewise quadratic functions.

Robin boundary conditions

Consider

$$\begin{aligned} -\nabla \cdot (c\nabla u) &= f \text{ in } \Omega, \\ \nabla u \cdot \vec{n} + ru &= q \text{ on } \Gamma_R \subseteq \partial \Omega, \\ u &= g \text{ on } \Gamma_D &= \partial \Omega / \Gamma_R. \end{aligned}$$

Recall

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy - \int_{\partial \Omega} (c \nabla u \cdot \vec{n}) \, v \, ds = \int_{\Omega} f v \, dx dy.$$

• Since the solution on $\Gamma_D = \partial \Omega / \Gamma_R$ is given by u = g, then we can choose the test function v(x, y) such that v = 0 on $\partial \Omega / \Gamma_R$.

Robin boundary condition

Since

$$\int_{\partial\Omega} (c\nabla u \cdot \vec{n}) v \, ds = \int_{\Gamma_R} (c\nabla u \cdot \vec{n}) v \, ds + \int_{\partial\Omega/\Gamma_R} (c\nabla u \cdot \vec{n}) v \, ds$$
$$= \int_{\Gamma_R} cqv \, ds - \int_{\Gamma_R} cruv \, ds,$$

then

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy - \left(\int_{\Gamma_R} cqv \, ds - \int_{\Gamma_R} cruv \, ds \right) = \int_{\Omega} fv \, dx dy.$$

• Hence the weak formulation is to find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy + \int_{\Gamma_R} cruv \, ds = \int_{\Omega} fv \, dx dy + \int_{\Gamma_R} cqv \, ds.$$

for any $v \in H^1_{0D}(\Omega) = \{ v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D \}.$

106 / 139

Robin boundary condition

- Consider a finite element space U_h ⊂ H¹(Ω). Define U_{h0} to be the space which consists of the functions of U_h with value 0 on the Dirichlet boundary.
- Then the Galerkin formulation is to find $u_h \in U_h$ such that

$$\int_{\Omega} c \nabla u_h \cdot \nabla v_h \, dx dy + \int_{\Gamma_R} cru_h v_h \, ds = \int_{\Omega} fv_h \, dx dy + \int_{\Gamma_R} cqv_h \, ds$$

for any $v_h \in U_{h0}$.

 For an easier implementation, we consider the Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find u_h ∈ U_h such that

$$\int_{\Omega} c \nabla u_h \cdot \nabla v_h \, dx dy + \int_{\Gamma_R} cr u_h v_h \, ds = \int_{\Omega} fv_h \, dx dy + \int_{\Gamma_R} cq v_h \, ds$$

for any $v_h \in U_h$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

107 / 139

Robin boundary condition

• Recall: Since $u_h \in U_h = span\{\phi_j\}_{j=1}^{N_b}$, then

$$u_h = \sum_{j=1}^{N_b} u_j \phi_j$$

for some coefficients u_j $(j = 1, \cdots, N_b)$.

• Recall: Choose $v_h = \phi_i$ $(i = 1, \dots, N_b)$.

Robin boundary condition

• Then for $i = 1, \cdots, N_b$, the finite element formulation gives

$$\int_{\Omega} c \nabla (\sum_{j=1}^{N_b} u_j \phi_j) \cdot \nabla \phi_i \, dx dy + \int_{\Gamma_R} cr(\sum_{j=1}^{N_b} u_j \phi_j) \phi_i \, ds$$
$$= \int_{\Omega} f \phi_i \, dx dy + \int_{\Gamma_R} cq \phi_i \, ds,$$
$$\Rightarrow \sum_{j=1}^{N_b} u_j \left[\int_{\Omega} c \nabla \phi_j \cdot \nabla \phi_i \, dx dy \right] + \sum_{j=1}^{N_b} u_j \left[\int_{\Gamma_R} cr \phi_j \phi_i \, ds \right]$$
$$= \int_{\Omega} f \phi_i \, dx dy + \int_{\Gamma_R} cq \phi_i \, ds.$$

108 / 139

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで
.

Robin boundary condition

Recall: Define the stiffness matrix

$$A = [a_{ij}]_{i,j=1}^{N_b} = \left[\int_{\Omega} c \nabla \phi_j \cdot \nabla \phi_i \, dx dy \right]_{i,j=1}^{N_b}$$

Recall: Define the load vector

$$ec{b} = [b_i]_{i=1}^{N_b} = \left[\int_{\Omega} f \phi_i \ dx dy
ight]_{i=1}^{N_b}.$$

Recall: Define the unknown vector

$$\vec{X} = [u_j]_{j=1}^{N_b}.$$

 Define the additional vector from the Robin boundary condition

$$\vec{w} = [w_i]_{i=1}^{N_b} = \left[\int_{\Gamma_R} cq\phi_i \ ds \right]_{i=1}^{N_b}.$$

• Define the additional matrix from the Robin boundary condition

$$R = [r_{ij}]_{i,j=1}^{N_b} = \left[\int_{\Gamma_R} cr\phi_j\phi_i \ ds\right]_{i,j=1}^{N_b}$$

- Define the new vector $\vec{\vec{b}} = \vec{b} + \vec{w}$.
- Define the new matrix $\widetilde{A} = A + R$.
- Then we obtain the linear algebraic system

$$\widetilde{A}\vec{X} = \widetilde{\vec{b}}$$

- Code?
- Add one more subroutine for \vec{w} and R to the existing code!

110/139

Recall

- Matrix boundaryedges:
- boundaryedges(1, k) is the type of the k^{th} boundary edge e_k : Dirichlet (-1), Neumann (-2), Robin (-3).....
- boundaryedges(2, k) is the index of the element which contains the k^{th} boundary edge e_k .
- Each boundary edge has two end nodes. We index them as the first and the second counterclock wise along the boundary.
- boundaryedges(3, k) is the global node index of the first end node of the k^{th} boundary boundary edge e_k .
- boundaryedges(4, k) is the global node index of the second end node of the k^{th} boundary boundary edge e_k .
- Set nbe = size(boundaryedges, 2) to be the number of boundary edges;

• The idea for the assembly of the matrix R and the vector \vec{w} is similar to that of the stiffness matrix and the load vector. We have

$$\begin{split} w_i &= \int_{\Gamma_R} cq\phi_i \ ds = \sum_{\substack{e_k \subset \Gamma_R \\ 1 \leq k \leq nbe}} \int_{e_k} cq\phi_i \ ds, \ i = 1, \cdots, N_b, \\ r_{ij} &= \int_{\Gamma_R} cr\phi_j\phi_i \ ds = \sum_{\substack{e_k \subset \Gamma_R \\ 1 \leq k \leq nbe}} \int_{e_k} cr\phi_j\phi_i \ ds, \ i, j = 1, \cdots, N_b. \end{split}$$

- Loop over all the boundary edges;
- Compute all non-zero local integrals on each Robin boundary edge for the vector \vec{w} and the matrix R;
- Assemble these non-zero local integrals into the corresponding entries of the vector \vec{w} and the matrix R.

Robin boundary condition

Compute all non-zero local integrals on each Robin boundary edge for the vector \vec{w} and the matrix R:

- The index of the element which contains the kth boundary edge e_k is $n_k = boundaryedges(2, k)$. Then on e_k , we get non-zero local integrals only when the test and trial basis functions are corresponding to the finite element nodes of the n_{k}^{th} element $E_{n_{k}}$.
- Let $p_s = T_h(s, n_k)$ $(s = 1, \dots, N_{lb})$.
- Then we only consider the test basis functions to be ϕ_{p_s} ($s = 1, \cdots, N_{lb}$).

• There are only N_{lb} non-zero local integrals on e_k with the global basis functions ϕ_{p_s} $(s = 1, \dots, N_{lb})$:

$$\int_{e_k} cq\phi_i \, ds, \ i = p_1, \cdots, p_{N_{lb}},$$
$$\int_{e_k} cr\phi_j\phi_i \, ds, \ i,j = p_1, \cdots, p_{N_{lb}}.$$

In fact, we have

$$\psi_{n_ks} = \phi_{p_s}|_{E_{n_k}} \ (s = 1, \cdots, N_{lb}).$$

 That is, instead of the original non-zero local integrals with the global basis functions ϕ_{P_s} ($s = 1, \dots, N_{lb}$), we will compute the following non-zero local integrals with the local basis functions $\psi_{n_k s}$ ($s = 1, \dots, N_{lb}$):

$$\int_{e_k} cp\psi_{n_k\beta} \, ds, \ \beta = 1, \cdots, N_{lb},$$
$$\int_{e_k} cr\psi_{n_k\beta}\psi_{n_k\alpha} \, ds, \ \alpha, \beta = 1, \cdots, N_{lb}.$$

- Question: how to compute these integrals?
- Gauss guadrature. The needed information is stored in the matrices P and boundaryedges.

Recall

- *P*(:, *boundaryedges*(3 : 4, *k*)) provides the coordinates of the two end points of the *k*th boundary edge. We discuss three cases based on these coordinates.
- Case 1: If a boundary edge is vertical, then it can be described as x = c ($y_1 \le y \le y_2$). The y-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss quadrature on [y_1, y_2]. And the x-coordinates of the Gauss quadrature nodes are fixed to be c.

- Case 2: If a boundary edge is horizontal, then it can be described as y = c ($x_1 \le x \le x_2$). The *x*-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss quadrature on [x_1, x_2]. And the *y*-coordinates of the Gauss quadrature nodes are fixed to be *c*.
- Case 3: Otherwise, a boundary edge can be described as y = ax + b ($x_1 \le x \le x_2$). The x-coordinates of the Gauss quadrature nodes on this boundary edge and the Gauss quadrature weights can be obtained from the 1D local Gauss nodes in $[x_1, x_2]$. And the y-coordinates of the Gauss quadrature nodes are obtained from y = ax + b.
- The case 3 with a = 0 and b = c is equivalent to case 2.
 Hence case 2 and case 3 can be combined into one case.

Assemble the non-zero local integrals into \vec{w} and R:

- When the test function is φ_i, the corresponding non-zero local integrals should be assembled to w_i.
- When the trial function is ϕ_i and the test function is ϕ_j , the corresponding non-zero local integrals should be assembled to r_{ij} .
- Therefore, if we find the global node indices of the trial and test basis functions, we can easily locate where to assemble a non-zero local integral.

• Question: Since we compute

$$\int_{e_k} cq \psi_{n_keta} \; ds \; (eta=1,\cdots, {\sf N_{lb}})$$

instead of

$$\int_{e_k} cq\phi_i \ ds \ (i=p_1,\cdots,p_{N_{lb}}),$$

how do we obtain the corresponding global node indices of the local test basis functions $\psi_{n_k\beta}$ ($\beta = 1, \dots, N_{lb}$)?

More Discussion

Robin boundary condition

Question: Since we compute

$$\int_{e_k} cr \psi_{n_k\beta} \psi_{n_k\alpha} \, ds \, (\alpha, \beta = 1, \cdots, N_{lb})$$

instead of

$$\int_{e_k} cr\phi_j\phi_i \ ds \ (i,j=p_1,\cdots,p_{N_{lb}}),$$

how do we obtain the corresponding global node indices of the local trial and test basis functions $\psi_{n_{\mu}\alpha}$ and $\psi_{\mathbf{n}_{\boldsymbol{\nu}}\beta} (\alpha, \beta = 1, \cdots, N_{lb})?$

• Information matrix $T_{b}!$

- Recall that T_b(α, n_k) and T_b(β, n_k) give the global node indices of the local trial and test basis functions ψ_{n_kα} and ψ_{n_kβ} (α, β = 1, · · · , N_{lb}).
- That is,

$$\int_{e_k} cq\psi_{n_k\beta} \ ds \ (\beta = 1, \cdots, N_{lb})$$

should be assembled to w_i where $i = T_b(\beta, n_k)$.

And

$$\int_{e_k} cr \psi_{n_k lpha} \psi_{n_k eta} \; ds \; (lpha, eta = 1, \cdots, N_{lb})$$

should be assembled to r_{ij} where $i = T_b(\beta, n_k)$ and $j = T_b(\alpha, n_k)$.

Algorithm VII-1:

- Initialize $R = sparse(N_b, N_b)$ and $w = sparse(N_b, 1)$;
- Compute the integrals and assemble them into R and w: FOR $k = 1, \cdots, nbe$: IF boundaryedges(1, k) shows Robin boundary condition, THEN $n_k = boundaryedges(2, k);$ FOR $\beta = 1, \cdots, N_{lb}$: Compute $r = \int_{e_l} cq\psi_{n_k\beta} ds$; $w(T_b(\beta, n_k), 1) = w(T_b(\beta, n_k), 1) + r;$ END FOR $\alpha = 1, \cdots, N_{lb}$: FOR $\beta = 1, \cdots, N_{lb}$: Compute $r = \int_{e_k} cr \psi_{n_k\beta} \psi_{n_k\alpha} ds$; Add r to $R(T_b(\beta, n_k), T_b(\alpha, n_k))$; FND **FND** ENDIF

Algorithm VII-2:

- Initialize $R = sparse(N_b, N_b)$ and $w = sparse(N_b, 1)$;
- Compute the integrals and assemble them into R and w:

FOR $k = 1, \cdots, nbe$:

IF boundaryedges(1, k) shows Robin boundary condition, THEN $n_k = boundarvedges(2, k);$ FOR $\beta = 1, \cdots, N_{lb}$: Compute $r = \int_{e_l} cq\psi_{n_k\beta} ds$; $w(T_b(\beta, n_k), 1) = w(T_b(\beta, n_k), 1) + r;$ FOR $\alpha = 1, \cdots, N_{lb}$: Compute $r = \int_{e_l} cr \psi_{n_k\beta} \psi_{n_k\alpha} ds$; Add r to $R(T_b(\beta, n_k), T_b(\alpha, n_k))$; FND END ENDIF END

• If we follow Algorithm VII-1 to develop a subroutine to assemble the vector arising from

$$\int_{e_k} \tilde{p} \frac{\partial^{a+b} \psi_{n_k\beta}}{\partial x^a \partial y^b} \, ds,$$

and the vector arising from

$$\int_{e_k} \tilde{r} \frac{\partial^{m+s} \psi_{n_k \alpha}}{\partial x^m \partial y^s} \frac{\partial^{d+l} \psi_{n_k \beta}}{\partial x^d \partial y^l} \, ds,$$

then Algorithm VII-1 is equivalent to calling this subroutine with parameters: a = b = r = s = d = l = 0, $\tilde{p} = cq$, and $\tilde{r} = cr$.

• Note that the vector part is exactly the same as what we had for the Neumann boundary condition!

Algorithm VII:

- Initialize $R = sparse(N_b, N_b)$ and $w = sparse(N_b, 1)$;
- Compute the integrals and assemble them into R and w: FOR $k = 1, \cdots, nbe$: IF boundaryedges(1, k) shows Robin boundary condition, THEN $n_k = boundaryedges(2, k);$ FOR $\beta = 1, \cdots, N_{lb}$: Compute $r = \int_{e_{i}} \tilde{p} \frac{\partial^{a+b} \psi_{n_{k}\beta}}{\partial x^{a} \partial x^{b}} ds;$ $w(T_b(\beta, n_k), 1) = w(T_b(\beta, n_k), 1) + r;$ END FOR $\alpha = 1, \cdots, N_{lb}$: FOR $\beta = 1, \cdots, N_{lb}$: Compute $r = \int_{e_{i}} \tilde{r} \frac{\partial^{m+s} \psi_{n_{k}\alpha}}{\partial x^{m} \partial x^{s}} \frac{\partial^{d+l} \psi_{n_{k}\beta}}{\partial x^{d} \partial x^{l}} ds;$ Add r to $R(T_b(\beta, n_k), T_b(\alpha, n_k))$; FND **FND** FNDIF END
 - 125 / 139

Recall

- Matrix boundarynodes:
- boundarynodes(1, k) is the type of the k^{th} boundary finite element node: Dirichlet (-1), Neumann (-2), Robin (-3).....
- The intersection nodes of Dirichlet boundary condition and other boundary conditions usually need to be treated as Dirichlet boundary nodes.
- boundarynodes(2, k) is the global node index of the kth boundary boundary finite element node.
- Set *nbn* = *size*(*boundarynodes*, 2) to be the number of boundary finite element nodes;

 Example 3: Use the finite element method to solve the following equation on the domain Ω = [-1, 1] × [-1, 1]:

$$\begin{aligned} -\nabla \cdot (\nabla u) &= -2e^{x+y}, \\ u &= e^{-1+y} \text{ on } x = -1, \\ u &= e^{1+y} \text{ on } x = 1, \\ \nabla u \cdot \vec{n} + u &= 0 \text{ on } y = -1, \\ u &= e^{x+1} \text{ on } y = 1. \end{aligned}$$

• The analytic solution of this problem is $u = e^{x+y}$, which can be used to compute the error of the numerical solution.

- Let's code for the linear and quadratic finite element method of the 2D second order elliptic equation with Neumann boundary condition!
- Open your Matlab!

h	$\ u-u_h\ _{\infty}$	$ u - u_h _0$	$ u - u_h _1$
1/8	$1.3358 imes 10^{-2}$	$5.1094 imes10^{-3}$	$1.8523 imes10^{-1}$
1/16	$3.4487 imes 10^{-3}$	$1.2760 imes 10^{-3}$	$9.2559 imes 10^{-2}$
1/32	$8.7622 imes 10^{-4}$	$3.1893 imes 10^{-4}$	$4.6273 imes 10^{-2}$
1/64	$2.2084 imes 10^{-4}$	$7.9727 imes 10^{-5}$	$2.3136 imes 10^{-2}$
1/128	$5.5433 imes 10^{-5}$	1.9932×10^{-5}	$1.1568 imes 10^{-2}$

Table: The numerical errors for linear finite element.

- Any Observation?
- Second order convergence $O(h^2)$ in L^2/L^{∞} norm and first order convergence O(h) in H^1 semi-norm, which match the optimal approximation capability expected from piecewise linear functions

h	$\ u-u_h\ _{\infty}$	$ u - u_h _0$	$ u - u_h _1$
1/8	$1.0956 imes10^{-4}$	$3.9278 imes10^{-5}$	$2.9874 imes 10^{-3}$
1/16	$1.4074 imes10^{-5}$	$4.9012 imes 10^{-6}$	$7.4668 imes 10^{-4}$
1/32	$1.7835 imes10^{-6}$	$6.1243 imes 10^{-7}$	$1.8667 imes 10^{-4}$
1/64	$2.2447 imes 10^{-7}$	$7.6549 imes 10^{-8}$	$4.6667 imes 10^{-5}$
1/128	$2.8155 imes 10^{-8}$	$9.5686 imes 10^{-9}$	$1.1667 imes10^{-5}$

Table: The numerical errors for quadratic finite element.

- Any Observation?
- Third order convergence $iO(h^3)$ in L^2/L^{∞} norm and second order convergence $O(h^2)$ in H^1 semi-norm, which match the optimal approximation capability expected from piecewise quadratic functions.

Dirichlet/Neumann/Robin mixed boundary condition

Consider

$$-\nabla \cdot (c\nabla u) = f \text{ in } \Omega,$$

$$\nabla u \cdot \vec{n} = p \text{ on } \Gamma_N \subset \partial\Omega,$$

$$\nabla u \cdot \vec{n} + ru = q \text{ on } \Gamma_R \subseteq \partial\Omega,$$

$$u = g \text{ on } \Gamma_D = \partial\Omega/(\Gamma_N \cup \Gamma_R).$$

Recall

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy - \int_{\partial \Omega} (c \nabla u \cdot \vec{n}) \, v \, ds = \int_{\Omega} f v \, dx dy.$$

• Since the solution on $\Gamma_D = \partial \Omega / (\Gamma_N \cup \Gamma_R)$ is given by u = g, then we can choose the test function v such that v = 0 on $\partial \Omega / (\Gamma_N \cup \Gamma_R)$.

Dirichlet/Neumann/Robin mixed boundary condition

 Combining the derivation above for the Neumann and Robin boundary conditions, the weak formulation is to find u ∈ H¹(Ω) such that

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy + \int_{\Gamma_R} cruv \, ds$$
$$= \int_{\Omega} fv \, dx dy + \int_{\Gamma_N} cpv \, ds + \int_{\Gamma_R} cqv \, ds.$$

for any $v \in H^1_{0D}(\Omega) = \{v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D\}.$

• Code?

• Combine all of the subroutines for Dirichlet/Neumann/Robin boundary conditions.

Non-isotropic equation

Consider

$$\begin{aligned} &-\nabla \cdot (c\nabla u) = f \quad \text{in } \Omega, \\ &c\nabla u \cdot \vec{n} = p \quad \text{on } \Gamma_N \subset \partial\Omega, \\ &c\nabla u \cdot \vec{n} + ru = q \quad \text{on } \Gamma_R \subseteq \partial\Omega, \\ &u = g \quad \text{on } \Gamma_D = \partial\Omega/(\Gamma_N \cup \Gamma_R), \end{aligned}$$

where

$$c = \left(\begin{array}{cc} c_{11} & c_{12} \\ c_{21} & c_{22} \end{array}\right).$$

Recall

]

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy - \int_{\partial \Omega} (c \nabla u \cdot \vec{n}) \, v \, ds = \int_{\Omega} f v \, dx dy.$$

• Since the solution on $\Gamma_D = \partial \Omega / (\Gamma_N \cup \Gamma_R)$ is given by u = g, then we can choose the test function v such that v = 0 on $\partial \Omega / (\Gamma_N \cup \Gamma_R)$.

Non-isotropic equation

• Similar to the previous derivation, the weak formulation is to find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy + \int_{\Gamma_R} ruv \, ds$$
$$= \int_{\Omega} fv \, dx dy + \int_{\Gamma_N} pv \, ds + \int_{\Gamma_R} qv \, ds.$$

for any $v \in H^1_{0D}(\Omega) = \{v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D\}$. Here

$$c\nabla u \cdot \nabla v = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \begin{pmatrix} u_x \\ u_y \end{pmatrix} \cdot \begin{pmatrix} v_x \\ v_y \end{pmatrix}$$
$$= \begin{pmatrix} c_{11}u_x + c_{12}u_y \\ c_{21}u_x + c_{22}u_y \end{pmatrix} \cdot \begin{pmatrix} v_x \\ v_y \end{pmatrix}$$
$$= c_{11}u_xv_x + c_{12}u_yv_x + c_{21}u_xv_y + c_{22}u_yv_y.$$

Non-isotropic equation

- Code? Just call Algorithm I-3 four times! Everything else is the same as before!
- Call Algorithm I-3 with r = 1, s = 0, p = 1, q = 0, and $c = c_{11}$ to obtain A_1 ;
- Call Algorithm I-3 with r = 0, s = 1, p = 1, q = 0, and $c = c_{11}$ to obtain A_2 ;
- Call Algorithm I-3 with r = 1, s = 0, p = 0, q = 1, and $c = c_{21}$ to obtain A_3 ;
- Call Algorithm I-3 with r = 0, s = 1, p = 0, q = 1, and $c = c_{22}$ to obtain A_4 .
- Then the stiffness matrix is $A = A_1 + A_2 + A_3 + A_4$.

A more general second order equation

• Consider

$$-\nabla \cdot (c\nabla u) + au = f \text{ in } \Omega,$$

$$c\nabla u \cdot \vec{n} = p \text{ on } \Gamma_N \subset \partial\Omega,$$

$$c\nabla u \cdot \vec{n} + ru = q \text{ on } \Gamma_R \subseteq \partial\Omega,$$

$$u = g \text{ on } \Gamma_D = \partial\Omega/(\Gamma_N \cup \Gamma_R),$$

where

$$c=\left(egin{array}{cc} c_{11} & c_{12}\ c_{21} & c_{22} \end{array}
ight).$$

Then similar to the previous derivation, we have

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy - \int_{\partial \Omega} (c \nabla u \cdot \vec{n}) \, v \, ds + \int_{\Omega} auv \, dx dy = \int_{\Omega} fv \, dx dy.$$

136 / 139

イロン イロン イヨン イヨン 三日

A more general second order equation

- Since the solution on $\Gamma_D = \partial \Omega / (\Gamma_N \cup \Gamma_R)$ is given by u = g, then we can choose the test function v such that v = 0 on $\partial \Omega / (\Gamma_N \cup \Gamma_R)$.
- Similar to the previous derivation, the weak formulation is to find u ∈ H¹(Ω) such that

$$\int_{\Omega} c \nabla u \cdot \nabla v \, dx dy + \int_{\Omega} auv \, dx dy + \int_{\Gamma_R} ruv \, ds$$
$$= \int_{\Omega} fv \, dx dy + \int_{\Gamma_N} pv \, ds + \int_{\Gamma_R} qv \, ds.$$

for any $v \in H^1_{0D}(\Omega) = \{v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D\}$. Here

$$c\nabla u \cdot \nabla v = c_{11}u_xv_x + c_{12}u_yv_x + c_{21}u_xv_y + c_{22}u_yv_y.$$

A more general second order equation

- Code? Just call Algorithm I-3 five times! Everything else is the same as before!
- Call Algorithm I-3 with r = 0, s = 0, p = 0, q = 0, and c = a to obtain A₀;
- Call Algorithm I-3 with r = 1, s = 0, p = 1, q = 0, and $c = c_{11}$ to obtain A_1 ;
- Call Algorithm I-3 with r = 0, s = 1, p = 1, q = 0, and $c = c_{11}$ to obtain A_2 ;
- Call Algorithm I-3 with r = 1, s = 0, p = 0, q = 1, and $c = c_{21}$ to obtain A_3 ;
- Call Algorithm I-3 with r = 0, s = 1, p = 0, q = 1, and $c = c_{22}$ to obtain A_4 .
- Then the stiffness matrix is $A = A_0 + A_1 + A_2 + A_3 + A_4$.

138 / 139

Linear regression for the convergence order

• Consider
$$||u - u_h|| = Ch^r$$
.

• The goal is to design a linear regression to obtain the C and r based on the h and errors given in the table.

• First,

$$log (||u - u_h||) = log (Ch^r)$$

= log (C) + log (h^r)
= log (C) + r log (h).

• Let $y = log(||u - u_h||), x = log(h), a = r, b = log(C).$

- Then y = ax + b.
- For different *h*, we can obtain the corresponding *x* and *y*.
- Then by the regular linear regression, we can obtain a and b, which give us the $C = e^b$ and r = a.