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Weak formulation
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Weak formulation
Target problem
@ Consider the 2D unsteady Stokes equation

u — V- -T(u,p) =1£, in Qx[0,T],
V-u=0 in Qx[0,T7],

u=g, ondNx|[0,T],

u=1ugy, p=po, att=20andin Q.

where 2 is a 2D domain, [0, 7] is the time interval, f(x,y,t) is
a given function on Qx[0, 7], g(x,y,t) is a given function on
00x[0,T], ug(x,y) and po(x,y) are given functions on € at

t =0, u(zr,y,t) and p(z,y,t) are the unknown functions, and

u(a:,y,t) - (u17 u2)t7 f($7y7t) = (fh f2)t7
g(:):,y,t) - (gla 92)t7 uO(may) - (ul()v u20)t'
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Weak formulation
Target problem
@ The stress tensor T(u, p) is defined as
T(u,p) = 2vD(u) — pl
where v is the viscosity and the deformation tensor
1
D(u) = §(Vu + (Vu)h).

@ In more details, the deformation tensor can be written as

Juy <8u1 + 8u2>
]D)(ll) _ ox
(am i am) %2

@ Hence the stress tensor can be written as

21/% —-p (8u1 + 8u2>
X

T(ll,p) = (8u1 + Buz) 2V%u2 —p
Y
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Weak formulation
Weak formulation

o First, take the inner product with a vector function
v(z,y) = (v1, v2)! on both sides of the Stokes equation:

u — V- -T(u,p)=1f inQ
= w-v—V -T(up)-v=Ff-v inQ

= /ut~vdwdy—/(V-’]I‘(u,p))-vdxdy:/f'vdxdy
Q Q Q
@ Second, multiply the divergence free equation by a function
q(z,y):
Vu=0 = (V-u)g=0

= /(V-u)q dxdy = 0.
Q

e u(z,y,t) and p(z,y,t) are called trail functions and v(z,y)
and ¢(x,y) are called test functions.
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Weak formulation
Weak formulation

@ Using integration by parts in multi-dimension:

/(V-T)'vda:dy:/ (Tn)‘vds—/T:Vvdxdy,
Q oN Q

where n = (ny, ng)! is the unit outer normal vector of 99, we
obtain

/ u; - v dedy — / T(u,p) : Vv dedy —/ (T(u,p)n) - v ds
Q Q a0

= /f-vdwdy.
Q

Here,
A-B — (all a12>:<b11 b12>
as1 @99 ba1  bag

= a11b11 + a12b12 + a21b21 + azabas.
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Weak formulation
Weak formulation

@ Using the above definition for A : B, it is not difficult to verify
(an independent study project topic) that

T(u,p): Vv = (2vD(u) —pl): Vv
= 2uD(u) : D(v) — p(V - v).

@ Hence we obtain
/ u; - v dzdy +/ 2vD(u) : D(v) dedy — / p(V -v) dzxdy
Q Q Q

—/ (T(u,p)n) -vds = / f-v dxdy,
onN Q

—/(V -u)q dzdy = 0.
Q

Here we multiply the second equation by —1 in order to keep

the matrix formulation symmetric later.
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Weak formulation
Weak formulation

@ Since the solution on the domain boundary 9§ are given by
u(z,y,t) = g(z,y,t), then we can choose the test function v(z,y)
such that v = 0 on 9.

@ Hence

/ u; - v dedy —|—/ 2vD(u) : D(v) dedy — / p(V - v) dedy
Q Q Q

:/f-vd;vdy,

Q

—/(V~u)q dzdy = 0.
Q

@ Define

HY0,T; [HY(Q)]?) = {v (1), %‘t/(’»t) € [H'(Q), vt € [0, 71},

L*(0,T; L*(Q)) = {q(-,t) € L*(), Vt € [0,T]}.
where [H1(Q)]2 = H'(Q) x H'(Q).
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Weak formulation
Weak formulation

@ Weak formulation in the vector format: find
uc HY0,T;[HY(Q)]?) and p € L?(0,T; L?(Q2)) such that

/ u; - v dzdy +/ 2vD(u) : D(v) dedy — / p(V -v) dzxdy
Q Q

Q
:/f-vd:z:dy,
Q

—/(V-u)q dzdy = 0,
Q

for any v € [H}(Q)]? and q € L?(Q).
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Weak formulation
Weak formulation

@ Define
a(u, v) = /Q 2uD(u) : D(v) dedy,
) = = [ (V- w)q dady,
(f,v):/Qf-vda:dy.

e Weak formulation: find u € H'(0,T; [H'(Q)]?) and
p € L2(0,T; L?()) such that

(ug,v) +a(u,v)+b(v,p) = (f,v),
b(“?Q) = 0,

for any v € [H(Q)]? and ¢ € L*(Q).
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Weak formulation
Weak formulation

@ In more details,

1 (0 )
(35 %)

vy
ox

0 o)
(542

N 8U1 (%1 1 %
= 8y

8x O

1 (Our Oug
(%8
@Q
Oy

1 { Ovy vy
5 (% + %)
@Q
Jy

8U2 (91)1 (9112
* 837) <8y * 81')

L(0um , Ous (Ov  Ovz) | Dup
4 \ Oy ox oy ox

8'[,62 (91]2

dy dy’
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Weak formulation
Weak formulation

@ Hence
D(u) : D(v)
_ Owou | Ouzdvy , 10wy Ou
Oz Ox Oy Oy 2 0y Oy
LOuy 9vy | 10uz Ov1 , 1 Juz Ovy
20y Or 2 0x Oy 2 0x Ox’
@ Then

/ 2vD(u) : D(v) dzdy
Q

o 8u1 81)1 8u2 81)2 8u1 81)1
a /QV<28x 833+28y 8y+8y Oy
Ouy Ovy | Ous Qv | Duz Ovy

By ox oz oy T on a;C)df“dy‘
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Weak formulation
Weak formulation

@ We also have

/ u; - v dedy = / L dxdy +/ UQ dxdy,
. (9’1)1 8'1}2
/Qp(V -v) dxdy = /Q (p o +p 8y> dxdy,

/ £.v dedy / (Fror + favs) dedy,
Q Q

o 8U1 811,2
/Q(V’u)q dxdy/g <8x + ayq) dxdy.
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Weak formulation
Weak formulation

@ Weak formulation in the scalar format: find
uy € HY0,T; [H ()]?), uz € H(0,T;[H*(Q)]?), and
p € L?(0,T; L?(2)) such that

8U1 au2 8’&1 81}1

6U2 81)2 6u1 (9211 6u1 (91}2 OUQ 8’01 GUQ 8’02
2oy oy oy oy T oy ox T ow oy 0w ox

6v1 81)2
—/Q (pax +p8y> dmdy

= /Q(flvl + fov2) dxdy.

8u1 8’LL2 o
—A <8Iq + ayq) dﬂ?dy =0.

for any vy € H}(Q), v2 € HE(Q), and ¢ € L*(Q2).

)dmdy
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Semi-discretization

Outline

© Semi-discretization
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Semi-discretization

Galerkin formulation

e Consider a finite element space U;, C H*(2) for the velocity
and a finite element space W}, C L%(Q) for the pressure.
Define Uy to be the space which consists of the functions of
Up, with value 0 on the Dirichlet boundary.

@ Then the Galerkin formulation is to find u, € H(0,T;[U}])?)
and p;, € L?(0,T;W},) such that

(up,, v) +a(up, vp) +b(vp,pn) = (£, va),
b(uhaqh) = 07

for any v, € [Upol? and q € Wy,
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Semi-discretization

Galerkin formulation

@ For an easier implementation, we use the following Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find
u, € HY(0,T;[Uy)?) and py, € L%(0,T; W},) such that

(up,, v) +a(up, vp) +b(vp,pn) = (£, va),
b(Uh,Qh) = 07

for any v, € [Uy)? and g, € W),
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Semi-discretization

Galerkin formulation

@ In more details of the vector format, the Galerkin formulation
(without considering the Dirichlet boundary condition, which
will be handled later) is to find uj, € H'(0,T;[U]?) and
pn € L2(0,T; W3) such that

/ uy, - vy, dedy +/ 2vD(uy) : D(vy) dxdy
Q Q
—/ph(V - vp) dedy = / f- vy, dedy,
Q Q
- / (V- up)qn dedy =0,
Q

for any v, € [Uy)? and g, € W),
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Semi-discretization

Galerkin formulation

@ In our numerical example Uy, = spcm{@ *, and
Wy, = span{wj} | are chosen to be the f|n|te element spaces
with the quadratic global basis functions {gf)j}j:”l and linear

global basis functions {%}jvzb‘i which are defined in Chapter
2. They are called Taylor-Hood finite elements.

@ Why do we choose the pairs of finite elements in this way?

@ Stability of mixed finite elements: inf-sup condition.

inf sup __blanan) > g
07an €W 04w, e, x U, VUi lo ll4nllo
where 5 > 0 is a constant independent of mesh size h.
@ See other course materials and references for the theory and
more examples of stable mixed finite elements for Stokes
equation.

20 /133



Semi-discretization

Galerkin formulation

@ In the scalar format, the Galerkin formulation (without considering
the Dirichlet boundary condition, which will be handled later) is to
find uy, € HY(0,T;Uy,), ugp € HY(0,T;Uy), and
pn € L?(0,T;W},) such that

Ouip /3U2h
—_ dxd , dxd
/Q ¢ Vb 07 Y+ 7 vap dxdy

+/ V(2 Ousp, Ovyp, Ougp, Qvap,  OQuyp, Ovip
Q

2
dr Ox + dy Oy Jy Oy

Ouyp, Ovap,  Ouagp Ovip, | Ouap 8U2h) dd
Jdy Ox or Oy Jxr O Y

0 0
- / (ph U “2h> dady = / (Fromn + favan) dudy.
Q x 39 Q

Ouip Ouap,
— dzdy = 0.
/Q<ath+ ath) xzdy =0

for any vip, € Uy, von, € Uy, and qn € Wy,

21/133



Semi-discretization

Discretization formulation

Recall the following definitions from Chapter 2:

@ N: number of mesh elements.

@ N,,: number of mesh nodes.

e £, (n=1,---,N): mesh elements.

e Zy (k=1,---,Np): mesh nodes.

@ N;: number of local mesh nodes in a mesh element.

@ P:information matrix consisting of the coordinates of all mesh
nodes.

@ T': information matrix consisting of the global node indices of
the mesh nodes of all the mesh elements.

22 /133



Semi-discretization

Discretization formulation

We only consider the nodal basis functions (Lagrange type) in
this course.

Nip: number of local finite element nodes (=number of local
finite element basis functions) in a mesh element.

Np: number of the finite element nodes (= the number of
unknowns = the total number of the finite element basis
functions).

X; (j=1,---,Np): finite element nodes.

Py information matrix consisting of the coordinates of all
finite element nodes.

Ty information matrix consisting of the global node indices of
the finite element nodes of all the mesh elements.
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Semi-discretization

Discretization formulation

e Since uyy, ugy € HY(0,T;Uy), pr, € L2(0,T; W),
Un = span{qﬁj}jy:bl, and W), = span{w]}Nbp then

Jj=1
Ny
ulh z y7 Zulj gb]) Ugh(l' Y, )_ Zu%(t)gbja
7j=1 7j=1
Ny
ph=Y_pi(t)v;,
j=1
for some coefficients wy;(t), uz;(t) (j=1,---,Np), and

p](t) (j = 17 aNbp)'

o If we can set up a linear algebraic system for uy;(t),
u2j(t) (] = 17' o ,Nb), and pj(t) (] = ]-7 e 7Nbp)r then we
can solve it to obtain the finite element solution
uy, = (urp, ugp)’ and p.
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Semi-discretization

Discretization formulation

@ For the first equation in the Galerkin formulation, we choose
vy = (¢1,0)t (Z = 1, s ,Nb) and
v = (0,¢;)t (i=1,---,Np). Thatis, in the first set of test
functions, we choose vi, = ¢; (i =1,--- , Ny) and v, = 0;
in the second set of test functions, we choose vy, = 0 and
vop = ¢ (i =1,--, Np).

@ For the second equation in the Galerkin formulation, we
choose gy, = 1; (i =1,---, Np).
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Semi-discretization

Discretization formulation

@ Set vy, = (¢4,0)!, e, vip =¢d;and vop, =0 (i = 1,--+ | \}),
in the first equation of the Galerkin formulation. Then

e B o B
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Semi-discretization

Discretization formulation

@ Set vy, = (0,¢;)%, ie, vip=0and vop, = ¢; (i =1,--- , ),
in the first equation of the Galerkin formulation. Then

Ny N a 5 Z
/sz (; u2j(t)¢j) t @i dxdy + 2/ (Z s ( QZJ a(z vdy

Nyp
+/Qz/(§uzg(t)%(ij) 00 drdy _/ (Zp] )
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Semi-discretization

Discretization formulation

@ Set gy, =; (i=1,---,Npp) in the second equation of the
Galerkin formulation. Then

28 /133



Semi-discretization

Discretization formulation

@ Simplify the above three sets of equations, we obtain

Ny, N Ny,
, Z a¢ ¢ 0¢; 0¢;
j:1u1j(t)/ﬂ¢j¢i dedy + = wy (1) (2 Q b Ox ddy +/ 8y] dy a dy)

Ny
. 8¢J ad)z _ a i _ .
+;u21(t) 0 or oy @ dy+zpy(t ( /ij P dwdy) 7/Qf1¢,d;rdy,

Ny
0¢; 0¢;
/ J K3

;:1 s (t) /Q bj¢pi drdy + ]E:l w1 (t) o oy o dady

Ny
0¢; 0 0¢; O0¢i
(t) |2 — —— dxd — dxd
+jZIUQ]()( ooy oy T o 0z oz Y

Nop

S w0 (— [ ik dady ) = idzd
+j:1pj(t)( /sz] Oy i /Qf2¢ B

Nip

Ny Ny
([ %%, o~ [ 9%, ) 0 =
;ulj (t) ( /Q o i da:dy) +Jz:;u2] (t) ( /Q oy i dwdy) + ij (t)y*x0=0
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Semi-discretization
Matrix formulation

@ Define
- Ny Ny
n= [[ 2% ] [[ 22 ]
lJo Oz O ij=1 8y8y ,31
[ 3(15 i } [ 3(15 8¢z } e
Az = - dxd , Ay = ==
3 - dy ij=1 ! 5'@/ 85” vy ij= .
Np,Npp Np,Npp
As = / 1/’3 99 d:cdy] { / 1/1] 99 dxdy]
i=1,j= y i=1,j=1
r ¢ Npp,Np Nyp,Np
A= | [ -, dxdy] L Ag= [ e dwdy]
Jo Oz i=1,j=1 Q i=1,5=1
@ Define a zero matrix O; = [0]?2’{”;—\2{ whose size is Ny, x Npp.
Then
2A1 + Ay Az As
A= A4 2A2+Al A6
A Ag (O
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Semi-discretization
Matrix formulation

@ Each matrix above can be obtained by Algorithm I-3 in
Chapter 3.

e It is not difficult to verify (an independent study project topic)
that
Ay = Ag, A7 = Ag, Ag = A’é.

@ Hence the matrix A is actually symmetric:

241 + Ay As As
A= Ag 245 + A1 Ag
AL Af Oy
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Semi-discretization
Matrix formulation

@ Define the basic mass matrix

Ny
M, = [mu |:/ QZ)]QS% dxdy:|

1,j=1

@ The mass matrix M, can be obtained by Algorithm I-3 in
Chapter 3, withr=s=p=¢q=0and c= 1.
o Define zero matrices Qs = [0]~"7"", and O3 = [0]V;¥

: i=1,j=1 i=1,j=1"
Then define the block mass matrix

M, O3 O
M: @3 Me @2
0, 0, O
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Semi-discretization
Matrix formulation

@ Define the load vector

where

Bi(t) = [ /Q ﬁ@dwdy}

Nb Nb

. bo(t) = cdxd
C [/szwsy]il

Here the size of the zero vector is Ny, x 1. That is, 0 = [O]fvzbf
e Each of by (t) and by(t) can be obtained by Algorithm II-5 in
Chapter 4.
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Semi-discretization
Matrix formulation

@ Define the unknown vector
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Semi-discretization
Matrix formulation

@ We obtain the first order ODE system
MX'(t) + AX (t) = b(t).

@ The structure of this ODE system is the same as that of the
first order ODE system obtained for the second order
parabolic equation in Chapter 4.

@ Hence the same finite difference schemes in Chapter 4 can be
directly utilized for this ODE system.

@ The major differences between this ODE system and the one
in Chapter 4 are the details in the definition of M, A, X and
b, which were discussed above.
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Semi-discretization

Assembly of a time-independent matrix

Recall Algorithm |-3 from Chapter 3:
@ Initialize the matrix: A = sparse(le“t,le”“l);
@ Compute the integrals and assemble them into A:
FORn=1,---,N
FORa=1,---  Njr
FORpB=1,---,Nj&t

o 6T+S<Pncx 8p+q"pnﬂ .
Compute 7 = [, ¢ T amays dvdy;

Add r to A(T{*H(B,n), T (o, n)).
END
END
END
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Semi-discretization

Assembly of the time-independent stiffness matrix

@ Call Algorithm -3 with r =1, s=0,p=1, ¢ =0, ¢ = v, basis type of
u for trial function, and basis type of u for test function, to obtain A;.

@ Call Algorithm I-3 with r =0, s=1,p=0, g =1, ¢ = v, basis type of
u for trial function, and basis type of u for test function, to obtain As.

@ Call Algorithm -3 with r =1, s =0, p=0, g =1, ¢ = v, basis type of
u for trial function, and basis type of u for test function, to obtain As.

@ Call Algorithm I-3 withr =0, s=0,p=1, ¢ =0, ¢ = —1, basis type of
p for trial function, and basis type of u for test function, to obtain As.

@ Call Algorithm I-3 withr» =0, s =0, p=0, ¢q=1, c = —1, basis type of
p for trial function, and basis type of u for test function, to obtain Ag.

@ Generate a zero matrix O whose size is Ny, X Npyp.

@ Then the stiffness matrix
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Semi-discretization
Assembly of the mass matrix

e Call Algorithm I-3 with r =0, s=0,p=0,¢g=0,c=1,
basis type of u for trial function, and basis type of u for test
function, to obtain the basic mass matrix M,.

@ Generate three zero matrices O, @3, and Q3 whose sizes are
Npp X Npp, Ny X Npp, and Ny X Ny, respectively.

@ Then the block mass matrix
M:[Me @3 @2;@3 Me @2;@5 @t2 @1]
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Semi-discretization

Assembly of a time-independent vector

Recall Algorithm [1-3 from Chapter 3:
e Initialize the matrix: b = sparse(Ny, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- ,N:
FORpB=1,---,Ny:
Compute 7 = [}, fagx,fg)’;ﬁ dxdy:;

(Tb(ﬁa )7 )_b(Tb(5> )7 )+T;
END
END
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Semi-discretization

Assembly of a time-dependent vector

Recall Algorithm I1-5 from Chapter 4:
@ Specify a value for the time ¢ based on the input time;
o Initialize the vector: b = sparse(Ny, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- N:
FORﬁ: 1,'-‘ ,Nlbi
Compute 7 = [, f(t) ngb’if dzdy;
b(Ty(B,n),1) = b(Ty(B,n), 1) +r;
END
END
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Semi-discretization
Assembly of the load vector

e Call Algorithm II-5 with p = ¢ = 0 and f = f; to obtain b (¢).

Call Algorithm 1I-5 with p = ¢ = 0 and f = f5 to obtain by (t).
e Define a zero column vector 0 whose size is Ny, x 1.

Then the load vector b = [by(£): ba(t); 0.

If f1 and fo do not depend on t, then this part is exactly the
same as the assembly of the load vector with Algorithm 11-3 in
Chapter 6.
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Semi-discretization

Time-dependent Dirichlet boundary condition

Since Algorithm 111-3 Chapter 5 is time-independent, it is not
suitable for the time-dependent Dirichlet boundary condition in
this chapter. Therefore, we will use the following Algorithm [11-4:

@ Specify a value for the time ¢ based on the input time;

@ Deal with the Dirichlet boundary conditions:

FOREk=1,--- ,nbn:
If boundarynodes(1, k) shows Dirichlet condition, then
i = boundarynodes(2, k);

A(i,:) = 0;

A(iyi) = 1;

b(i) = g1 (Py(:, 1), 1);
A(Nb + 1, :) =0;

A(Ny+1, Ny +7) = 1
b(Nb + 7’) = gQ(Pb(:v Z)vt)'
ENDIF
END
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Full discretization

Outline

© Full discretization
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Full discretization

Temporal discretization for the ODE system

@ Assume that we have a uniform partition of [0, 7] into M,,
elements with mesh size At.

@ The mesh nodes are t,, = mAt, m=0,1,---, M,,.

e Assume X™ is the numerical solution of X (t,,).

@ Then the corresponding —scheme is

Xm+1 _ Xm

~ +0AX™H L (1 — 0)AX™ = 0b(tma1) + (1 — 0)b(tm)

M > - - M - -
— +0A) X = 0b(tm 1= 0)b(tm) + —X™ — (1 —0)AX™.
= (35+04) (1) + (1= O)B(tm) + 12 X7 — (1-0)
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Full discretization

Temporal discretization for the ODE system

@ lteration scheme 2:

AXm"Fl bm+17 m=0,--- 7]\/[m_1

where
- M
A= N + 0A,
Tm+1 7 7 M v
B = OBt 4) + (1= O)b(tm) + | o — (1= )A| X7,
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Full discretization

Temporal discretization for the ODE system

Algorithm B:
@ Generate the mesh information matrices P and 7.

@ Assemble the mass matrix M by using Algorithm 1-3.
@ Assemble the stiffness matrix A by using Algorithm 1-3.
o Generate the initial vector X?.

@ lterate in time:
FORm=0,--- ,M,, — 1
tm+1 = (m+ 1)At;
tm = mAtL;
Assemble the load vectors b(t,,+1) and b(t,,) by using
Algorithm II-5 at t = t,,41 and t = t,;
Deal with Dirichlet boundary conditions by using
Algorithm [11-4 for A and b at ¢ = ty41;
Solve iteration scheme 2 for X1,
END
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Full discretization

Temporal discretization for the ODE system

@ Define X0 = gX™*1 4 (1 —9)X™.

® Then Xm+! — Xm — XMX" jeg 2 g,
@ Hence
)Z’m-‘—l _ X'm o 1 . N N
M=+ GAX™ 4 (1 — 0)AX™ = 0b(tmi1) + (1 — O)b(tm)
om—+1 _ Fm N R . .
N M% FABX™ 4 (L= 0)X™] = 0B(tms1) + (1~ 0)5(tm)
Xm+6 _ Xm N 0 R N
= M=+ AX™0 = 0b(tmy1) + (1 — 0)b(tm)

MX™

M om+0 a7 _ T
= (— + A) X = 0b(tm+1) + (1 — 0)b(tm) + AL
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Full discretization

Temporal discretization for the ODE system

@ lteration scheme 3:

A0 Xm+0 — 1_7”“), m=0,---, M, —1,

where
_ M
A= —— 4+ A,
oAt T
TmA-0 7 7 M om
b = 0b(tms1) + (1 = 0)b(ty,) + ——X™.

VAN

e Since X0 = 9X™ 1 4 (1 — 9)X™, then

2t —
Xm—i—l _ Xmt 0— Xxm + X’m'
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Full discretization

Temporal discretization for the ODE system

Algorithm C:
@ Generate the mesh information matrices P and 7.

@ Assemble the mass matrix M by using Algorithm 1-3.
@ Assemble the stiffness matrix A by using Algorithm 1-3.
o Generate the initial vector X?.

@ lterate in time:
FORm=0,--- ,M,, — 1
tm+1 = (m+ 1)At;
tm = mAtL;
Assemble the load vectors b(t,,+1) and b(t,,) by using
Algorithm II-5 at t = t,,41 and t = t,;
Deal with boundary conditions by using Algorithm [ll-4
for A? and b0 at t = tyni;
Solve iteration scheme 3 for X1,
END
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Full discretization
Numerical example

@ Example 1: Use the finite element method to solve the
following equation on the domain Q = [0, 1] x [—0.25,0]:

u— V- -T(u,p)=f inQx][0,1],

V-u=0 in Q x [0,1],

up =z?y? +e Y, att=0andin Q,

ug = —gxy?’ +2 —wsin(rz), att=0andin Q,
p = —[2 — wsin(7z)] cos(2my), att =0 and in Q,
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Full discretization
Numerical example

@ Continued formulation:

up = e Yecos(2mt) on xz =0,
up = (y*+eY)cos(2nt) onx =1,

1
ur = <16$2 - 60425) cos(2mt) ony = —0.25,
u; = cos(2nt) ony =0,
up = 2cos(2mt) onz =0,

2

us = (—3y3 + 2) cos(2mt) onzx =1,

1 .
uy = {%x +2- 7rsm(7rw)] cos(2mt) ony = —0.25,

up = [2— wsin(nx)]cos(2nt) on y = 0.
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Full discretization
Numerical example

@ Here
fi = —2m(z®y? + e Y)sin(2nt)
+[—2v2? — 2vy? — ve Y + 72 cos(mx) cos(2my)]cos(27t),
fo = -2 —%xy?’ + 2 — mwsin(nwz) | sin(2nt)
+[dvay — vr® sin(mx)

+27(2 — wsin(wx)) sin(27y)|cos(2mt).
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Full discretization
Numerical example

@ The analytic solution of this problem is
uy = (2%y* + e Y)cos(2nt),
ug = [—gxyg +2-— ﬂsin(wzv)] cos(2mt),
p = —[2 — wsin(mwz)] cos(2my)cos(2nt),

which can be used to compute the errors between the
numerical solution and the analytic solution. We can also
verify fi and fo above by plugging the analytic solutions into
the Stokes equation.

53 /133



Full discretization

Numerical example

@ Let's code for the Taylor-Hood finite elements for the 2D
Stokes equation together!

@ Taylor-Hood finite elements: linear finite elements for the
pressure and quadratic finite elements for the velocity.

o We will use Algorithm B.

@ Open your Matlab!
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Full discretization
Numerical example

W] Tu—wlle [ Tu—upf, [u— [,

1/8 | 1.6676 x 1073 | 3.6290 x 10~* | 2.0487 x 102
1/16 | 2.1848 x 10~* | 4.5026 x 107> | 5.0726 x 1073
1/32 | 2.7448 x 107° | 5.6114 x 1075 | 1.2626 x 1073
1/64 | 3.3781 x 1076 | 7.0079 x 107 | 3.1525 x 10~*

Table: Case 1: The numerical errors at t = 1 for quadratic finite elements

of the velocity and backward Euler scheme (6 = 1) with At = 8h?.

@ Any Observation?
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Full discretization
Numerical example

@ Third order convergence O(h?*) in L?/L> norm and second
order convergence O(h?) in H' semi-norm.

@ The backward Euler scheme has first order accuracy for
temporal discretization.

@ The quadratic finite element has third order accuracy in
L?/L> norm and second order accuracy in H' semi-norm for
spatial discretization.

@ Hence the accuracy order is expected to be O(At + h?) in

L?/L* norm and O(/At + h?) in H! norm, which match the
above observation since At = 8h3 in case 1.
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Full discretization
Numerical example

h

Il — prlloo

lp — pnllo

|P_Ph|1

1/8

5.7967 x 101

1.3909 x 1071

1.3489 x 109

1/16

9.4258 x 102

2.3063 x 102

6.3538 x 101

1/32

1.8080 x 102

4.2194 x 1073

3.1396 x 10!

1/64

3.8072 x 1073

8.6779 x 10~*

1.5660 x 10~1

Table: Case 1: The numerical errors at t = 1 for linear finite elements of

the pressure and backward Euler scheme (6 = 1) with At = 8h3.

@ Any Observation?
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Full discretization

Numerical example

e Second order convergence O(h?) in L?/L> norm and first
order convergence O(h) in H' semi-norm.

@ The backward Euler scheme has second order accuracy for
temporal discretization.

@ The linear finite element has second order accuracy in L?/L>
norm and first order accuracy in H' semi-norm for spatial
discretization.

@ Hence the accuracy order is expected to be O(At + h?) in
L?/L® norm and O(/At + h) in H' norm, which match the
above observation since At = 8h3 in case 1.
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Full discretization

Numerical example

@ However, you will also observe high cost in time for this case
since At = 8h? is much smaller than that of the previous

cases.

@ When the mesh becomes finer and finer or the problem
becomes 3D, the situation is even worse.

@ This is why we need temporal discretization with higher order
accuracy and efficient methods to solve linear systems.
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Full discretization
Numerical example

h

[u — unl

[[u — sl

[u — uyly

1/8,1/32

1.6027 x 1073

3.5322 x 104

2.0242 x 102

1/16, 1/64

1.9654 x 10~

4.3845 x 1077

5.0469 x 103

1/32, 1/256

2.5111 x 107°

5.4811 x 10~

1.2619 x 103

1/64, 1/512

3.1014 x 106

6.8432 x 107

3.1519 x 10~*

Table: Case 2: The numerical errors at t = 1 for quadratic finite elements

of the velocity and Crank-Nicolson scheme (6 = 1) with At* < 1,

@ Any Observation?
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Full discretization

Numerical example

@ Third order convergence O(h?*) in L?/L> norm and second
order convergence O(h?) in H' semi-norm.

@ The Crank-Nicolson scheme has second order accuracy for
temporal discretization.

@ The quadratic finite element has third order accuracy in
L?/L> norm and second order accuracy in H' semi-norm for
spatial discretization.

@ Hence the accuracy order is expected to be O(At? + h3) in
L?/L% norm and O(At? + h?) in H! norm, which match the
above observation since At? ~ h3 in case 2.
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Full discretization
Numerical example

h

1P — ol

lp — pnlly

|p—Ph|1

1/8,1/32

2.0901 x 10~ 1

3.8144 x 102

1.2300 x 109

1/16, 1/64

5.9514 x 102

9.5006 x 1073

6.2249 x 10!

1/32, 1/256

1.8457 x 1072

2.4493 x 1073

3.1202 x 1071

1/64, 1/512

5.1034 x 103

6.0165 x 10~%

1.5634 x 101

Table: Case 2: The numerical errors at ¢t = 1 for linear finite elements of

the pressure and Crank-Nicolson scheme (6 = 1) with At? < 7?.

@ Any Observation?
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Full discretization

Numerical example

e Second order convergence O(h?) in L?/L> norm and first
order convergence O(h) in H' semi-norm.

@ The Crank-Nicolson scheme has second order accuracy for
temporal discretization.

@ The linear finite element has second order accuracy in L?/L>
norm and first order accuracy in H' semi-norm for spatial
discretization.

@ Hence the accuracy order is expected to be O(At? + h?) in
L?/L* norm and O(/At? + h) in H! norm, which match the
above observation since At? ~ h3 in case 2.
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More Discussion

Outline

@ More Discussion
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More Discussion
Efficient methods

@ Forward Euler: cheap at each time iteration step, but
conditionally stable, which means that At must be smaller
enough.

@ Multi-step methods for temporal discretization: two-step
backward differentiation, three-step backward differentiation,

Runge-Kutta method......

o Efficient solvers for linear systems: multi-grid, PCG,
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More Discussion

Mixed boundary conditions

@ The treatment of the stress/Robin boundary conditions is
similar to that of Chapter 6.

o If the functions in the stress/Robin boundary conditions are
independent of time, then the same subroutines from Chapter
6 can be used before the time iteration starts.

e If the functions in the stress/Robin boundary conditions
depend on time, then the same algorithms as those in Chapter
6 can be used at each time iteration step. But the time needs
to be specified in these algorithms.
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More Discussion
Mixed boundary conditions

o Consider

u — V-T(u,p) =1f in Qx[0,T7,
V-ou=0 in Qx[0,7],
T(u,p)n=p on I'sx[0,T7],
T(u,p)n+ru=q onI'rx[0,T],
u=g onI'px][0,T],

u=uy, att=0andin Q.

where I'g, 'r C 0 and I'p = 69/(1“5 U FR).
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More Discussion
Mixed boundary conditions

@ Recall
/ u; - v dzdy +/ 2vD(u) : D(v) dedy — / p(V -v) dzxdy
Q Q Q
—/ (T(u,p)n) -vds = / f-v dzdy,
onN Q
—/(V -u)q dzdy = 0.
Q
@ Since the solution on I'p = 992/(I's UT'R) is given by u = g,

then we can choose the test function v(z,y) such that v. =10
on 8Q/(FS U FR).



More Discussion
Mixed boundary conditions

@ Hence, similar to the treatment of the mixed boundary
condition in Chapter 6, the weak formulation is to find
ue HY0,T;[HY(Q)]?) and p € L2(0,T; L*(2)) such that

/ u; - v dedy +/ 2vD(u) : D(v) dzdy
Q Q

—/p(V-V) dxdy+/ ra-v ds
Q

I'r

:/f-vdxdy+/ q-v ds—&—/ p-vVvds,
Q I'r I's
—/(V -u)q dzdy = 0.
Q
for any v € [HJp(2)]? and ¢ € L?(£2) where
Hp(Q)={we H(Q):w=0o0nTp}.

@ Code? Combine all of the subroutines for Dirichlet/Stress/Robin

boundary conditions.
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More Discussion

Mixed boundary conditions in normal/tangential directions

o Consider

u, — V- -T(u,p) =1f in Qx[0,77,

V-u=0 in Qx|0,T],

n'T(u,p)n = p,, 7'T(u,p)n = p, on I'sx[0,7],

n'T(u,p)n + rm'u = ¢, 7'T(u, p)n + rru = ¢, on Txx[0,T],
u=g onI'px[0,T],

u=ugy, att=0andin Q.

where I'g, 'r C 0Q, I'p = 69/(FS UFR), n-— (nl, ’ng)t is
the unit outer normal vector of 92, and 7 = (11, 72)! is the
corresponding unit tangential vector of 9f2.
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More Discussion

Mixed boundary conditions in normal/tangential directions

@ Recall
/ u; - v dzdy +/ 2vD(u) : D(v) dedy — / p(V -v) dzxdy
Q Q Q
—/ (T(u,p)n) -vds = / f-v dzdy,
onN Q
—/(V -u)q dzdy = 0.
Q
@ Since the solution on I'p = 992/(I's UT'R) is given by u = g,

then we can choose the test function v(z,y) such that v. =10
on 8Q/(FS U FR).

71/133



More Discussion

Mixed boundary conditions in normal/tangential directions

@ Similar to the derivation of mixed boundary conditions in
normal/tangential directions in Chapter 6, we obtain

[ v as
[ ) v s [ (2 v

I'r

+f (T(u, p)m) - v ds

89/(I'sUT'R)

= {/ pn(n'v) ds—|—/ pr(1'v) ds}
I's Ts

+ { /F aaatv) ds + /F an(7'V) ds}
_ { /F (mw(atv) ds+ / (rrtu) (rv) ds] ,

I'r
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More Discussion

Mixed boundary conditions in normal/tangential directions

@ Hence, similar to the treatment of the mixed boundary conditions in
normal/tangential directions in Chapter 6, the weak formulation is to find
uc H'(0,T;[H'(Q)]?) and p € L*(0,T; L*(Q2)) such that

/ u; - v dzdy +/ 2vD(u) : D(v) dzdy — / p(V - v) dzdy
Q Q Q

+'/F.R(rntu)(ntv) ds + ./F.R(rrtu)(‘rtv) ds

:/f-v dxder/ gn(n'v) der/ q-(1'v) ds
Q g g
Jr/ pn(ntv) ds+/ [)T(TfV) ds,
I's I's

S

—/(V~u)q dxdy = 0,
Q

for any v € [Hyp(Q)]? and ¢ € L*(Q).

@ Code? Combine all of the subroutines for Dirichlet/Stress/Robin
boundary conditions.
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More Discussion

Another format of full discretization

@ Recall the Galerkin formulation of the semi-discretization
(without considering the Dirichlet boundary condition, which
will be handled later): find u;, € H'(0,T;[Up]?) and
pn € L*(0,T; W3) such that

(up,, v) +a(upn, vi) +b(va,pn) = (f,va),
b(up,qn) = 0,

for any vy, € [Up)? and g, € W),

@ Instead of obtaining the matrix formulation from this
semi-discretization and proposing the full discretization based
on the matrix formulation, we can first present the full
discretization based on this semi-discretization and then
obtain the matrix formulation for the full discretization.

74 /133



More Discussion

Another format of full discretization

@ In more details of the vector format, the Galerkin formulation
(without considering the Dirichlet boundary condition, which
will be handled later) is to find uj, € H'(0,T;[U]?) and
pn € L2(0,T; W3) such that

/ uy, - vy, dedy +/ 2vD(uy) : D(vy) dxdy
Q Q
—/ph(V - vp) dedy = / f- vy, dedy,
Q Q
- / (V- up)qn dedy =0,
Q

for any v, € [Uy)? and g, € W),
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More Discussion

Another format of full discretization

@ In the scalar format, the Galerkin formulation (without considering
the Dirichlet boundary condition, which will be handled later) is to
find uy, € HY(0,T;Uy,), ugp € HY(0,T;Uy), and
pn € L?(0,T;W},) such that

Ouip /3U2h
—_ dxd , dxd
/Q ¢ Vb 07 Y+ 7 vap dxdy

+/ V(2 Ousp, Ovyp, Ougp, Qvap,  OQuyp, Ovip
Q

2
dr Ox + dy Oy Jy Oy

Ouyp, Ovap,  Ouagp Ovip, | Ouap 8U2h) dd
Jdy Ox or Oy Jxr O Y

0 0
- / (ph U “2h> dady = / (Fromn + favan) dudy.
Q x 39 Q

Ouip Ouap,
— dzdy = 0.
/Q<ath+ ath) xzdy =0

for any vip, € Uy, von, € Uy, and qn € Wy,
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More Discussion

Another format of full discretization

Assume that we have a uniform partition of [0, 7] into M,,
elements with mesh size At.

The mesh nodes are t,, = mAt, m=0,1,--- , M,,.
Let u) and p) denote the given initial condition at .
Let uj® and p}* denote the numerical solution at #,,.

Then we consider the full discretization (without considering
the Dirichlet boundary condition, which will be handled later):

form=0,---,M,, —1, find uZ‘“ € [Up)? and pZ‘H e Wy
such that

"t —

( h At b 7V) + Ha(uhm+17vh) + (1 - Q)G(uznvvh)

—|—Qb(vh,p2”+1) + (1 = 0)b(vh, pi')
= H(f(tm—l-l)a Vh) + (1 - 9)(f(tm)> Vh)7
Ob(uytt, gn) + (1= 0)b(ujy’, gn) = 0,
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More Discussion

Another format of full discretization

o Thatis, for m =0, , My, — 1, find u]"*! € [U,]? and
Pt € W such that

/QM v, drdy + 0/921/]]])@2”1) :D(vy,) dedy
(1 -0) /Q 2D(u}) : D(vy) dedy

4 /Q PN V) dady — (1 - 6) /Q PPV v dady

_ H/Qf(tmﬂ) v dedy + (1 — 0)/Qf(tm) vy, dzdy,

0 [ (7w dady — (1=0) [ (V- u)an dady =0,

for any vy, € [Uy)? and g, € W),
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More Discussion

Another format of full discretization

@ Form=20,---,M,, —1, find uﬁl L u;’ﬁ'l € Uj, and pm+1 € W}, such that

u77;+1 _ u ”rr;;kl h

1 2 Ug

—h by, dzd +/ 2y, dud
/ AL 1h Y At 2h Y

+6/ Y dun, n auzh Ovap, | Oul} L ouy,
8J3 ox y oy 8y oy
8u1h OQvap, 8u2h ovp 8u2h 8v2h> dady
dy ox ox oy ox ox

- 9)/‘ Bulh avlh 2816’;1 Ovap,  OuT} vy,
dy 9y oy 9y

Oul} dvap, 8u2h 8v1h Juy} ath) dady
dy Oz dxr Oy Ox Oz

_9/ (p')h’n+1av1h tp m+13 Qh)dxdy
Q 1% Oy

—(1- 6’)/ ( 8v1h + i 8;zh) dzdy

= 9/ (frtm+1)vin + f2(tm+1)van) dedy
Q

+(1-0) /Q (F1 (bm)vin + F(tm)van) dady,
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More Discussion

Another format of full discretization

8u’17;1+1 aug;jl
—G/Q( D 5 qn)dxdy
oum oul
—(1—9)/9( a;thJrT;LQh)dffdy

for any vy, € Uy, vop, € Uy, and g, € Wi,
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More Discussion

Another format of full discretization

o Since u}, ug}fl € Un, ph € Wiy, Up = 3pan{¢1}j 1, and

Wy, = span{y;}; b’i, then

Ny
1 1
upit (e,y) =Y ul e, (2, y),
j=1
1 1
ug}LlJr z,y Zuer ¢J T y
Nbp
1 1
Pt y) = pl (e, y),
7j=1
for some coefficients uﬁ“, ug}“ (j=1,---,Np) and

Pt (=1, Nyp).
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More Discussion

Another format of full discretization

@ If we can set up a linear algebraic system for

uﬁ—’—la u57;+1 (.7 = 17 7Nb) and p;'n—i_l (J = 11 7Nbp)

and solve it, then we can obtain the finite element solution

m+1 m—+1 m—+1
uypt, ug, o, and pprtt
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More Discussion

Another format of full discretization

@ For the first equation in the Galerkin formulation, we choose
vy = (¢1,0)t (Z = 1, s ,Nb) and
v = (0,¢;)t (i=1,---,Np). Thatis, in the first set of test
functions, we choose vi, = ¢; (i =1,--- , Ny) and v, = 0;
in the second set of test functions, we choose vy, = 0 and
vop = ¢ (i =1,--, Np).

@ For the second equation in the Galerkin formulation, we
choose gy, = 1; (i =1,---, Np).

83/133



More Discussion

Another format of full discretization

@ Set vy, = (¢4,0)!, ie, vip =¢;and vop, =0 (i = 1,--+ | \y),
in the first equation of the full discretization. Then

+1 N, ) Ny om+1
/ ZJ by uls =22 uke; & d:r:dy+9/ Y 26 (ZJ=1U1J ¢J> Od;
At Q ox oz
N, N, m
0 (E - “u“‘z’J) 06; (Zj:bl “2j+l¢j> 9¢i
+ + ] dady
Jy oy or oy
N N
+(1 9)/ [28 (22 5393) oo, 42 (321 4535) 26
— yloNTI=> 977 9%, \NTIEE 9 ) Y9
Q oz or oy dy

N
+3 (Zj:bl ugj-dw) A
ox oy

bp NbIJ
m ¢1 m ¢'L
79/9 (]- +1w]) dxdy — (1 79)/ (ij ’%) dxdy

-y /ﬂ Fi(tms1)éi dudy + (1 — 6) /Q Fi(tm) i dady.

] dxdy
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More Discussion

Another format of full discretization

@ Set vy, = (0,¢;)!, ie, vip=0and vop, = ¢; (i =1,--- , \y),
in the first equation of the full discretization. Then

N m+1
9 (Zj:bl “2j+ ; ) O¢;
dy dy

m+1

ZJ 1 Ug; Z;\]:bl “g}d’j
/ At b d:r:dy+9/91/<2

0 ()0 ™' 5) og, N o (S wsi™05) o,

+ dy o Ox Ox ) dots
N, .
N, )
SRR 0N g SR 0

bp NbIJ
m ¢1 m ¢'L
79/9 (]- +1w]) dxdy — (1 79)/ (ij ’%) dxdy

-y /ﬂ Foltms1)éi dudy + (1 — 6) /Q Foltm) i ddy.
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More Discussion

Another format of full discretization

@ Set g, = (i =1,---,Np,) in the second equation of the
full discretization. Then

9/{ - 1uﬁﬂ¢])¢.+a<zﬂ 1“33+1¢J>wz‘] dxdy

) 8y

o[, .

=0.
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More Discussion

Another format of full discretization

@ Simplify the above three sets of equations, we obtain

Ny
1 0¢; ¢z 0, ad’z
mAl ib; dad 29/ J dzdy 9/ -7 dady
j:zlu“ (At/sz¢]¢ W Jo oe o )" oy Ty
+Z m+1( 8¢j 0d; d:cdy)—i—%pmﬂ (0/ _w,r? i dacdy)
Q 8513 Oy =1 7 Q 7 oz

= HA fl(tm+1)¢i dxdy + (1 — 9) /Q fl(tm)(z)z dxdy

03 961

dxd
Q Oz Ox T

Ny 1
+Zu{';- [E: /quj@ dzdy — 2(1 — 6)

1 _ 0)/ 8¢] a(z)z }

, 9% 0%i
ZUZJ( 1-6 ax] oy dxdy)

Q

Npp

m 0:
+j§:jlpj (7(179)/97% o dwdy),
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More Discussion

Another format of full discretization

@ and

E 8¢ 8¢z 1 /
m+1 o5 m+1 o
“ ( Q 8y oz ) + Zu At Q(b]d)z zdy

8¢] de 19 ad)J ad)z
@ 8 9 Q "or oz

+me+ 1( / —5= 09 docdy)

/f2(t +1)¢i drdy + ( )/QfQ(t )i dady
8¢J8¢1
eShup (a0 [ 0 )
0¢; Od;
+Zu2J At/¢]¢l dmdy*Q 179)/ ¢] ¢ ddy

0,
(—(1—0) /Q i, dzdy)
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More Discussion

Another format of full discretization

@ and

89 /133



More Discussion

Another format of full discretization

@ Define
_ Ny 1Ny
Al = I/a¢] ad)l dxd :| ’AQ = |: I/aQSJ a(bl dx d ,
| Jo Oz Oz ij=1 q Oy Oy lij=1
[ [, 00 00: ] { 09001 1"
Az = == dxd LAy = -2 dxdy ,
3 &’E 5’}/ i,j=1 * ay Ox di,9=1
Nb,Nbp Nbvap
As = / 1/)J 99 d:cdy] {/ Q/JJ 8¢2 dxdy ,
i=1,j= . li=1,5=1
i ¢ Nyp, Ny ¢ 7 Nop, Ny
A7 = / —37]1/% dxdy] As = [/ sz dxdy .
L/ €T i=1,j=1 Q Ji=1,=1
@ Define a zero matrix O; = [0]?2’{”;—\2{ whose size is Ny, x Npp.
Then
2141 + AQ Ag AS
A= A4 QAQ + Al A6
A7 Ag @1
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More Discussion

Another format of full discretization

@ Each matrix above can be obtained by Algorithm I-3 in
Chapter 3.

e It is not difficult to verify (an independent study project topic)
that
Ay = Ag, A7 = Ag, Ag = A’é.

@ Hence the matrix A is actually symmetric:

241 + Ay As As
A= Ag 245 + A1 Ag
AL Af Oy
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More Discussion

Another format of full discretization

@ Define the basic mass matrix

Ny
M, = [mu |:/ QZ)]QS% dxdy:|

,j=1
@ The mass matrix M, can be obtained by Algorithm I-3 in
Chapter 3, withr=s=p=¢q=0and c= 1.

. . _ 11 Ve, Ve — 101&Ve> Ve
@ Define zero matrices 0y = [()]Z-:L.j:’”1 and O3 = [0];27 324
Then define the block mass matrix

M., O3 O,
M=| 0; M. O,
o, 0, O
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More Discussion

Another format of full discretization

@ Define the load vector

where
Ny Ny

bi(t) = [/Q f1¢id$dy} L ba(t) = [/Q fz@'dxdy] -

Here the size of the zero vector is Ny, x 1. That is,
0= [0],"7.

e Each of by (t) and ba(t) can be obtained by Algorithm II-5 in
Chapter 4.

@ In the matrix formulation of the full discretization, we will use

51 (tm+1), EQ(tm+1), gl(tm), and gg(tm).
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More Discussion

Another format of full discretization

@ Define the unknown vector

X{”+1
vm+1l _ vm—+1
Xt = | X

vm—+1
X3

where

N Ny N Ny o
Kyt = et 7 Xyt = fugt| L Rt =
J= J=

1j
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More Discussion

Another format of full discretization

@ Then we obtain the following matrix formulation:

M o R o
<At + 9A> X" = O0b(tma1) + (1 — 0)b(tm)

M

M gm (1~ gyaxn
+ XM (1 - 0)AX™,

which is the same as the matrix formulation obtained in the
last section.

@ Hence the rest of the derivation and the pseudo code are the
same as in the last section.
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Unsteady linear elasticity equation

Outline

© Unsteady linear elasticity equation
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Unsteady linear elasticity equation
Target problem

@ Consider

uy —V-o(u)=£f in Qx[0,7],
u=g on 00x[0,T],
Ou

u = ug, E:uoo at t =0 and in .

@ The stress tensor o(u) is defined as

(onlw) o) ) s e
o) = () 7). o) = A (V)42

where A\ and p are Lamé parameters.
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Unsteady linear elasticity equation

Target problem

@ The strain tensor is defined as
_( €11 €2 ey }(auz 8“3’)
€= < €21 €922 ) ’ 61](11) o 2 6:@ + ze ’

where

5oL i=i
E 0, i+# 7.
@ Hence the stress tensor can be written as

( NG 2B AR g )

olua) =
W=\ Tugrigs T g Sgm g
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Unsteady linear elasticity equation

Weak formulation

o First, take the inner product with a vector function
v(z1,22) = (v1, v2)! on both sides of the original equation:

uy —V-o(u)=f inQ
= u-v—(V-o(u)-v=£f-v inQ

= / uy - v deidrs — /(V co(u)) - v drides = / f v dxd:
Q 0 Q

@ u(wy,wo,t) is called a trail function and v(x1,x2) is called a
test function.
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Unsteady linear elasticity equation
Weak formulation

@ Second, using integration by parts in multi-dimension:

[ atw) v dodas = [ (otwm)-v ds— [ atw): Vv doydan,

Q

where n = (ny, ng)! is the unit outer normal vector of 99, we
obtain

/ uy - v dridey +/ o(u) : Vv dzidzs / (c(u)n)-v d
Q Q

o0
= /f-v dz1dzs.
Q

Here,
A-B — (an a12>:<511 b12>
a1 G2 ba1  bao
= aj1bi1 + a12b12 + ag1b21 + agzboo,
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Unsteady linear elasticity equation
Weak formulation

@ and
Ovr v
Vv = ( @ % > .
Oxr1 Oxo
@ Since the solution on the domain boundary 952 are given by

u(zq,z2,t) = g(x1,xe,t), then we can choose the test
function v(x1, z2) such that v.= 0 on 9.

@ Hence
/ Uy - v dzidzs +/ o(u): Vv dxidze = / f v dridzs.
Q Q Q
@ Define

v 2\/'
20,7 (@) = {v(1), 2 (1), DX (1) € (@), Vi e 0,7])

where [H1()]2 = H(Q2) x H(Q).
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Unsteady linear elasticity equation
Weak formulation

@ Weak formulation for the unsteady linear elasticity equation:
find u € H%(0,T; [H'(Q)]?) such that

/ Uy - v dzidzs +/ o(u) : Vv dexidre = / f v dridzs.
0 Q Q

for any v € [H&(Q)]2

° Let a(u,v) = [yo(u): Vv dridry and
(f,v fo v dl‘lde‘g.

@ Weak formulation: find u € H?(0,T; [H'(2)]?) such that
(g, v) + a(u,v) = (f,v)

for any v € [H}(Q)]2.
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Unsteady linear elasticity equation
Weak formulation

@ In details,
o(u) : Vv
_ (011(11) 012(11)). o
0'21(11) Ugg(u) ’ 37;? g%
ov ov ov ov
= 011(11)879614-012(11)67;+U21(‘1)87;+U22(u)87x2

81‘1 81‘1 8$2 8x1
+< au1+ 8U2>8U1+( 8u1+ 8u2>0%2

_ (A%HM@MH%) o1

Howy " H oy ) 0xy " \Mowy M our ) 0my
+< 8u1 8u2 611/2) 81)2

- 2492 ===
A@xl + )\8.%2 + Ma.%'g 81‘2
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Unsteady linear elasticity equation
Weak formulation

@ Then

/ o(u) : Vv dzidzs
Q

8u1 (%1 8u1 8’1)1 8UQ 8111
= 2u
/ ()\8.7}1 8%1 + 8x1 6:131 + /\8.%'2 (9:6‘1
8U1 81)1 6uQ 8’01 8U1 602 Gug 81)2
+ (9733267332 + 8.%'1 81’2 + 8332 8951 + 8:6'1 8$1
8’U,1 81)2 8“2 8’[)2 811,2 8112
+)\87$187$2 + )\8]}2 81)2 + 8282 O ) dl‘ldl‘g.

@ Also, we have

/ f-vdridry = /(f1U1 + f2’U2) dridzs,
Q Q

0%u 0%u
/Qutt -V dCUld.’IJ‘Q = A (87’;211}1 + at221)2> dwldlEQ.
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Unsteady linear elasticity equation
Weak formulation

@ Weak formulation in the scalar format: find
up € H%(0,T; HY(2)) and ug € H?(0,T; HY(Q)) such that

82U1 8211,2
/{; <8t2 v + o2 'l)2> dxidxo
8u1 8111 8U1 81}1 8UQ 82}1
+/Q (Aazaz MR e e e
Ou dvy | Ous Ovy | Our vy, Ouz Ovy
MaLL‘Q Oxo “axl Oxo u@xg o0z 'uc%sl ox1
Oouq Ovy 8u2% 49 Ouo %) daydevs

Ae— o= A= —
+ 8%1 8$2 + 8x2 8:62 Naxg 81‘2

= /Q(flm + fava) dxidzs.

for any v; € H}(Q) and v2 € H}(Q).
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Unsteady linear elasticity equation

Galerkin formulation

@ Assume there is a finite dimensional subspace U, C H'(().
Define Uy to be the space which consists of the functions of
U}, with value 0 on the Dirichlet boundary.

o Then the Galerkin formulation is to find w, € H?(0,T;[U}]?)
such that

(uhtt’ U) =+ a<uh7 Vh) = (f7 Vh)

~ / a(uh) : Vvh dridry = / f. Vi dzridzo
Q Q

for any vy, € [Upo)*.
@ Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

e Here Up, = span{gbj}é-v:bl is chosen to be a finite element

space where {¢; ;V:bl are the global finite element basis
functions, such as those defined in Chapter 2.
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Unsteady linear elasticity equation

Galerkin formulation

@ For an easier implementation, we use the following Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find
uy, € H%(0,T; [Uy)?) such that

(uhtt7 U) + a(uh, Vh) = (f7 Vh)

& / o(uy) : Vv, deides = / f- vy, dridas
Q Q

for any vy, € [Up)?.

107 /133



Unsteady linear elasticity equation

Galerkin formulation

@ In details, the Galerkin formulation is to find
Uy € H2(O,T; Uh) and ugp, € H2(0,T; Uh) such that

82
Y2h > dx 1 dIL‘Q

82U1h
o\ o U1p T+ o2 V2h
Ouyp, Ovyp, Ouyp, Ovyp, Ouap, Ovip
A 2
+/Q< + H 8561 8%1 81’2 ax1
Ougp, Ovap,

8:61 81’1
Ouyp, Ovp, Ougp, Ovyp, Ouyp, Ovap
1 7 7 1
8%2 8:1:2 81‘1 83:2 axg a$1 83:1 axl
Ouyp, Ovap, Ougp, Ovgy, Ouap, Ovap,
2
M Oox1 Ox9 Oxy Oxo tep 0xo 8952) dridr;

/(f1v1h + favan) dzidzs.
Q

for any vy;, € Uy, and vy, € Up,.
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Unsteady linear elasticity equation

Discretization formulation

e Since uyy, ugy € H*(0,T;Uy) and Up, = span{qﬁj P °,. then

Ny
uip(z,y,t Zulj Vo5, uan(z,y,t) =Y ug;(t)gy,
j=1 j=1
for some coefficients uy;(t) and ug;(t) (j=1,---,Np).

o If we can set up a linear algebraic system for u;;(t) and
ugj(t) (j=1,---,Np), then we can solve it to obtain the
finite element solution uy, = (uyp, ugy)t.

e We choose vj, = (¢;,0)! (i =1,---,N,) and
v = (0,¢;)t (i=1,---,Np). Thatis, in the first set of test
functions, we choose vi, = ¢; (i =1,--- , Ny) and v, = 0;
in the second set of test functions, we choose v, = 0 and
vop =i (i =1,--+, Np).
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Unsteady linear elasticity equation

Discretization formulation

@ Set vi, = (¢,0)", i.e., vin = ¢ and vop, =0 (i =1,--- , N}). Then

Ny

0d; \ O0¢i
/ﬂ <ZU1j(t)¢)j) ¢1 dl’dy—FLA <2U1J£> af dzidxo
S tt

Jj=

Ny, Ny
8¢J 3(;51 _8¢j 8¢z
/ <E ujam) —dxy dacg—&—/ﬂ)\(é ugja—m pr —dridze

j=1

Ny Ny
/ (Z ulj 0¢; > 0¢; dx1dxs + / <Z 2] 0, ) 8¢’ dxidzs

= / flqﬁidwldmg.
Q
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Unsteady linear elasticity equation

Discretization formulation

@ Set vi, = (0,¢)", i.e., vinr =0 and vap, = ¢; (i =1,---,N,). Then

Ny,
/ﬂ <Z “2j(t)¢j> bi d:rdy+/ (Z Uy gf;) 9% 4orde
S tt
Ny Ny

09, 0di 3% 3¢z
+/Q“ (Z e 3171) Dy 102 +/ <Z 9y ) B,

86;\ 9 Moo g, 061

itV v j 1
’L/QA (Z_;“QJ zm) B d‘“d””/g“ (;“” B ) Dy P12

= / fg(ﬁidwldmg.
Q
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Unsteady linear elasticity equation

Discretization formulation

@ Simplify the above two sets of equations, we obtain

8 0 O¢; O
/¢J¢‘d$dy+2““( Q aﬁi ad)z 1dry + 2 6?1 a@d 1dw2
3(15] ( 0¢; 0¢; 3¢g )
+ u A—= dridrs +
8:1: 8 ) ; 2 o Oxzs 0x1 1 8:1?18 2
=/ f1pidzidzs
Q
Ny,
0p; Op; 0¢; 0¢;
/ t)/ﬂ(z)jd)i d:rderZulj( o Bii andm dxo +/ 8:; 6?1 dx dzg)
=1
Ny,
345; 0¢i 3¢j O0¢i / 0¢; 0, )
i ——dx1d 2 dzxid — dxid
+jZ:U2J( Oxg Oz wrdez + 3$23 2 wrdez + Qual'l Oz rae
= fepidridza.
/Q 294 1 2
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@ Define

Ay

A3

As

Ar =

L/ Q

A

99; 00
833‘1 8.231

dl’ldl'g

dij=1

/A
/>

A

3% i
61‘1 833‘1

99; 94 ,
31’2 8%1

1995 0¢i
8.%‘1 81‘2

99; 0¢i
8332 82E2

Unsteady linear elasticity equation
Matrix formulation

1Ny
dzx 1d.’[2
1ij=1
- Nb

dridwy
dij=1
1Ny

dzidzs
1ij=1
1 Ny

da)‘ldl‘g

lij=1

@ Each matrix above can be obtained by Algorithm I-3 in Chapter 3.

@ Then

Ay +24A5 4 As
A6+A7

As+ A5
Ag +2A3 + Ay

o~ |

113 /133



Unsteady linear elasticity equation
Matrix formulation

@ Define the basic mass matrix

Ny

M, = [mlj ij=1— [/ ¢J¢z dxdy]

1,j=1

@ The mass matrix M, can be obtained by Algorithm I-3 in
Chapter 3, withr=s=p=¢=0and c=1.

o Define a zero matrix Q4 = [O]ivzl’ijgl;l. Then define the block
mass matrix

_ Me ®4
=0 )
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Unsteady linear elasticity equation
Matrix formulation

@ Define the load vector

where
Ny Ny

bi(t) = [/Q f1¢id$1d$2] , bo(t) = [/Q f2¢id$1d$2]

i=1 i=1

o Each of by(t) and by(t) can be obtained by Algorithm 1I-5 in
Chapter 4.
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Unsteady linear elasticity equation
Matrix formulation

@ Define the unknown vector

where
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Unsteady linear elasticity equation
Matrix formulation

@ We obtain the second order ODE system
MX"(t)+ AX(t) = b(t).

@ The structure of this ODE system is the same as that of the
second order ODE system obtained for the second order
hyperbolic equation in Chapter 4.

@ Hence the same finite difference schemes in Chapter 4 can be
directly utilized for this ODE system.

@ The major differences between this ODE system and the one
in Chapter 4 are the details in the definition of M, A, X and
b, which were discussed above.
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Unsteady linear elasticity equation

Assembly of a time-independent matrix

Recall Algorithm -3 from Chapter 3:
o Initialize the matrix: A = sparse(N}et, Nirial);
@ Compute the integrals and assemble them into A:
FORn=1,---,N
FORa=1,--- N}l

FORB=1,.-- , Niest

_ 8T+S¢na 8p+qwnﬁ .
Compute r= fEn CW POy dl‘dy,

Add r to A(Ty(B,n), Ty(a,m)).
END
END
END
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Unsteady linear elasticity equation

Assembly of the time-independent stiffness matrix
o

@ Call Algorithm I-3 with r =1, s =0, p =1, and ¢ = 0 and ¢ = p to obtain As.

Call Algorithm -3 with » =1, s =0, p=1, and ¢ = 0 and ¢ = )\ to obtain A;.

@ Call Algorithm I-3 with r =0, s =1, p =0, and ¢ = 1 and ¢ = p to obtain As.
@ Call Algorithm -3 with »r =0, s =1, p =1, and ¢ = 0 and ¢ = )\ to obtain A4.
@ Call Algorithm -3 with r =1, s =0, p =10, and ¢ = 1 and ¢ = p to obtain As.
@ Call Algorithm I-3 with r =1, s =0, p =10, and ¢ = 1 and ¢ = )\ to obtain Ag.
@ Call Algorithm -3 with r =0, s=1, p=1, and ¢ = 0 and ¢ = p to obtain A7.
@ Call Algorithm [-3 with r =0, s =1, p =0, and ¢ = 1 and ¢ = X to obtain Ag.
@ Then the stiffness matrix

A=[A1 +2A5+ A3 As+ As;Ag + A7 Ag + 2A3 + Az,
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Unsteady linear elasticity equation
Assembly of the mass matrix

o Call Algorithm I-3 with r =0, s=0,p=0,¢q=0,c=1, to
obtain the basic mass matrix M,.

@ Generate a zero matrix Q4 whose size is N, X INp.

@ Then the block mass matrix M = [M. Q4 ;04 M,].
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Unsteady linear elasticity equation

Assembly of a time-independent vector

Recall Algorithm [1-3 from Chapter 3:
e Initialize the matrix: b = sparse(Ny, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- ,N:
FORpB=1,---,Ny:
Compute 7 = [}, fagx,fg)’;ﬁ dxdy:;

(Tb(ﬁa )7 )_b(Tb(5> )7 )+T;
END
END
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Unsteady linear elasticity equation

Assembly of a time-dependent vector

Recall Algorithm I1-5 from Chapter 4:
@ Specify a value for the time ¢ based on the input time;
o Initialize the vector: b = sparse(Ny, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- N:
FORﬁ: 1,'-‘ ,Nlbi
Compute 7 = [, f(t) ngb’if dzdy;
b(Ty(B,n),1) = b(Ty(B,n), 1) +r;
END
END
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Unsteady linear elasticity equation
Assembly of the load vector

Call Algorithm 1I-5 with p = ¢ = 0 and f = f; to obtain by (t).

Call Algorithm 11-5 with p = ¢ = 0 and f = f5 to obtain b (t).

Then the load vector b = [b(£): ba(t)].

If f1 and f2 do not depend on ¢, then this part is exactly the
same as the assembly of the load vector with Algorithm 1I-3 in
Chapter 5.
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Unsteady linear elasticity equation

Time-dependent Dirichlet boundary condition

Recall Algorithm 111-4 from this chapter:

@ Specify a value for the time ¢ based on the input time;

@ Deal with the Dirichlet boundary conditions:

FOREk=1,--- ,nbn:
If boundarynodes(1, k) shows Dirichlet condition, then
i = boundarynodes(2, k);

A(i,:) = 0;

A(iyi) =1,

b_(l) = gl(Pb(:ai)a t);
A(Ny +14,:) = 0;

A(Ny +1, Ny +1) = 1;
b(Nb + l) = gg(Pb(t,i),t);
ENDIF

END
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Unsteady linear elasticity equation

Temporal discretization for the ODE system

@ Consider the centered finite difference scheme for the system
of ODEs:
MX"(t)+ AX(t) = b(t).

@ Assume that we have a uniform partition of [0, 7] into M,
elements with mesh size At.

@ The mesh nodes are t,, = mAt, m=0,1,---, M,,.
o Assume X™ is the numerical solution of X (¢,,).

@ Then the centered finite difference scheme is
)qutl - Q)Zm + mel X’erl + Q)Zm + mel
M + A
At? 4
- 5‘(t’m)-/ m = 17 T -/Ajm-
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Unsteady linear elasticity equation

Temporal discretization for the ODE system

@ lteration scheme 2:

ARmHl — Eerl? m=1,---,M,,
where
_ M A
A= —+ —
INE + 1
- . oM A - M Al
berl_btm M A m | M £ m—1
(tm) [At2 2] [AtQ 4]
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Unsteady linear elasticity equation

Temporal discretization for the ODE system

Algorithm B:

Generate the mesh information matrices P and 7.
Assemble the mass matrix M by using Algorithm |-3.
Assemble the stiffness matrix A by using Algorithm |-3.

Generate the initial vector X° and X! based on the initial
conditions.

Iterate in time:
FORm=1,--- ,M,, — 1:

tm = mAtL;

Assemble the load vectors g(tm) by using Algorithm 11-5
att =t

Deal with Dirichlet boundary conditions by using
Algorithm [11-4 for A and b at ¢ = ty41;

Solve iteration scheme 2 for X1,
END
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Unsteady linear elasticity equation

Mixed boundary conditions for unsteady linear elasticity

equations

o Consider
uy —V-o(u)=1f in Qx[0,T7],
o(uyn=p on I'gx[0,T],
oc(uyn+ru=q onI'rx[0,T],

u=g onI'px[0,T],

ou :
u = ug, EZUQQ, at t =0 and in €.

where I'g, I'r C 9Q and I'p = 90Q/(I's UT'R).
@ Recall

/ Uy - v dridas —|—/ o(u) : Vv dzidzs —/ (oc(u)n) - v ds
Q Q

o)
= /f-v dzidzs.
Q
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Unsteady linear elasticity equation

Mixed boundary conditions for unsteady linear elasticity

equations

@ Since the solution on I'p = 992/(I's UT'R) is given by u = g,
then we can choose the test function v(z1,x2) such that
v=00n0Q/(I's UTR).

@ Hence, similar to the treatment of the mixed boundary
condition in Chapter 5, the weak formulation is to find
u € H?(0,T;[H'(2))?) such that

/uttv dxdy + / o(u) : Vv dwlda:QJr/ ru-v ds
Q Q I'r

= /f'vdznldxg—&—/ q-vds—&—/ p-Vvds
Q I'r s

for any v € [Hip(2)]? where
Hip(Q)={we H(Q):w=0o0onTp}.
@ Code? Combine all of the subroutines for Dirichlet/Stress/Robin

boundary conditions.
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Unsteady linear elasticity equation

Mixed boundary conditions in normal/tangential directions

for unsteady linear elasticity equations

o Consider

uy — V-o(u)=£f in Qx[0,7],

n‘oc(u)n = p,, 'oc(u)n =p, on I'sx[0,T],

n‘o(u)n + rn'u = q,, 'oc(u)n +r7fu=¢q, on I'gx[0,T],
u=g onI'px[0,T],

ou :
u = ug, EZUQO, att =0 and in Q.

where I'g, I'r C 992, I'p = 89/(FS UFR), n— (nl, ’ng)t is

the unit outer normal vector of 99, and 7 = (11, 2)! is the
corresponding unit tangential vector of 0f2.
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Unsteady linear elasticity equation

Mixed boundary conditions in normal/tangential directions

for unsteady linear elasticity equations

@ Recall

/ Uy - v deidrs + / o(u) : Vv dzxidxs
0 0

- /aQ(J(u)n) v ds

= /f-v dridxsy.
Q

@ Since the solution on I'p = 092/(I's UT'R) is given by u = g,
then we can choose the test function v(x1,x2) such that
v=00n0Q/(I's UT'R).
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Unsteady linear elasticity equation

Dirichlet/stress/Robin mixed boundary condition in

normal /tangential directions

@ Similar to the derivation of mixed boundary conditions in
normal/tangential directions in Chapter 5, we obtain

/E)Q(U(u)n) v ds
/ (ot v ds + / (o) v d + / (o(a)m) - v ds

0Q/(FsUT'R)
[/ pn(ntv) ds +/ pT(TtV) ds}
I's I's

+ {/FR qn(n'v) ds + /FR ¢ (7'v) ds]

- { /F R(rntu)(ntv) ds + /F R(TTtu)(TtV) ds} ;
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Unsteady linear elasticity equation

Mixed boundary conditions in normal/tangential directions

for unsteady linear elasticity equations

@ Hence, similar to the treatment of the mixed boundary
conditions in normal/tangential directions in Chapter 5, the
weak formulation is to find u € H2(0,7T; [H'(2)]?) such that

/ Uy - v dridrs +/ o(u) : Vv dzidzs
Q Q

+/ (rmnu)(n'v) ds + / (rrtu)(r'v) ds

JTRr JTRr

— / f-vdeidey+ / ¢n(n'v) ds + / q-(t'v) ds
Q JTRr JI'r

+/ pn(n'v) der/ p-(T'v) ds.
JI's JTg

for any v € [Hip(0))2.
@ Code? Combine all of the subroutines for
Dirichlet/Stress/Robin boundary conditions.
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