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Target problem

Consider the 2D unsteady Stokes equation

ut −∇ · T(u, p) = f , in Ω×[0, T ],

∇ · u = 0 in Ω×[0, T ],

u = g, on ∂Ω×[0, T ],

u = u0, p = p0, at t = 0 and in Ω.

where Ω is a 2D domain, [0, T ] is the time interval, f(x, y, t) is
a given function on Ω×[0, T ], g(x, y, t) is a given function on
∂Ω×[0, T ], u0(x, y) and p0(x, y) are given functions on Ω at
t = 0, u(x, y, t) and p(x, y, t) are the unknown functions, and

u(x, y, t) = (u1, u2)t, f(x, y, t) = (f1, f2)t,

g(x, y, t) = (g1, g2)t, u0(x, y) = (u10, u20)t.

4 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Target problem

The stress tensor T(u, p) is defined as

T(u, p) = 2νD(u)− pI

where ν is the viscosity and the deformation tensor

D(u) =
1

2
(∇u + (∇u)t).

In more details, the deformation tensor can be written as

D(u) =

 ∂u1
∂x

1
2

(
∂u1
∂y + ∂u2

∂x

)
1
2

(
∂u1
∂y + ∂u2

∂x

)
∂u2
∂y

 .

Hence the stress tensor can be written as

T(u, p) =

 2ν ∂u1
∂x − p ν

(
∂u1
∂y + ∂u2

∂x

)
ν
(
∂u1
∂y + ∂u2

∂x

)
2ν ∂u2

∂y − p

 .
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Weak formulation

First, take the inner product with a vector function
v(x, y) = (v1, v2)t on both sides of the Stokes equation:

ut −∇ · T(u, p) = f in Ω

⇒ ut · v −∇ · T(u, p) · v = f · v in Ω

⇒
∫

Ω
ut · v dxdy −

∫
Ω

(∇ · T(u, p)) · v dxdy =

∫
Ω
f · v dxdy

Second, multiply the divergence free equation by a function
q(x, y):

∇ · u = 0 ⇒ (∇ · u)q = 0

⇒
∫

Ω
(∇ · u)q dxdy = 0.

u(x, y, t) and p(x, y, t) are called trail functions and v(x, y)
and q(x, y) are called test functions.
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Weak formulation

Using integration by parts in multi-dimension:∫
Ω

(∇ · T) · v dxdy =

∫
∂Ω

(Tn) · v ds−
∫

Ω
T : ∇v dxdy,

where n = (n1, n2)t is the unit outer normal vector of ∂Ω, we
obtain∫

Ω

ut · v dxdy −
∫

Ω

T(u, p) : ∇v dxdy −
∫
∂Ω

(T(u, p)n) · v ds

=

∫
Ω

f · v dxdy.

Here,

A : B =

(
a11 a12

a21 a22

)
:

(
b11 b12

b21 b22

)
= a11b11 + a12b12 + a21b21 + a22b22.
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Weak formulation

Using the above definition for A : B, it is not difficult to verify
(an independent study project topic) that

T(u, p) : ∇v = (2νD(u)− pI) : ∇v
= 2νD(u) : D(v)− p(∇ · v).

Hence we obtain∫
Ω
ut · v dxdy +

∫
Ω

2νD(u) : D(v) dxdy −
∫

Ω
p(∇ · v) dxdy

−
∫
∂Ω

(T(u, p)n) · v ds =

∫
Ω
f · v dxdy,

−
∫

Ω
(∇ · u)q dxdy = 0.

Here we multiply the second equation by −1 in order to keep
the matrix formulation symmetric later.
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Weak formulation

Since the solution on the domain boundary ∂Ω are given by
u(x, y, t) = g(x, y, t), then we can choose the test function v(x, y)
such that v = 0 on ∂Ω.

Hence∫
Ω

ut · v dxdy +

∫
Ω

2νD(u) : D(v) dxdy −
∫

Ω

p(∇ · v) dxdy

=

∫
Ω

f · v dxdy,

−
∫

Ω

(∇ · u)q dxdy = 0.

Define

H1(0, T ; [H1(Ω)]2) = {v(·, t), ∂v
∂t

(·, t) ∈ [H1(Ω)]2, ∀t ∈ [0, T ]},

L2(0, T ;L2(Ω)) = {q(·, t) ∈ L2(Ω), ∀t ∈ [0, T ]}.

where [H1(Ω)]2 = H1(Ω)×H1(Ω).
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Weak formulation

Weak formulation in the vector format: find
u ∈ H1(0, T ; [H1(Ω)]2) and p ∈ L2(0, T ;L2(Ω)) such that∫

Ω
ut · v dxdy +

∫
Ω

2νD(u) : D(v) dxdy −
∫

Ω
p(∇ · v) dxdy

=

∫
Ω
f · v dxdy,

−
∫

Ω
(∇ · u)q dxdy = 0,

for any v ∈ [H1
0 (Ω)]2 and q ∈ L2(Ω).
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Weak formulation

Define

a(u,v) =

∫
Ω

2νD(u) : D(v) dxdy,

b(u, q) = −
∫

Ω
(∇ · u)q dxdy,

(f ,v) =

∫
Ω
f · v dxdy.

Weak formulation: find u ∈ H1(0, T ; [H1(Ω)]2) and
p ∈ L2(0, T ;L2(Ω)) such that

(ut,v) + a(u,v) + b(v, p) = (f ,v),

b(u, q) = 0,

for any v ∈ [H1
0 (Ω)]2 and q ∈ L2(Ω).
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Weak formulation

In more details,

D(u) : D(v)

=

 ∂u1
∂x

1
2

(
∂u1
∂y + ∂u2

∂x

)
1
2

(
∂u1
∂y + ∂u2

∂x

)
∂u2
∂y


:

 ∂v1
∂x

1
2

(
∂v1
∂y + ∂v2

∂x

)
1
2

(
∂v1
∂y + ∂v2

∂x

)
∂v2
∂y


=

∂u1

∂x

∂v1

∂x
+

1

4

(
∂u1

∂y
+
∂u2

∂x

)(
∂v1

∂y
+
∂v2

∂x

)
+

1

4

(
∂u1

∂y
+
∂u2

∂x

)(
∂v1

∂y
+
∂v2

∂x

)
+
∂u2

∂y

∂v2

∂y
.
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Weak formulation

Hence

D(u) : D(v)

=
∂u1

∂x

∂v1

∂x
+
∂u2

∂y

∂v2

∂y
+

1

2

∂u1

∂y

∂v1

∂y

+
1

2

∂u1

∂y

∂v2

∂x
+

1

2

∂u2

∂x

∂v1

∂y
+

1

2

∂u2

∂x

∂v2

∂x
.

Then ∫
Ω

2νD(u) : D(v) dxdy

=

∫
Ω
ν
(

2
∂u1

∂x

∂v1

∂x
+ 2

∂u2

∂y

∂v2

∂y
+
∂u1

∂y

∂v1

∂y

+
∂u1

∂y

∂v2

∂x
+
∂u2

∂x

∂v1

∂y
+
∂u2

∂x

∂v2

∂x

)
dxdy.
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Weak formulation

We also have∫
Ω
ut · v dxdy =

∫
Ω

∂u1

∂t
v1 dxdy +

∫
Ω

∂u2

∂t
v2 dxdy,∫

Ω
p(∇ · v) dxdy =

∫
Ω

(
p
∂v1

∂x
+ p

∂v2

∂y

)
dxdy,∫

Ω
f · v dxdy =

∫
Ω

(f1v1 + f2v2) dxdy,∫
Ω

(∇ · u)q dxdy =

∫
Ω

(
∂u1

∂x
q +

∂u2

∂y
q

)
dxdy.
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Weak formulation

Weak formulation in the scalar format: find
u1 ∈ H1(0, T ; [H1(Ω)]2), u2 ∈ H1(0, T ; [H1(Ω)]2), and
p ∈ L2(0, T ;L2(Ω)) such that∫

Ω

∂u1

∂t
v1 dxdy +

∫
Ω

∂u2

∂t
v2 dxdy +

∫
Ω
ν
(

2
∂u1

∂x

∂v1

∂x

+2
∂u2

∂y

∂v2

∂y
+
∂u1

∂y

∂v1

∂y
+
∂u1

∂y

∂v2

∂x
+
∂u2

∂x

∂v1

∂y
+
∂u2

∂x

∂v2

∂x

)
dxdy

−
∫

Ω

(
p
∂v1

∂x
+ p

∂v2

∂y

)
dxdy

=

∫
Ω

(f1v1 + f2v2) dxdy.

−
∫

Ω

(
∂u1

∂x
q +

∂u2

∂y
q

)
dxdy = 0.

for any v1 ∈ H1
0 (Ω), v2 ∈ H1

0 (Ω), and q ∈ L2(Ω).
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Galerkin formulation

Consider a finite element space Uh ⊂ H1(Ω) for the velocity
and a finite element space Wh ⊂ L2(Ω) for the pressure.
Define Uh0 to be the space which consists of the functions of
Uh with value 0 on the Dirichlet boundary.

Then the Galerkin formulation is to find uh ∈ H1(0, T ; [Uh]2)
and ph ∈ L2(0, T ;Wh) such that

(uht ,v) + a(uh,vh) + b(vh, ph) = (f ,vh),

b(uh, qh) = 0,

for any vh ∈ [Uh0]2 and qh ∈Wh.
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Galerkin formulation

For an easier implementation, we use the following Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find
uh ∈ H1(0, T ; [Uh]2) and ph ∈ L2(0, T ;Wh) such that

(uht ,v) + a(uh,vh) + b(vh, ph) = (f ,vh),

b(uh, qh) = 0,

for any vh ∈ [Uh]2 and qh ∈Wh.
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Galerkin formulation

In more details of the vector format, the Galerkin formulation
(without considering the Dirichlet boundary condition, which
will be handled later) is to find uh ∈ H1(0, T ; [Uh]2) and
ph ∈ L2(0, T ;Wh) such that∫

Ω
uht · vh dxdy +

∫
Ω

2νD(uh) : D(vh) dxdy

−
∫

Ω
ph(∇ · vh) dxdy =

∫
Ω
f · vh dxdy,

−
∫

Ω
(∇ · uh)qh dxdy = 0,

for any vh ∈ [Uh]2 and qh ∈Wh.
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Galerkin formulation

In our numerical example, Uh = span{φj}Nbj=1 and

Wh = span{ψj}
Nbp
j=1 are chosen to be the finite element spaces

with the quadratic global basis functions {φj}Nbj=1 and linear

global basis functions {ψj}
Nbp
j=1, which are defined in Chapter

2. They are called Taylor-Hood finite elements.

Why do we choose the pairs of finite elements in this way?

Stability of mixed finite elements: inf-sup condition.

inf
06=qh∈Wh

sup
06=uh∈Uh×Uh

b(uh, qh)

‖∇uh‖0 ‖qh‖0
> β,

where β > 0 is a constant independent of mesh size h.

See other course materials and references for the theory and
more examples of stable mixed finite elements for Stokes
equation.
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Galerkin formulation

In the scalar format, the Galerkin formulation (without considering
the Dirichlet boundary condition, which will be handled later) is to
find u1h ∈ H1(0, T ;Uh), u2h ∈ H1(0, T ;Uh), and
ph ∈ L2(0, T ;Wh) such that∫

Ω

∂u1h

∂t
v1h dxdy +

∫
Ω

∂u2h

∂t
v2h dxdy

+

∫
Ω

ν
(

2
∂u1h

∂x

∂v1h

∂x
+ 2

∂u2h

∂y

∂v2h

∂y
+
∂u1h

∂y

∂v1h

∂y

+
∂u1h

∂y

∂v2h

∂x
+
∂u2h

∂x

∂v1h

∂y
+
∂u2h

∂x

∂v2h

∂x

)
dxdy

−
∫

Ω

(
ph
∂v1h

∂x
+ ph

∂v2h

∂y

)
dxdy =

∫
Ω

(f1v1h + f2v2h) dxdy.

−
∫

Ω

(
∂u1h

∂x
qh +

∂u2h

∂y
qh

)
dxdy = 0.

for any v1h ∈ Uh, v2h ∈ Uh, and qh ∈Wh.
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Discretization formulation

Recall the following definitions from Chapter 2:

N : number of mesh elements.

Nm: number of mesh nodes.

En (n = 1, · · · , N): mesh elements.

Zk (k = 1, · · · , Nm): mesh nodes.

Nl: number of local mesh nodes in a mesh element.

P :information matrix consisting of the coordinates of all mesh
nodes.

T : information matrix consisting of the global node indices of
the mesh nodes of all the mesh elements.
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Discretization formulation

We only consider the nodal basis functions (Lagrange type) in
this course.

Nlb: number of local finite element nodes (=number of local
finite element basis functions) in a mesh element.

Nb: number of the finite element nodes (= the number of
unknowns = the total number of the finite element basis
functions).

Xj (j = 1, · · · , Nb): finite element nodes.

Pb: information matrix consisting of the coordinates of all
finite element nodes.

Tb: information matrix consisting of the global node indices of
the finite element nodes of all the mesh elements.
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Discretization formulation

Since u1h, u2h ∈ H1(0, T ;Uh), ph ∈ L2(0, T ;Wh),

Uh = span{φj}Nbj=1, and Wh = span{ψj}
Nbp
j=1, then

u1h(x, y, t) =

Nb∑
j=1

u1j(t)φj , u2h(x, y, t) =

Nb∑
j=1

u2j(t)φj ,

ph =

Nbp∑
j=1

pj(t)ψj ,

for some coefficients u1j(t), u2j(t) (j = 1, · · · , Nb), and
pj(t) (j = 1, · · · , Nbp).

If we can set up a linear algebraic system for u1j(t),
u2j(t) (j = 1, · · · , Nb), and pj(t) (j = 1, · · · , Nbp), then we
can solve it to obtain the finite element solution
uh = (u1h, u2h)t and ph.
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Discretization formulation

For the first equation in the Galerkin formulation, we choose
vh = (φi, 0)t (i = 1, · · · , Nb) and
vh = (0, φi)

t (i = 1, · · · , Nb). That is, in the first set of test
functions, we choose v1h = φi (i = 1, · · · , Nb) and v2h = 0;
in the second set of test functions, we choose v1h = 0 and
v2h = φi (i = 1, · · · , Nb).

For the second equation in the Galerkin formulation, we
choose qh = ψi (i = 1, · · · , Nbp).
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Discretization formulation

Set vh = (φi, 0)t, i.e., v1h = φi and v2h = 0 (i = 1, · · · , Nb),
in the first equation of the Galerkin formulation. Then

∫
Ω

 Nb∑
j=1

u1j(t)φj


t

φi dxdy + 2

∫
Ω

ν

 Nb∑
j=1

u1j(t)
∂φj
∂x

 ∂φi
∂x

dxdy

+

∫
Ω

ν

 Nb∑
j=1

u1j(t)
∂φj
∂y

 ∂φi
∂y

dxdy

+

∫
Ω

ν

 Nb∑
j=1

u2j(t)
∂φj
∂x

 ∂φi
∂y

dxdy −
∫

Ω

Nbp∑
j=1

pj(t)ψj

 ∂φi
∂x

dxdy

=

∫
Ω

f1φidxdy.
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Discretization formulation

Set vh = (0, φi)
t, i.e., v1h = 0 and v2h = φi (i = 1, · · · , Nb),

in the first equation of the Galerkin formulation. Then

∫
Ω

 Nb∑
j=1

u2j(t)φj


t

φi dxdy + 2

∫
Ω

ν

 Nb∑
j=1

u2j(t)
∂φj
∂y

 ∂φi
∂y

dxdy

+

∫
Ω

ν

 Nb∑
j=1

u1j(t)
∂φj
∂y

 ∂φi
∂x

dxdy

+

∫
Ω

ν

 Nb∑
j=1

u2j(t)
∂φj
∂x

 ∂φi
∂x

dxdy −
∫

Ω

Nbp∑
j=1

pj(t)ψj

 ∂φi
∂y

dxdy

=

∫
Ω

f2φidxdy.
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Discretization formulation

Set qh = ψi (i = 1, · · · , Nbp) in the second equation of the
Galerkin formulation. Then

−
∫

Ω

 Nb∑
j=1

u1j(t)
∂φj
∂x

ψi dxdy

−
∫

Ω

 Nb∑
j=1

u2j(t)
∂φj
∂y

ψi dxdy

= 0.
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Discretization formulation

Simplify the above three sets of equations, we obtain

Nb∑
j=1

u′1j(t)

∫
Ω
φjφi dxdy +

Nb∑
j=1

u1j(t)

(
2

∫
Ω
ν
∂φj

∂x

∂φi

∂x
dxdy +

∫
Ω
ν
∂φj

∂y

∂φi

∂y
dxdy

)

+

Nb∑
j=1

u2j(t)

∫
Ω
ν
∂φj

∂x

∂φi

∂y
dxdy +

Nbp∑
j=1

pj(t)

(
−
∫

Ω
ψj
∂φi

∂x
dxdy

)
=

∫
Ω
f1φidxdy,

Nb∑
j=1

u′2j(t)

∫
Ω
φjφi dxdy +

Nb∑
j=1

u1j(t)

∫
Ω
ν
∂φj

∂y

∂φi

∂x
dxdy

+

Nb∑
j=1

u2j(t)

(
2

∫
Ω
ν
∂φj

∂y

∂φi

∂y
dxdy +

∫
Ω
ν
∂φj

∂x

∂φi

∂x
dxdy

)

+

Nbp∑
j=1

pj(t)

(
−
∫

Ω
ψj
∂φi

∂y
dxdy

)
=

∫
Ω
f2φidxdy

Nb∑
j=1

u1j(t)

(
−
∫

Ω

∂φj

∂x
ψi dxdy

)
+

Nb∑
j=1

u2j(t)

(
−
∫

Ω

∂φj

∂y
ψi dxdy

)
+

Nbp∑
j=1

pj(t) ∗ 0 = 0.
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Matrix formulation

Define

A1 =

[∫
Ω

ν
∂φj
∂x

∂φi
∂x

dxdy

]Nb
i,j=1

, A2 =

[∫
Ω

ν
∂φj
∂y

∂φi
∂y

dxdy

]Nb
i,j=1

,

A3 =

[∫
Ω

ν
∂φj
∂x

∂φi
∂y

dxdy

]Nb
i,j=1

, A4 =

[∫
Ω

ν
∂φj
∂y

∂φi
∂x

dxdy

]Nb
i,j=1

,

A5 =

[∫
Ω

−ψj
∂φi
∂x

dxdy

]Nb,Nbp
i=1,j=1

, A6 =

[∫
Ω

−ψj
∂φi
∂y

dxdy

]Nb,Nbp
i=1,j=1

,

A7 =

[∫
Ω

−∂φj
∂x

ψi dxdy

]Nbp,Nb
i=1,j=1

, A8 =

[∫
Ω

−∂φj
∂y

ψi dxdy

]Nbp,Nb
i=1,j=1

.

Define a zero matrix O1 = [0]
Nbp,Nbp
i=1,j=1 whose size is Nbp ×Nbp.

Then

A =

 2A1 +A2 A3 A5

A4 2A2 +A1 A6

A7 A8 O1


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Matrix formulation

Each matrix above can be obtained by Algorithm I-3 in
Chapter 3.

It is not difficult to verify (an independent study project topic)
that

A4 = At3, A7 = At5, A8 = At6.

Hence the matrix A is actually symmetric:

A =

 2A1 +A2 A3 A5

At3 2A2 +A1 A6

At5 At6 O1


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Matrix formulation

Define the basic mass matrix

Me = [mij ]
Nb
i,j=1 =

[∫
Ω
φjφi dxdy

]Nb
i,j=1

.

The mass matrix Me can be obtained by Algorithm I-3 in
Chapter 3, with r = s = p = q = 0 and c = 1.

Define zero matrices O2 = [0]
Nb,Nbp
i=1,j=1 and O3 = [0]Nb,Nbi=1,j=1.

Then define the block mass matrix

M =

 Me O3 O2

O3 Me O2

Ot
2 Ot

2 O1


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Matrix formulation

Define the load vector

~b(t) =

 ~b1(t)
~b2(t)
~0


where

~b1(t) =

[∫
Ω
f1φidxdy

]Nb
i=1

, ~b2(t) =

[∫
Ω
f2φidxdy

]Nb
i=1

.

Here the size of the zero vector is Nbp×1. That is, ~0 = [0]
Nbp
i=1 .

Each of ~b1(t) and ~b2(t) can be obtained by Algorithm II-5 in
Chapter 4.
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Matrix formulation

Define the unknown vector

~X(t) =

 ~X1(t)
~X2(t)
~X3(t)


where

~X1(t) = [u1j(t)]
Nb
j=1 ,

~X2(t) = [u2j(t)]
Nb
j=1 ,

~X3(t) = [pj(t)]
Nbp
j=1 .
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Matrix formulation

We obtain the first order ODE system

M ~X ′(t) +A ~X(t) = ~b(t).

The structure of this ODE system is the same as that of the
first order ODE system obtained for the second order
parabolic equation in Chapter 4.

Hence the same finite difference schemes in Chapter 4 can be
directly utilized for this ODE system.

The major differences between this ODE system and the one
in Chapter 4 are the details in the definition of M , A, ~X and
~b, which were discussed above.

35 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Assembly of a time-independent matrix

Recall Algorithm I-3 from Chapter 3:

Initialize the matrix: A = sparse(N test
b , N trial

b );

Compute the integrals and assemble them into A:

FOR n = 1, · · · , N
FOR α = 1, · · · , N trial

lb

FOR β = 1, · · · , N test
lb

Compute r =
∫
En
c∂

r+sϕnα
∂xr∂ys

∂p+qψnβ
∂xp∂yq dxdy;

Add r to A(T testb (β, n), T trialb (α, n)).
END

END
END
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Assembly of the time-independent stiffness matrix

Call Algorithm I-3 with r = 1, s = 0, p = 1, q = 0, c = ν , basis type of
u for trial function, and basis type of u for test function, to obtain A1.

Call Algorithm I-3 with r = 0, s = 1, p = 0, q = 1, c = ν , basis type of
u for trial function, and basis type of u for test function, to obtain A2.

Call Algorithm I-3 with r = 1, s = 0, p = 0, q = 1, c = ν , basis type of
u for trial function, and basis type of u for test function, to obtain A3.

Call Algorithm I-3 with r = 0, s = 0, p = 1, q = 0, c = −1 , basis type of
p for trial function, and basis type of u for test function, to obtain A5.

Call Algorithm I-3 with r = 0, s = 0, p = 0, q = 1, c = −1 , basis type of
p for trial function, and basis type of u for test function, to obtain A6.

Generate a zero matrix O whose size is Nbp ×Nbp.

Then the stiffness matrix
A = [2A1 +A2 A3 A5;At3 2A2 +A1 A6;At5 At6 O].

37 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Assembly of the mass matrix

Call Algorithm I-3 with r = 0, s = 0, p = 0, q = 0, c = 1 ,
basis type of u for trial function, and basis type of u for test
function, to obtain the basic mass matrix Me.

Generate three zero matrices O1, O2, and O3 whose sizes are
Nbp ×Nbp, Nb ×Nbp, and Nb ×Nb, respectively.

Then the block mass matrix
M = [Me O3 O2;O3 Me O2;Ot

2 Ot
2 O1].
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Assembly of a time-independent vector

Recall Algorithm II-3 from Chapter 3:

Initialize the matrix: b = sparse(Nb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · , N :
FOR β = 1, · · · , Nlb:

Compute r =
∫
En
f
∂p+qψnβ
∂xp∂yq dxdy;

b(Tb(β, n), 1) = b(Tb(β, n), 1) + r;
END

END

39 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Assembly of a time-dependent vector

Recall Algorithm II-5 from Chapter 4:

Specify a value for the time t based on the input time;

Initialize the vector: b = sparse(Nb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · , N :
FOR β = 1, · · · , Nlb:

Compute r =
∫
En
f(t)

∂p+qψnβ
∂xp∂yq dxdy;

b(Tb(β, n), 1) = b(Tb(β, n), 1) + r;
END

END
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Assembly of the load vector

Call Algorithm II-5 with p = q = 0 and f = f1 to obtain b1(t).

Call Algorithm II-5 with p = q = 0 and f = f2 to obtain b2(t).

Define a zero column vector ~0 whose size is Nbp × 1.

Then the load vector ~b = [b1(t); b2(t);~0].

If f1 and f2 do not depend on t, then this part is exactly the
same as the assembly of the load vector with Algorithm II-3 in
Chapter 6.
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Time-dependent Dirichlet boundary condition

Since Algorithm III-3 Chapter 5 is time-independent, it is not
suitable for the time-dependent Dirichlet boundary condition in
this chapter. Therefore, we will use the following Algorithm III-4:

Specify a value for the time t based on the input time;

Deal with the Dirichlet boundary conditions:

FOR k = 1, · · · , nbn:
If boundarynodes(1, k) shows Dirichlet condition, then

i = boundarynodes(2, k);
Ā(i, :) = 0;
Ā(i, i) = 1;
b̄(i) = g1(Pb(:, i), t);
Ā(Nb + i, :) = 0;
Ā(Nb + i,Nb + i) = 1;
b̄(Nb + i) = g2(Pb(:, i), t);

ENDIF
END
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Temporal discretization for the ODE system

Assume that we have a uniform partition of [0, T ] into Mm

elements with mesh size 4t.

The mesh nodes are tm = m4t, m = 0, 1, · · · ,Mm.

Assume ~Xm is the numerical solution of ~X(tm).

Then the corresponding θ−scheme is

M
~Xm+1 − ~Xm

4t
+ θA ~Xm+1 + (1− θ)A ~Xm = θ~b(tm+1) + (1− θ)~b(tm)

⇒
(
M

4t
+ θA

)
~Xm+1 = θ~b(tm+1) + (1− θ)~b(tm) +

M

4t
~Xm − (1− θ)A ~Xm.
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Temporal discretization for the ODE system

Iteration scheme 2:

Ā ~Xm+1 = ~̄bm+1, m = 0, · · · ,Mm − 1,

where

Ā =
M

4t
+ θA,

~̄bm+1 = θ~b(tm+1) + (1− θ)~b(tm) +

[
M

4t
− (1− θ)A

]
~Xm.
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Temporal discretization for the ODE system

Algorithm B:

Generate the mesh information matrices P and T .

Assemble the mass matrix M by using Algorithm I-3.

Assemble the stiffness matrix A by using Algorithm I-3.

Generate the initial vector ~X0.

Iterate in time:
FOR m = 0, · · · ,Mm − 1

tm+1 = (m+ 1)4t;
tm = m4t;
Assemble the load vectors ~b(tm+1) and ~b(tm) by using

Algorithm II-5 at t = tm+1 and t = tm;
Deal with Dirichlet boundary conditions by using

Algorithm III-4 for Ā and ~̄bm+1 at t = tm+1;
Solve iteration scheme 2 for ~Xm+1.

END
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Temporal discretization for the ODE system

Define ~Xm+θ = θ ~Xm+1 + (1− θ) ~Xm.

Then ~Xm+1 − ~Xm =
~Xm+θ− ~Xm

θ
if θ 6= 0.

Hence

M
~Xm+1 − ~Xm

4t + θA ~Xm+1 + (1− θ)A ~Xm = θ~b(tm+1) + (1− θ)~b(tm)

⇒ M
~Xm+1 − ~Xm

4t +A
[
θ ~Xm+1 + (1− θ) ~Xm

]
= θ~b(tm+1) + (1− θ)~b(tm)

⇒ M
~Xm+θ − ~Xm

θ4t +A ~Xm+θ = θ~b(tm+1) + (1− θ)~b(tm)

⇒
(
M

θ4t +A

)
~Xm+θ = θ~b(tm+1) + (1− θ)~b(tm) +

M ~Xm

θ4t .
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Temporal discretization for the ODE system

Iteration scheme 3:

Āθ ~Xm+θ = ~̄bm+θ, m = 0, · · · ,Mm − 1,

where

Āθ =
M

θ4t
+A,

~̄bm+θ = θ~b(tm+1) + (1− θ)~b(tm) +
M

θ4t
~Xm.

Since ~Xm+θ = θ ~Xm+1 + (1− θ) ~Xm, then

~Xm+1 =
~Xm+θ − ~Xm

θ
+ ~Xm.
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Temporal discretization for the ODE system

Algorithm C:

Generate the mesh information matrices P and T .

Assemble the mass matrix M by using Algorithm I-3.

Assemble the stiffness matrix A by using Algorithm I-3.

Generate the initial vector ~X0.

Iterate in time:
FOR m = 0, · · · ,Mm − 1

tm+1 = (m+ 1)4t;
tm = m4t;
Assemble the load vectors ~b(tm+1) and ~b(tm) by using

Algorithm II-5 at t = tm+1 and t = tm;
Deal with boundary conditions by using Algorithm III-4

for Āθ and ~̄bm+θ at t = tm+θ;
Solve iteration scheme 3 for ~Xm+1.

END
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Numerical example

Example 1: Use the finite element method to solve the
following equation on the domain Ω = [0, 1]× [−0.25, 0]:

ut −∇ · T(u, p) = f in Ω× [0, 1],

∇ · u = 0 in Ω× [0, 1],

u1 = x2y2 + e−y, at t = 0 and in Ω,

u2 = −2

3
xy3 + 2− π sin(πx), at t = 0 and in Ω,

p = −[2− π sin(πx)] cos(2πy), at t = 0 and in Ω,
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Numerical example

Continued formulation:

u1 = e−ycos(2πt) on x = 0,

u1 = (y2 + e−y)cos(2πt) on x = 1,

u1 =

(
1

16
x2 + e0.25

)
cos(2πt) on y = −0.25,

u1 = cos(2πt) on y = 0,

u2 = 2cos(2πt) on x = 0,

u2 =

(
−2

3
y3 + 2

)
cos(2πt) on x = 1,

u2 =

[
1

96
x+ 2− π sin(πx)

]
cos(2πt) on y = −0.25,

u2 = [2− π sin(πx)]cos(2πt) on y = 0.
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Numerical example

Here

f1 = −2π(x2y2 + e−y)sin(2πt)

+[−2νx2 − 2νy2 − νe−y + π2 cos(πx) cos(2πy)]cos(2πt),

f2 = −2π

[
−2

3
xy3 + 2− π sin(πx)

]
sin(2πt)

+[4νxy − νπ3 sin(πx)

+2π(2− π sin(πx)) sin(2πy)]cos(2πt).
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Numerical example

The analytic solution of this problem is

u1 = (x2y2 + e−y)cos(2πt),

u2 =

[
−2

3
xy3 + 2− π sin(πx)

]
cos(2πt),

p = −[2− π sin(πx)] cos(2πy)cos(2πt),

which can be used to compute the errors between the
numerical solution and the analytic solution. We can also
verify f1 and f2 above by plugging the analytic solutions into
the Stokes equation.
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Numerical example

Let’s code for the Taylor-Hood finite elements for the 2D
Stokes equation together!

Taylor-Hood finite elements: linear finite elements for the
pressure and quadratic finite elements for the velocity.

We will use Algorithm B.

Open your Matlab!
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Numerical example

h ‖u− uh‖∞ ‖u− uh‖0 |u− uh|1
1/8 1.6676× 10−3 3.6290× 10−4 2.0487× 10−2

1/16 2.1848× 10−4 4.5026× 10−5 5.0726× 10−3

1/32 2.7448× 10−5 5.6114× 10−6 1.2626× 10−3

1/64 3.3781× 10−6 7.0079× 10−7 3.1525× 10−4

Table: Case 1: The numerical errors at t = 1 for quadratic finite elements
of the velocity and backward Euler scheme (θ = 1) with 4t = 8h3.

Any Observation?
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Numerical example

Third order convergence O(h3) in L2/L∞ norm and second
order convergence O(h2) in H1 semi-norm.

The backward Euler scheme has first order accuracy for
temporal discretization.

The quadratic finite element has third order accuracy in
L2/L∞ norm and second order accuracy in H1 semi-norm for
spatial discretization.

Hence the accuracy order is expected to be O(4t+ h3) in
L2/L∞ norm and O(4t+ h2) in H1 norm, which match the
above observation since 4t = 8h3 in case 1.

56 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Numerical example

h ‖p− ph‖∞ ‖p− ph‖0 |p− ph|1
1/8 5.7967× 10−1 1.3909× 10−1 1.3489× 100

1/16 9.4258× 10−2 2.3063× 10−2 6.3538× 10−1

1/32 1.8080× 10−2 4.2194× 10−3 3.1396× 10−1

1/64 3.8072× 10−3 8.6779× 10−4 1.5660× 10−1

Table: Case 1: The numerical errors at t = 1 for linear finite elements of
the pressure and backward Euler scheme (θ = 1) with 4t = 8h3.

Any Observation?
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Numerical example

Second order convergence O(h2) in L2/L∞ norm and first
order convergence O(h) in H1 semi-norm.

The backward Euler scheme has second order accuracy for
temporal discretization.

The linear finite element has second order accuracy in L2/L∞

norm and first order accuracy in H1 semi-norm for spatial
discretization.

Hence the accuracy order is expected to be O(4t+ h2) in
L2/L∞ norm and O(4t+ h) in H1 norm, which match the
above observation since 4t = 8h3 in case 1.
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Numerical example

However, you will also observe high cost in time for this case
since 4t = 8h3 is much smaller than that of the previous
cases.

When the mesh becomes finer and finer or the problem
becomes 3D, the situation is even worse.

This is why we need temporal discretization with higher order
accuracy and efficient methods to solve linear systems.
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Numerical example

h ‖u− uh‖∞ ‖u− uh‖0 |u− uh|1
1/8, 1/32 1.6027× 10−3 3.5322× 10−4 2.0242× 10−2

1/16, 1/64 1.9654× 10−4 4.3845× 10−5 5.0469× 10−3

1/32, 1/256 2.5111× 10−5 5.4811× 10−6 1.2619× 10−3

1/64, 1/512 3.1014× 10−6 6.8432× 10−7 3.1519× 10−4

Table: Case 2: The numerical errors at t = 1 for quadratic finite elements
of the velocity and Crank-Nicolson scheme (θ = 1

2 ) with 4t2 ≤ h3.

Any Observation?
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Numerical example

Third order convergence O(h3) in L2/L∞ norm and second
order convergence O(h2) in H1 semi-norm.

The Crank-Nicolson scheme has second order accuracy for
temporal discretization.

The quadratic finite element has third order accuracy in
L2/L∞ norm and second order accuracy in H1 semi-norm for
spatial discretization.

Hence the accuracy order is expected to be O(4t2 + h3) in
L2/L∞ norm and O(4t2 + h2) in H1 norm, which match the
above observation since 4t2 ≈ h3 in case 2.
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Numerical example

h ‖p− ph‖∞ ‖p− ph‖0 |p− ph|1
1/8, 1/32 2.0901× 10−1 3.8144× 10−2 1.2300× 100

1/16, 1/64 5.9514× 10−2 9.5006× 10−3 6.2249× 10−1

1/32, 1/256 1.8457× 10−2 2.4493× 10−3 3.1202× 10−1

1/64, 1/512 5.1034× 10−3 6.0165× 10−4 1.5634× 10−1

Table: Case 2: The numerical errors at t = 1 for linear finite elements of
the pressure and Crank-Nicolson scheme (θ = 1

2 ) with 4t2 ≤ h3.

Any Observation?
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Numerical example

Second order convergence O(h2) in L2/L∞ norm and first
order convergence O(h) in H1 semi-norm.

The Crank-Nicolson scheme has second order accuracy for
temporal discretization.

The linear finite element has second order accuracy in L2/L∞

norm and first order accuracy in H1 semi-norm for spatial
discretization.

Hence the accuracy order is expected to be O(4t2 + h2) in
L2/L∞ norm and O(4t2 + h) in H1 norm, which match the
above observation since 4t2 ≈ h3 in case 2.
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Efficient methods

Forward Euler: cheap at each time iteration step, but
conditionally stable, which means that 4t must be smaller
enough.

Multi-step methods for temporal discretization: two-step
backward differentiation, three-step backward differentiation,
Runge-Kutta method......

Efficient solvers for linear systems: multi-grid, PCG,
GMRES......

65 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Mixed boundary conditions

The treatment of the stress/Robin boundary conditions is
similar to that of Chapter 6.

If the functions in the stress/Robin boundary conditions are
independent of time, then the same subroutines from Chapter
6 can be used before the time iteration starts.

If the functions in the stress/Robin boundary conditions
depend on time, then the same algorithms as those in Chapter
6 can be used at each time iteration step. But the time needs
to be specified in these algorithms.
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Mixed boundary conditions

Consider

ut −∇ · T(u, p) = f in Ω×[0, T ],

∇ · u = 0 in Ω×[0, T ],

T(u, p)n = p on ΓS×[0, T ],

T(u, p)n + ru = q on ΓR×[0, T ],

u = g on ΓD×[0, T ],

u = u0, at t = 0 and in Ω.

where ΓS , ΓR ⊂ ∂Ω and ΓD = ∂Ω/(ΓS ∪ ΓR).
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Mixed boundary conditions

Recall∫
Ω
ut · v dxdy +

∫
Ω

2νD(u) : D(v) dxdy −
∫

Ω
p(∇ · v) dxdy

−
∫
∂Ω

(T(u, p)n) · v ds =

∫
Ω
f · v dxdy,

−
∫

Ω
(∇ · u)q dxdy = 0.

Since the solution on ΓD = ∂Ω/(ΓS ∪ ΓR) is given by u = g,
then we can choose the test function v(x, y) such that v = 0
on ∂Ω/(ΓS ∪ ΓR).
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Mixed boundary conditions

Hence, similar to the treatment of the mixed boundary
condition in Chapter 6, the weak formulation is to find
u ∈ H1(0, T ; [H1(Ω)]2) and p ∈ L2(0, T ;L2(Ω)) such that∫

Ω
ut · v dxdy +

∫
Ω

2νD(u) : D(v) dxdy

−
∫

Ω
p(∇ · v) dxdy+

∫
ΓR

ru · v ds

=

∫
Ω
f · v dxdy+

∫
ΓR

q · v ds+

∫
ΓS

p · v ds,

−
∫

Ω
(∇ · u)q dxdy = 0.

for any v ∈ [H1
0D(Ω)]2 and q ∈ L2(Ω) where

H1
0D(Ω) = {w ∈ H1(Ω) : w = 0 on ΓD}.

Code? Combine all of the subroutines for Dirichlet/Stress/Robin

boundary conditions.
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Mixed boundary conditions in normal/tangential directions

Consider

ut −∇ · T(u, p) = f in Ω×[0, T ],

∇ · u = 0 in Ω×[0, T ],

ntT(u, p)n = pn, τ
tT(u, p)n = pτ on ΓS×[0, T ],

ntT(u, p)n + rntu = qn, τ
tT(u, p)n + rτ tu = qτ on ΓR×[0, T ],

u = g on ΓD×[0, T ],

u = u0, at t = 0 and in Ω.

where ΓS , ΓR ⊂ ∂Ω, ΓD = ∂Ω/(ΓS ∪ ΓR), n = (n1, n2)t is
the unit outer normal vector of ∂Ω, and τ = (τ1, τ2)t is the
corresponding unit tangential vector of ∂Ω.
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Mixed boundary conditions in normal/tangential directions

Recall∫
Ω
ut · v dxdy +

∫
Ω

2νD(u) : D(v) dxdy −
∫

Ω
p(∇ · v) dxdy

−
∫
∂Ω

(T(u, p)n) · v ds =

∫
Ω
f · v dxdy,

−
∫

Ω
(∇ · u)q dxdy = 0.

Since the solution on ΓD = ∂Ω/(ΓS ∪ ΓR) is given by u = g,
then we can choose the test function v(x, y) such that v = 0
on ∂Ω/(ΓS ∪ ΓR).
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Mixed boundary conditions in normal/tangential directions

Similar to the derivation of mixed boundary conditions in
normal/tangential directions in Chapter 6, we obtain∫

∂Ω

(T(u, p)n) · v ds

=

∫
ΓS

(T(u, p)n) · v ds+

∫
ΓR

(T(u, p)n) · v ds

+

∫
∂Ω/(ΓS∪ΓR)

(T(u, p)n) · v ds

=

[∫
ΓS

pn(ntv) ds+

∫
ΓS

pτ (τ tv) ds

]
+

[∫
ΓR

qn(ntv) ds+

∫
ΓR

qτ (τ tv) ds

]
−
[∫

ΓR

(rntu)(ntv) ds+

∫
ΓR

(rτ tu)(τ tv) ds

]
,
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Mixed boundary conditions in normal/tangential directions

Hence, similar to the treatment of the mixed boundary conditions in
normal/tangential directions in Chapter 6, the weak formulation is to find
u ∈ H1(0, T ; [H1(Ω)]2) and p ∈ L2(0, T ;L2(Ω)) such that∫

Ω

ut · v dxdy +

∫
Ω

2νD(u) : D(v) dxdy −
∫

Ω

p(∇ · v) dxdy

+

∫
ΓR

(rntu)(ntv) ds+

∫
ΓR

(rτ tu)(τ tv) ds

=

∫
Ω

f · v dxdy+

∫
ΓR

qn(ntv) ds+

∫
ΓR

qτ (τ tv) ds

+

∫
ΓS

pn(ntv) ds+

∫
ΓS

pτ (τ tv) ds,

−
∫

Ω

(∇ · u)q dxdy = 0,

for any v ∈ [H1
0D(Ω)]2 and q ∈ L2(Ω).

Code? Combine all of the subroutines for Dirichlet/Stress/Robin
boundary conditions.
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Another format of full discretization

Recall the Galerkin formulation of the semi-discretization
(without considering the Dirichlet boundary condition, which
will be handled later): find uh ∈ H1(0, T ; [Uh]2) and
ph ∈ L2(0, T ;Wh) such that

(uht ,v) + a(uh,vh) + b(vh, ph) = (f ,vh),

b(uh, qh) = 0,

for any vh ∈ [Uh]2 and qh ∈Wh.

Instead of obtaining the matrix formulation from this
semi-discretization and proposing the full discretization based
on the matrix formulation, we can first present the full
discretization based on this semi-discretization and then
obtain the matrix formulation for the full discretization.
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Another format of full discretization

In more details of the vector format, the Galerkin formulation
(without considering the Dirichlet boundary condition, which
will be handled later) is to find uh ∈ H1(0, T ; [Uh]2) and
ph ∈ L2(0, T ;Wh) such that∫

Ω
uht · vh dxdy +

∫
Ω

2νD(uh) : D(vh) dxdy

−
∫

Ω
ph(∇ · vh) dxdy =

∫
Ω
f · vh dxdy,

−
∫

Ω
(∇ · uh)qh dxdy = 0,

for any vh ∈ [Uh]2 and qh ∈Wh.
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Another format of full discretization

In the scalar format, the Galerkin formulation (without considering
the Dirichlet boundary condition, which will be handled later) is to
find u1h ∈ H1(0, T ;Uh), u2h ∈ H1(0, T ;Uh), and
ph ∈ L2(0, T ;Wh) such that∫

Ω

∂u1h

∂t
v1h dxdy +

∫
Ω

∂u2h

∂t
v2h dxdy

+

∫
Ω

ν
(

2
∂u1h

∂x

∂v1h

∂x
+ 2

∂u2h

∂y

∂v2h

∂y
+
∂u1h

∂y

∂v1h

∂y

+
∂u1h

∂y

∂v2h

∂x
+
∂u2h

∂x

∂v1h

∂y
+
∂u2h

∂x

∂v2h

∂x

)
dxdy

−
∫

Ω

(
ph
∂v1h

∂x
+ ph

∂v2h

∂y

)
dxdy =

∫
Ω

(f1v1h + f2v2h) dxdy.

−
∫

Ω

(
∂u1h

∂x
qh +

∂u2h

∂y
qh

)
dxdy = 0.

for any v1h ∈ Uh, v2h ∈ Uh, and qh ∈Wh.
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Another format of full discretization

Assume that we have a uniform partition of [0, T ] into Mm

elements with mesh size 4t.
The mesh nodes are tm = m4t, m = 0, 1, · · · ,Mm.

Let u0
h and p0

h denote the given initial condition at t0.

Let umh and pmh denote the numerical solution at tm.

Then we consider the full discretization (without considering
the Dirichlet boundary condition, which will be handled later):
for m = 0, · · · ,Mm − 1, find um+1

h ∈ [Uh]2 and pm+1
h ∈Wh

such that

(
um+1
h − umh
4t

,v) + θa(um+1
h ,vh) + (1− θ)a(umh ,vh)

+θb(vh, p
m+1
h ) + (1− θ)b(vh, pmh )

= θ(f(tm+1),vh) + (1− θ)(f(tm),vh),

θb(um+1
h , qh) + (1− θ)b(umh , qh) = 0,
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Another format of full discretization

That is, for m = 0, · · · ,Mm − 1, find um+1
h ∈ [Uh]2 and

pm+1
h ∈Wh such that∫

Ω

um+1
h − umh
4t

· vh dxdy + θ

∫
Ω

2νD(um+1
h ) : D(vh) dxdy

+(1− θ)
∫

Ω
2νD(umh ) : D(vh) dxdy

−θ
∫

Ω
pm+1
h (∇ · vh) dxdy − (1− θ)

∫
Ω
pmh (∇ · vh) dxdy

= θ

∫
Ω
f(tm+1) · vh dxdy + (1− θ)

∫
Ω
f(tm) · vh dxdy,

−θ
∫

Ω
(∇ · um+1

h )qh dxdy − (1− θ)
∫

Ω
(∇ · umh )qh dxdy = 0,

for any vh ∈ [Uh]2 and qh ∈Wh.
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Another format of full discretization

For m = 0, · · · ,Mm − 1, find um+1
1h , um+1

2h ∈ Uh and pm+1
h ∈Wh such that∫

Ω

um+1
1h − um1h
4t

v1h dxdy +

∫
Ω

um+1
2h − um2h
4t

v2h dxdy

+θ

∫
Ω
ν
(

2
∂um+1

1h

∂x

∂v1h

∂x
+ 2

∂um+1
2h

∂y

∂v2h

∂y
+
∂um+1

1h

∂y

∂v1h

∂y

+
∂um+1

1h

∂y

∂v2h

∂x
+
∂um+1

2h

∂x

∂v1h

∂y
+
∂um+1

2h

∂x

∂v2h

∂x

)
dxdy

+(1− θ)
∫

Ω
ν
(

2
∂um1h
∂x

∂v1h

∂x
+ 2

∂um2h
∂y

∂v2h

∂y
+
∂um1h
∂y

∂v1h

∂y

+
∂um1h
∂y

∂v2h

∂x
+
∂um2h
∂x

∂v1h

∂y
+
∂um2h
∂x

∂v2h

∂x

)
dxdy

−θ
∫

Ω

(
pm+1
h

∂v1h

∂x
+ pm+1

h

∂v2h

∂y

)
dxdy

−(1− θ)
∫

Ω

(
pmh

∂v1h

∂x
+ pmh

∂v2h

∂y

)
dxdy

= θ

∫
Ω

(f1(tm+1)v1h + f2(tm+1)v2h) dxdy

+(1− θ)
∫

Ω
(f1(tm)v1h + f2(tm)v2h) dxdy,

79 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Another format of full discretization

−θ
∫

Ω
(
∂um+1

1h

∂x
qh +

∂um+1
2h

∂y
qh)dxdy

−(1− θ)
∫

Ω
(
∂um1h
∂x

qh +
∂um2h
∂y

qh)dxdy

= 0,

for any v1h ∈ Uh, v2h ∈ Uh, and qh ∈Wh.
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Another format of full discretization

Since um+1
1h , um+1

2h ∈ Uh, ph ∈Wh, Uh = span{φj}Nbj=1, and

Wh = span{ψj}
Nbp
j=1, then

um+1
1h (x, y) =

Nb∑
j=1

um+1
1j φj(x, y),

um+1
2h (x, y) =

Nb∑
j=1

um+1
2j φj(x, y),

pm+1
h (x, y) =

Nbp∑
j=1

pm+1
j ψj(x, y),

for some coefficients um+1
1j , um+1

2j (j = 1, · · · , Nb) and

pm+1
j (j = 1, · · · , Nbp).
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Another format of full discretization

If we can set up a linear algebraic system for

um+1
1j , um+1

2j (j = 1, · · · , Nb) and pm+1
j (j = 1, · · · , Nbp)

and solve it, then we can obtain the finite element solution
um+1

1h , um+1
2h , and pm+1

h .
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Another format of full discretization

For the first equation in the Galerkin formulation, we choose
vh = (φi, 0)t (i = 1, · · · , Nb) and
vh = (0, φi)

t (i = 1, · · · , Nb). That is, in the first set of test
functions, we choose v1h = φi (i = 1, · · · , Nb) and v2h = 0;
in the second set of test functions, we choose v1h = 0 and
v2h = φi (i = 1, · · · , Nb).

For the second equation in the Galerkin formulation, we
choose qh = ψi (i = 1, · · · , Nbp).
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Another format of full discretization

Set vh = (φi, 0)t, i.e., v1h = φi and v2h = 0 (i = 1, · · · , Nb),
in the first equation of the full discretization. Then

∫
Ω

∑Nb
j=1 u

m+1
1j φj −

∑Nb
j=1 u

m
1jφj

4t
φi dxdy + θ

∫
Ω
ν
[
2
∂
(∑Nb

j=1 u
m+1
1j φj

)
∂x

∂φi

∂x

+
∂
(∑Nb

j=1 u
m+1
1j φj

)
∂y

∂φi

∂y
+
∂
(∑Nb

j=1 u
m+1
2j φj

)
∂x

∂φi

∂y

]
dxdy

+(1− θ)
∫

Ω
ν
[
2
∂
(∑Nb

j=1 u
m
1jφj

)
∂x

∂φi

∂x
+
∂
(∑Nb

j=1 u
m
1jφj

)
∂y

∂φi

∂y

+
∂
(∑Nb

j=1 u
m
2jφj

)
∂x

∂φi

∂y

]
dxdy

−θ
∫

Ω

Nbp∑
j=1

pm+1
j ψj

 ∂φi

∂x
dxdy − (1− θ)

∫
Ω

Nbp∑
j=1

pmj ψj

 ∂φi

∂x
dxdy

= θ

∫
Ω
f1(tm+1)φi dxdy + (1− θ)

∫
Ω
f1(tm)φi dxdy.
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Another format of full discretization

Set vh = (0, φi)
t, i.e., v1h = 0 and v2h = φi (i = 1, · · · , Nb),

in the first equation of the full discretization. Then

∫
Ω

∑Nb
j=1 u

m+1
2j φj −

∑Nb
j=1 u

m
2jφj

4t
φi dxdy + θ

∫
Ω
ν
(

2
∂
(∑Nb

j=1 u
m+1
2j φj

)
∂y

∂φi

∂y

+
∂
(∑Nb

j=1 u
m+1
1j φj

)
∂y

∂φi

∂x
+
∂
(∑Nb

j=1 u
m+1
2j φj

)
∂x

∂φi

∂x

)
dxdy

+(1− θ)
∫

Ω
ν
(

2
∂
(∑Nb

j=1 u
m
2jφj

)
∂y

∂φi

∂y

+
∂
(∑Nb

j=1 u
m
1jφj

)
∂y

∂φi

∂x
+
∂
(∑Nb

j=1 u
m
2jφj

)
∂x

∂φi

∂x

)
dxdy

−θ
∫

Ω

Nbp∑
j=1

pm+1
j ψj

 ∂φi

∂y
dxdy − (1− θ)

∫
Ω

Nbp∑
j=1

pmj ψj

 ∂φi

∂y
dxdy

= θ

∫
Ω
f2(tm+1)φi dxdy + (1− θ)

∫
Ω
f2(tm)φi dxdy.
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Another format of full discretization

Set qh = ψi (i = 1, · · · , Nbp) in the second equation of the
full discretization. Then

−θ
∫

Ω

∂
(∑Nb

j=1 u
m+1
1j φj

)
∂x

ψi +
∂
(∑Nb

j=1 u
m+1
2j φj

)
∂y

ψi

 dxdy
−(1− θ)

∫
Ω

∂
(∑Nb

j=1 u
m
1jφj

)
∂x

ψi +
∂
(∑Nb

j=1 u
m
2jφj

)
∂y

ψi

 dxdy
= 0.
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Another format of full discretization

Simplify the above three sets of equations, we obtain

Nb∑
j=1

um+1
1j

(
1

4t

∫
Ω
φjφi dxdy + 2θ

∫
Ω
ν
∂φj

∂x

∂φi

∂x
dxdy + θ

∫
Ω
ν
∂φj

∂y

∂φi

∂y
dxdy

)

+

Nb∑
j=1

um+1
2j

(∫
Ω
ν
∂φj

∂x

∂φi

∂y
dxdy

)
+

Nbp∑
j=1

pm+1
j

(
θ

∫
Ω
−ψj

∂φi

∂x
dxdy

)

= θ

∫
Ω
f1(tm+1)φi dxdy + (1− θ)

∫
Ω
f1(tm)φi dxdy

+

Nb∑
j=1

um1j
[ 1

4t

∫
Ω
φjφi dxdy − 2(1− θ)

∫
Ω
ν
∂φj

∂x

∂φi

∂x
dxdy

−(1− θ)
∫

Ω
ν
∂φj

∂y

∂φi

∂y
dxdy

]
+

Nb∑
j=1

um2j

(
−(1− θ)

∫
Ω
ν
∂φj

∂x

∂φi

∂y
dxdy

)

+

Nbp∑
j=1

pmj

(
−(1− θ)

∫
Ω
−ψj

∂φi

∂x
dxdy

)
,
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Another format of full discretization

and
Nb∑
j=1

um+1
1j

(
θ

∫
Ω
ν
∂φj

∂y

∂φi

∂x
dxdy

)
+

Nb∑
j=1

um+1
2j

[ 1

4t

∫
Ω
φjφi dxdy

+2θ

∫
Ω
ν
∂φj

∂y

∂φi

∂y
dxdy + θ

∫
Ω
ν
∂φj

∂x

∂φi

∂x
dxdy

]
+

Nb∑
j=1

pm+1
j

(
θ

∫
Ω
−ψj

∂φi

∂y
dxdy

)

= θ

∫
Ω
f2(tm+1)φi dxdy + (1− θ)

∫
Ω
f2(tm)φi dxdy

+

Nb∑
j=1

um1j

(
−(1− θ)

∫
Ω
ν
∂φj

∂y

∂φi

∂x
dxdy

)

+

Nb∑
j=1

um2j
[ 1

4t

∫
Ω
φjφi dxdy − 2(1− θ)

∫
Ω
ν
∂φj

∂y

∂φi

∂y
dxdy

−(1− θ)
∫

Ω
ν
∂φj

∂x

∂φi

∂x
dxdy

]
+

Nb∑
j=1

pmj

(
−(1− θ)

∫
Ω
−ψj

∂φi

∂y
dxdy

)
,
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Another format of full discretization

and

Nb∑
j=1

um+1
1j

(
θ

∫
Ω
−∂φj
∂x

ψi dxdy

)

+

Nb∑
j=1

um+1
2j

(
θ

∫
Ω
−∂φj
∂y

ψi dxdy

)

=

Nb∑
j=1

um1j

(
−(1− θ)

∫
Ω
−∂φj
∂x

ψi dxdy

)

+

Nb∑
j=1

um2j

(
−(1− θ)

∫
Ω
−∂φj
∂y

ψi dxdy

)
.
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Another format of full discretization

Define

A1 =

[∫
Ω

ν
∂φj
∂x

∂φi
∂x

dxdy

]Nb
i,j=1

, A2 =

[∫
Ω

ν
∂φj
∂y

∂φi
∂y

dxdy

]Nb
i,j=1

,

A3 =

[∫
Ω

ν
∂φj
∂x

∂φi
∂y

dxdy

]Nb
i,j=1

, A4 =

[∫
Ω

ν
∂φj
∂y

∂φi
∂x

dxdy

]Nb
i,j=1

,

A5 =

[∫
Ω

−ψj
∂φi
∂x

dxdy

]Nb,Nbp
i=1,j=1

, A6 =

[∫
Ω

−ψj
∂φi
∂y

dxdy

]Nb,Nbp
i=1,j=1

,

A7 =

[∫
Ω

−∂φj
∂x

ψi dxdy

]Nbp,Nb
i=1,j=1

, A8 =

[∫
Ω

−∂φj
∂y

ψi dxdy

]Nbp,Nb
i=1,j=1

.

Define a zero matrix O1 = [0]
Nbp,Nbp
i=1,j=1 whose size is Nbp ×Nbp.

Then

A =

 2A1 +A2 A3 A5

A4 2A2 +A1 A6

A7 A8 O1


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Another format of full discretization

Each matrix above can be obtained by Algorithm I-3 in
Chapter 3.

It is not difficult to verify (an independent study project topic)
that

A4 = At3, A7 = At5, A8 = At6.

Hence the matrix A is actually symmetric:

A =

 2A1 +A2 A3 A5

At3 2A2 +A1 A6

At5 At6 O1


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Another format of full discretization

Define the basic mass matrix

Me = [mij ]
Nb
i,j=1 =

[∫
Ω
φjφi dxdy

]Nb
i,j=1

.

The mass matrix Me can be obtained by Algorithm I-3 in
Chapter 3, with r = s = p = q = 0 and c = 1.

Define zero matrices O2 = [0]
Nb,Nbp
i=1,j=1 and O3 = [0]Nb,Nbi=1,j=1.

Then define the block mass matrix

M =

 Me O3 O2

O3 Me O2

Ot
2 Ot

2 O1


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Another format of full discretization

Define the load vector

~b(t) =

 ~b1(t)
~b2(t)
~0


where

~b1(t) =

[∫
Ω
f1φidxdy

]Nb
i=1

, ~b2(t) =

[∫
Ω
f2φidxdy

]Nb
i=1

.

Here the size of the zero vector is Nbp × 1. That is,

~0 = [0]
Nbp
i=1 .

Each of ~b1(t) and ~b2(t) can be obtained by Algorithm II-5 in
Chapter 4.

In the matrix formulation of the full discretization, we will use
~b1(tm+1), ~b2(tm+1), ~b1(tm), and ~b2(tm).
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Another format of full discretization

Define the unknown vector

~Xm+1 =

 ~Xm+1
1
~Xm+1

2
~Xm+1

3


where

~Xm+1
1 =

[
um+1

1j

]Nb
j=1

, ~Xm+1
2 =

[
um+1

2j

]Nb
j=1

, ~Xm+1
3 =

[
pm+1
j

]Nbp
j=1

.
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Another format of full discretization

Then we obtain the following matrix formulation:

(
M

4t
+ θA

)
~Xm+1 = θ~b(tm+1) + (1− θ)~b(tm)

+
M

4t
~Xm − (1− θ)A ~Xm,

which is the same as the matrix formulation obtained in the
last section.

Hence the rest of the derivation and the pseudo code are the
same as in the last section.
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Outline

1 Weak formulation

2 Semi-discretization

3 Full discretization

4 More Discussion

5 Unsteady linear elasticity equation
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Target problem

Consider

utt −∇ · σ(u) = f in Ω×[0, T ],

u = g on ∂Ω×[0, T ],

u = u0,
∂u

∂t
= u00 at t = 0 and in Ω.

The stress tensor σ(u) is defined as

σ(u) =

(
σ11(u) σ12(u)
σ21(u) σ22(u)

)
, σij(u) = λ (∇·u)δij+2µεij(u),

where λ and µ are Lamé parameters.
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Target problem

The strain tensor is defined as

ε =

(
ε11 ε12

ε21 ε22

)
, εij(u) =

1

2

(∂ui
∂xj

+
∂uj
∂xi

)
,

where

δij =

{
1, i = j,
0, i 6= j.

Hence the stress tensor can be written as

σ(u) =

(
λ∂u1
∂x1

+ 2µ∂u1
∂x1

+ λ∂u2
∂x2

µ∂u1
∂x2

+ µ∂u2
∂x1

µ∂u1
∂x2

+ µ∂u2
∂x1

λ∂u1
∂x1

+ λ∂u2
∂x2

+ 2µ∂u2
∂x2

)
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Weak formulation

First, take the inner product with a vector function
v(x1, x2) = (v1, v2)t on both sides of the original equation:

utt −∇ · σ(u) = f in Ω

⇒ utt · v − (∇ · σ(u)) · v = f · v in Ω

⇒
∫

Ω
utt · v dx1dx2 −

∫
Ω

(∇ · σ(u)) · v dx1dx2 =

∫
Ω
f · v dx1dx2.

u(x1, x2, t) is called a trail function and v(x1, x2) is called a
test function.
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Weak formulation

Second, using integration by parts in multi-dimension:∫
Ω

(∇ · σ(u)) · v dx1dx2 =

∫
∂Ω

(σ(u)n) · v ds−
∫

Ω

σ(u) : ∇v dx1dx2,

where n = (n1, n2)t is the unit outer normal vector of ∂Ω, we
obtain∫

Ω
utt · v dx1dx2 +

∫
Ω
σ(u) : ∇v dx1dx2 −

∫
∂Ω

(σ(u)n) · v ds

=

∫
Ω
f · v dx1dx2.

Here,

A : B =

(
a11 a12

a21 a22

)
:

(
b11 b12

b21 b22

)
= a11b11 + a12b12 + a21b21 + a22b22,
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Weak formulation

and

∇v =

(
∂v1
∂x1

∂v1
∂x2

∂v2
∂x1

∂v2
∂x2

)
.

Since the solution on the domain boundary ∂Ω are given by
u(x1, x2, t) = g(x1, x2, t), then we can choose the test
function v(x1, x2) such that v = 0 on ∂Ω.

Hence∫
Ω
utt · v dx1dx2 +

∫
Ω
σ(u) : ∇v dx1dx2 =

∫
Ω
f · v dx1dx2.

Define

H2(0, T ; [H1(Ω)]2) = {v(·, t), ∂v
∂t

(·, t), ∂
2v

∂t2
(·, t) ∈ [H1(Ω)]2, ∀t ∈ [0, T ]}

where [H1(Ω)]2 = H1(Ω)×H1(Ω).
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Weak formulation

Weak formulation for the unsteady linear elasticity equation:
find u ∈ H2(0, T ; [H1(Ω)]2) such that∫

Ω
utt · v dx1dx2 +

∫
Ω
σ(u) : ∇v dx1dx2 =

∫
Ω
f · v dx1dx2.

for any v ∈ [H1
0 (Ω)]2.

Let a(u,v) =
∫

Ω σ(u) : ∇v dx1dx2 and
(f ,v) =

∫
Ω f · v dx1dx2.

Weak formulation: find u ∈ H2(0, T ; [H1(Ω)]2) such that

(utt, v) + a(u,v) = (f ,v)

for any v ∈ [H1
0 (Ω)]2.

102 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Weak formulation

In details,

σ(u) : ∇v

=

(
σ11(u) σ12(u)
σ21(u) σ22(u)

)
:

(
∂v1
∂x1

∂v1
∂x2

∂v2
∂x1

∂v2
∂x2

)

= σ11(u)
∂v1

∂x1
+ σ12(u)

∂v1

∂x2
+ σ21(u)

∂v2

∂x1
+ σ22(u)

∂v2

∂x2

=

(
λ
∂u1

∂x1
+ 2µ

∂u1

∂x1
+ λ

∂u2

∂x2

)
∂v1

∂x1

+

(
µ
∂u1

∂x2
+ µ

∂u2

∂x1

)
∂v1

∂x2
+

(
µ
∂u1

∂x2
+ µ

∂u2

∂x1

)
∂v2

∂x1

+

(
λ
∂u1

∂x1
+ λ

∂u2

∂x2
+ 2µ

∂u2

∂x2

)
∂v2

∂x2
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Weak formulation

Then ∫
Ω
σ(u) : ∇v dx1dx2

=

∫
Ω

(
λ
∂u1

∂x1

∂v1

∂x1
+ 2µ

∂u1

∂x1

∂v1

∂x1
+ λ

∂u2

∂x2

∂v1

∂x1

+µ
∂u1

∂x2

∂v1

∂x2
+ µ

∂u2

∂x1

∂v1

∂x2
+ µ

∂u1

∂x2

∂v2

∂x1
+ µ

∂u2

∂x1

∂v2

∂x1

+λ
∂u1

∂x1

∂v2

∂x2
+ λ

∂u2

∂x2

∂v2

∂x2
+ 2µ

∂u2

∂x2

∂v2

∂x2

)
dx1dx2.

Also, we have∫
Ω
f · v dx1dx2 =

∫
Ω

(f1v1 + f2v2) dx1dx2,∫
Ω
utt · v dx1dx2 =

∫
Ω

(
∂2u1

∂t2
v1 +

∂2u2

∂t2
v2

)
dx1dx2.
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Weak formulation

Weak formulation in the scalar format: find
u1 ∈ H2(0, T ;H1(Ω)) and u2 ∈ H2(0, T ;H1(Ω)) such that∫

Ω

(
∂2u1

∂t2
v1 +

∂2u2

∂t2
v2

)
dx1dx2

+

∫
Ω

(
λ
∂u1

∂x1

∂v1

∂x1
+ 2µ

∂u1

∂x1

∂v1

∂x1
+ λ

∂u2

∂x2

∂v1

∂x1

+µ
∂u1

∂x2

∂v1

∂x2
+ µ

∂u2

∂x1

∂v1

∂x2
+ µ

∂u1

∂x2

∂v2

∂x1
+ µ

∂u2

∂x1

∂v2

∂x1

+λ
∂u1

∂x1

∂v2

∂x2
+ λ

∂u2

∂x2

∂v2

∂x2
+ 2µ

∂u2

∂x2

∂v2

∂x2

)
dx1dx2

=

∫
Ω

(f1v1 + f2v2) dx1dx2.

for any v1 ∈ H1
0 (Ω) and v2 ∈ H1

0 (Ω).
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Galerkin formulation

Assume there is a finite dimensional subspace Uh ⊂ H1(Ω).
Define Uh0 to be the space which consists of the functions of
Uh with value 0 on the Dirichlet boundary.

Then the Galerkin formulation is to find uh ∈ H2(0, T ; [Uh]2)
such that

(uhtt , v) + a(uh,vh) = (f ,vh)

⇔
∫

Ω
σ(uh) : ∇vh dx1dx2 =

∫
Ω
f · vh dx1dx2

for any vh ∈ [Uh0]2.

Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

Here Uh = span{φj}Nbj=1 is chosen to be a finite element

space where {φj}Nbj=1 are the global finite element basis
functions, such as those defined in Chapter 2.
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Galerkin formulation

For an easier implementation, we use the following Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find
uh ∈ H2(0, T ; [Uh]2) such that

(uhtt , v) + a(uh,vh) = (f ,vh)

⇔
∫

Ω
σ(uh) : ∇vh dx1dx2 =

∫
Ω
f · vh dx1dx2

for any vh ∈ [Uh]2.
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Galerkin formulation

In details, the Galerkin formulation is to find
u1h ∈ H2(0, T ;Uh) and u2h ∈ H2(0, T ;Uh) such that∫

Ω

(
∂2u1h

∂t2
v1h +

∂2u2h

∂t2
v2h

)
dx1dx2

+

∫
Ω

(
λ
∂u1h

∂x1

∂v1h

∂x1
+ 2µ

∂u1h

∂x1

∂v1h

∂x1
+ λ

∂u2h

∂x2

∂v1h

∂x1

+µ
∂u1h

∂x2

∂v1h

∂x2
+ µ

∂u2h

∂x1

∂v1h

∂x2
+ µ

∂u1h

∂x2

∂v2h

∂x1
+ µ

∂u2h

∂x1

∂v2h

∂x1

+λ
∂u1h

∂x1

∂v2h

∂x2
+ λ

∂u2h

∂x2

∂v2h

∂x2
+ 2µ

∂u2h

∂x2

∂v2h

∂x2

)
dx1dx2

=

∫
Ω

(f1v1h + f2v2h) dx1dx2.

for any v1h ∈ Uh and v2h ∈ Uh.
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Discretization formulation

Since u1h, u2h ∈ H2(0, T ;Uh) and Uh = span{φj}Nbj=1, then

u1h(x, y, t) =

Nb∑
j=1

u1j(t)φj , u2h(x, y, t) =

Nb∑
j=1

u2j(t)φj ,

for some coefficients u1j(t) and u2j(t) (j = 1, · · · , Nb).

If we can set up a linear algebraic system for u1j(t) and
u2j(t) (j = 1, · · · , Nb), then we can solve it to obtain the
finite element solution uh = (u1h, u2h)t.

We choose vh = (φi, 0)t (i = 1, · · · , Nb) and
vh = (0, φi)

t (i = 1, · · · , Nb). That is, in the first set of test
functions, we choose v1h = φi (i = 1, · · · , Nb) and v2h = 0;
in the second set of test functions, we choose v1h = 0 and
v2h = φi (i = 1, · · · , Nb).
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Discretization formulation

Set vh = (φi, 0)t, i.e., v1h = φi and v2h = 0 (i = 1, · · · , Nb). Then∫
Ω

(
Nb∑
j=1

u1j(t)φj

)
tt

φi dxdy +

∫
Ω

λ

(
Nb∑
j=1

u1j
∂φj
∂x1

)
∂φi
∂x1

dx1dx2

+2

∫
Ω

µ

(
Nb∑
j=1

u1j
∂φj
∂x1

)
∂φi
∂x1

dx1dx2 +

∫
Ω

λ

(
Nb∑
j=1

u2j
∂φj
∂x2

)
∂φi
∂x1

dx1dx2

+

∫
Ω

µ

(
Nb∑
j=1

u1j
∂φj
∂x2

)
∂φi
∂x2

dx1dx2 +

∫
Ω

µ

(
Nb∑
j=1

u2j
∂φj
∂x1

)
∂φi
∂x2

dx1dx2

=

∫
Ω

f1φidx1dx2.
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Discretization formulation

Set vh = (0, φi)
t, i.e., v1h = 0 and v2h = φi (i = 1, · · · , Nb). Then∫

Ω

(
Nb∑
j=1

u2j(t)φj

)
tt

φi dxdy +

∫
Ω

µ

(
Nb∑
j=1

u1j
∂φj
∂x2

)
∂φi
∂x1

dx1dx2

+

∫
Ω

µ

(
Nb∑
j=1

u2j
∂φj
∂x1

)
∂φi
∂x1

dx1dx2 +

∫
Ω

λ

(
Nb∑
j=1

u1j
∂φj
∂x1

)
∂φi
∂x2

dx1dx2

+

∫
Ω

λ

(
Nb∑
j=1

u2j
∂φj
∂x2

)
∂φi
∂x2

dx1dx2 + 2

∫
Ω

µ

(
Nb∑
j=1

u2j
∂φj
∂x2

)
∂φi
∂x2

dx1dx2

=

∫
Ω

f2φidx1dx2.
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Discretization formulation

Simplify the above two sets of equations, we obtain

Nb∑
j=1

u′′1j(t)

∫
Ω
φjφidxdy +

Nb∑
j=1

u1j

(∫
Ω
λ
∂φj

∂x1

∂φi

∂x1
dx1dx2 + 2

∫
Ω
µ
∂φj

∂x1

∂φi

∂x1
dx1dx2

+

∫
Ω
µ
∂φj

∂x2

∂φi

∂x2
dx1dx2

)
+

Nb∑
j=1

u2j

(∫
Ω
λ
∂φj

∂x2

∂φi

∂x1
dx1dx2 +

∫
Ω
µ
∂φj

∂x1

∂φi

∂x2
dx1dx2

)

=

∫
Ω
f1φidx1dx2

Nb∑
j=1

u′′2j(t)

∫
Ω
φjφi dxdy +

Nb∑
j=1

u1j

(∫
Ω
λ
∂φj

∂x1

∂φi

∂x2
dx1dx2 +

∫
Ω
µ
∂φj

∂x2

∂φi

∂x1
dx1dx2

)

+

Nb∑
j=1

u2j

(∫
Ω
λ
∂φj

∂x2

∂φi

∂x2
dx1dx2 + 2

∫
Ω
µ
∂φj

∂x2

∂φi

∂x2
dx1dx2 +

∫
Ω
µ
∂φj

∂x1

∂φi

∂x1
dx1dx2

)

=

∫
Ω
f2φidx1dx2.
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Matrix formulation

Define

A1 =

[∫
Ω

λ
∂φj
∂x1

∂φi
∂x1

dx1dx2

]Nb
i,j=1

, A2 =

[∫
Ω

µ
∂φj
∂x1

∂φi
∂x1

dx1dx2

]Nb
i,j=1

,

A3 =

[∫
Ω

µ
∂φj
∂x2

∂φi
∂x2

dx1dx2

]Nb
i,j=1

, A4 =

[∫
Ω

λ
∂φj
∂x2

∂φi
∂x1

dx1dx2

]Nb
i,j=1

,

A5 =

[∫
Ω

µ
∂φj
∂x1

∂φi
∂x2

dx1dx2

]Nb
i,j=1

, A6 =

[∫
Ω

λ
∂φj
∂x1

∂φi
∂x2

dx1dx2

]Nb
i,j=1

,

A7 =

[∫
Ω

µ
∂φj
∂x2

∂φi
∂x1

dx1dx2

]Nb
i,j=1

, A8 =

[∫
Ω

λ
∂φj
∂x2

∂φi
∂x2

dx1dx2

]Nb
i,j=1

.

Each matrix above can be obtained by Algorithm I-3 in Chapter 3.

Then

A =

(
A1 + 2A2 +A3 A4 +A5

A6 +A7 A8 + 2A3 +A2

)
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Matrix formulation

Define the basic mass matrix

Me = [mij ]
Nb
i,j=1 =

[∫
Ω
φjφi dxdy

]Nb
i,j=1

.

The mass matrix Me can be obtained by Algorithm I-3 in
Chapter 3, with r = s = p = q = 0 and c = 1.

Define a zero matrix O4 = [0]Nb,Nbi=1,j=1. Then define the block
mass matrix

M =

(
Me O4

O4 Me

)

114 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Matrix formulation

Define the load vector

~b(t) =

(
~b1(t)
~b2(t)

)

where

~b1(t) =

[∫
Ω
f1φidx1dx2

]Nb
i=1

, ~b2(t) =

[∫
Ω
f2φidx1dx2

]Nb
i=1

.

Each of ~b1(t) and ~b2(t) can be obtained by Algorithm II-5 in
Chapter 4.
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Matrix formulation

Define the unknown vector

~X(t) =

(
~X1(t)
~X2(t)

)

where

~X1(t) = [u1j(t)]
Nb
j=1 ,

~X2(t) = [u2j(t)]
Nb
j=1 .
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Matrix formulation

We obtain the second order ODE system

M ~X ′′(t) +A ~X(t) = ~b(t).

The structure of this ODE system is the same as that of the
second order ODE system obtained for the second order
hyperbolic equation in Chapter 4.

Hence the same finite difference schemes in Chapter 4 can be
directly utilized for this ODE system.

The major differences between this ODE system and the one
in Chapter 4 are the details in the definition of M , A, ~X and
~b, which were discussed above.
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Assembly of a time-independent matrix

Recall Algorithm I-3 from Chapter 3:

Initialize the matrix: A = sparse(N test
b , N trial

b );

Compute the integrals and assemble them into A:

FOR n = 1, · · · , N
FOR α = 1, · · · , N trial

lb

FOR β = 1, · · · , N test
lb

Compute r =
∫
En
c∂

r+sϕnα
∂xr∂ys

∂p+qψnβ
∂xp∂yq dxdy;

Add r to A(Tb(β, n), Tb(α, n)).
END

END
END
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Assembly of the time-independent stiffness matrix

Call Algorithm I-3 with r = 1, s = 0, p = 1, and q = 0 and c = λ to obtain A1.

Call Algorithm I-3 with r = 1, s = 0, p = 1, and q = 0 and c = µ to obtain A2.

Call Algorithm I-3 with r = 0, s = 1, p = 0, and q = 1 and c = µ to obtain A3.

Call Algorithm I-3 with r = 0, s = 1, p = 1, and q = 0 and c = λ to obtain A4.

Call Algorithm I-3 with r = 1, s = 0, p = 0, and q = 1 and c = µ to obtain A5.

Call Algorithm I-3 with r = 1, s = 0, p = 0, and q = 1 and c = λ to obtain A6.

Call Algorithm I-3 with r = 0, s = 1, p = 1, and q = 0 and c = µ to obtain A7.

Call Algorithm I-3 with r = 0, s = 1, p = 0, and q = 1 and c = λ to obtain A8.

Then the stiffness matrix
A = [A1 + 2A2 +A3 A4 +A5;A6 +A7 A8 + 2A3 +A2].
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Assembly of the mass matrix

Call Algorithm I-3 with r = 0, s = 0, p = 0, q = 0, c = 1, to
obtain the basic mass matrix Me.

Generate a zero matrix O4 whose size is Nb ×Nb.

Then the block mass matrix M = [Me O4 ;O4 Me].
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Assembly of a time-independent vector

Recall Algorithm II-3 from Chapter 3:

Initialize the matrix: b = sparse(Nb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · , N :
FOR β = 1, · · · , Nlb:

Compute r =
∫
En
f
∂p+qψnβ
∂xp∂yq dxdy;

b(Tb(β, n), 1) = b(Tb(β, n), 1) + r;
END

END
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Assembly of a time-dependent vector

Recall Algorithm II-5 from Chapter 4:

Specify a value for the time t based on the input time;

Initialize the vector: b = sparse(Nb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · , N :
FOR β = 1, · · · , Nlb:

Compute r =
∫
En
f(t)

∂p+qψnβ
∂xp∂yq dxdy;

b(Tb(β, n), 1) = b(Tb(β, n), 1) + r;
END

END
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Assembly of the load vector

Call Algorithm II-5 with p = q = 0 and f = f1 to obtain b1(t).

Call Algorithm II-5 with p = q = 0 and f = f2 to obtain b2(t).

Then the load vector ~b = [b1(t); b2(t)].

If f1 and f2 do not depend on t, then this part is exactly the
same as the assembly of the load vector with Algorithm II-3 in
Chapter 5.
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Time-dependent Dirichlet boundary condition

Recall Algorithm III-4 from this chapter:

Specify a value for the time t based on the input time;

Deal with the Dirichlet boundary conditions:

FOR k = 1, · · · , nbn:
If boundarynodes(1, k) shows Dirichlet condition, then

i = boundarynodes(2, k);
Ā(i, :) = 0;
Ā(i, i) = 1;
b̄(i) = g1(Pb(:, i), t);
Ā(Nb + i, :) = 0;
Ā(Nb + i,Nb + i) = 1;
b̄(Nb + i) = g2(Pb(:, i), t);

ENDIF
END
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Temporal discretization for the ODE system

Consider the centered finite difference scheme for the system
of ODEs:

M ~X ′′(t) +A ~X(t) = ~b(t).

Assume that we have a uniform partition of [0, T ] into Mm

elements with mesh size 4t.

The mesh nodes are tm = m4t, m = 0, 1, · · · ,Mm.

Assume ~Xm is the numerical solution of ~X(tm).

Then the centered finite difference scheme is

M
~Xm+1 − 2 ~Xm + ~Xm−1

4t2
+A

~Xm+1 + 2 ~Xm + ~Xm−1

4

= ~b(tm), m = 1, · · · ,Mm.
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Temporal discretization for the ODE system

Iteration scheme 2:

Ā ~Xm+1 = ~̄bm+1, m = 1, · · · ,Mm,

where

Ā =
M

4t2
+
A

4
,

~̄bm+1 = ~b(tm) +

[
2M

4t2
− A

2

]
~Xm −

[
M

4t2
+
A

4

]
~Xm−1.

126 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Temporal discretization for the ODE system

Algorithm B:

Generate the mesh information matrices P and T .

Assemble the mass matrix M by using Algorithm I-3.

Assemble the stiffness matrix A by using Algorithm I-3.

Generate the initial vector ~X0 and ~X1 based on the initial
conditions.

Iterate in time:
FOR m = 1, · · · ,Mm − 1:

tm = m4t;
Assemble the load vectors ~b(tm) by using Algorithm II-5

at t = tm;
Deal with Dirichlet boundary conditions by using

Algorithm III-4 for Ā and ~̄bm+1 at t = tm+1;
Solve iteration scheme 2 for ~Xm+1.

END
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Mixed boundary conditions for unsteady linear elasticity
equations

Consider

utt −∇ · σ(u) = f in Ω×[0, T ],

σ(u)n = p on ΓS×[0, T ],

σ(u)n + ru = q on ΓR×[0, T ],

u = g on ΓD×[0, T ],

u = u0,
∂u

∂t
= u00, at t = 0 and in Ω.

where ΓS , ΓR ⊂ ∂Ω and ΓD = ∂Ω/(ΓS ∪ ΓR).
Recall∫

Ω

utt · v dx1dx2 +

∫
Ω

σ(u) : ∇v dx1dx2 −
∫
∂Ω

(σ(u)n) · v ds

=

∫
Ω

f · v dx1dx2.
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Mixed boundary conditions for unsteady linear elasticity
equations

Since the solution on ΓD = ∂Ω/(ΓS ∪ ΓR) is given by u = g,
then we can choose the test function v(x1, x2) such that
v = 0 on ∂Ω/(ΓS ∪ ΓR).

Hence, similar to the treatment of the mixed boundary
condition in Chapter 5, the weak formulation is to find
u ∈ H2(0, T ; [H1(Ω)]2) such that∫

Ω
uttv dxdy +

∫
Ω
σ(u) : ∇v dx1dx2+

∫
ΓR

ru · v ds

=

∫
Ω
f · v dx1dx2+

∫
ΓR

q · v ds+

∫
ΓS

p · v ds

for any v ∈ [H1
0D(Ω)]2 where

H1
0D(Ω) = {w ∈ H1(Ω) : w = 0 on ΓD}.

Code? Combine all of the subroutines for Dirichlet/Stress/Robin

boundary conditions.
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Mixed boundary conditions in normal/tangential directions
for unsteady linear elasticity equations

Consider

utt −∇ · σ(u) = f in Ω×[0, T ],

ntσ(u)n = pn, τ
tσ(u)n = pτ on ΓS×[0, T ],

ntσ(u)n + rntu = qn, τ
tσ(u)n + rτ tu = qτ on ΓR×[0, T ],

u = g on ΓD×[0, T ],

u = u0,
∂u

∂t
= u00, at t = 0 and in Ω.

where ΓS , ΓR ⊂ ∂Ω, ΓD = ∂Ω/(ΓS ∪ ΓR), n = (n1, n2)t is
the unit outer normal vector of ∂Ω, and τ = (τ1, τ2)t is the
corresponding unit tangential vector of ∂Ω.
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Mixed boundary conditions in normal/tangential directions
for unsteady linear elasticity equations

Recall ∫
Ω
utt · v dx1dx2 +

∫
Ω
σ(u) : ∇v dx1dx2

−
∫
∂Ω

(σ(u)n) · v ds

=

∫
Ω
f · v dx1dx2.

Since the solution on ΓD = ∂Ω/(ΓS ∪ ΓR) is given by u = g,
then we can choose the test function v(x1, x2) such that
v = 0 on ∂Ω/(ΓS ∪ ΓR).

131 / 133



Weak formulation Semi-discretization Full discretization More Discussion Unsteady linear elasticity equation

Dirichlet/stress/Robin mixed boundary condition in
normal/tangential directions

Similar to the derivation of mixed boundary conditions in
normal/tangential directions in Chapter 5, we obtain∫

∂Ω

(σ(u)n) · v ds

=

∫
ΓS

(σ(u)n) · v ds+

∫
ΓR

(σ(u)n) · v ds+

∫
∂Ω/(ΓS∪ΓR)

(σ(u)n) · v ds

=

[∫
ΓS

pn(ntv) ds+

∫
ΓS

pτ (τ tv) ds

]
+

[∫
ΓR

qn(ntv) ds+

∫
ΓR

qτ (τ tv) ds

]
−
[∫

ΓR

(rntu)(ntv) ds+

∫
ΓR

(rτ tu)(τ tv) ds

]
,
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Mixed boundary conditions in normal/tangential directions
for unsteady linear elasticity equations

Hence, similar to the treatment of the mixed boundary
conditions in normal/tangential directions in Chapter 5, the
weak formulation is to find u ∈ H2(0, T ; [H1(Ω)]2) such that∫

Ω

utt · v dx1dx2 +

∫
Ω

σ(u) : ∇v dx1dx2

+

∫
ΓR

(rntu)(ntv) ds+

∫
ΓR

(rτ tu)(τ tv) ds

=

∫
Ω

f · v dx1dx2+

∫
ΓR

qn(ntv) ds+

∫
ΓR

qτ (τ tv) ds

+

∫
ΓS

pn(ntv) ds+

∫
ΓS

pτ (τ tv) ds.

for any v ∈ [H1
0D(Ω)]2.

Code? Combine all of the subroutines for
Dirichlet/Stress/Robin boundary conditions.
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